Abstract

Counter-propagating parametric conversion processes in non-linear bulk crystals have been shown to feature unique properties for efficient narrowband frequency conversion. In quantum optics, the generation of photon pairs with a counter-propagating parametric down-conversion process (PDC) in a waveguide, where signal and idler photons propagate in opposite directions, offers unique material-independent engineering capabilities. However, realizing counter-propagating PDC necessitates quasi-phase-matching (QPM) with extremely short poling periods. Here, we report on the generation of counter-propagating single-photon pairs in a self-made periodically poled lithium niobate waveguide with a poling period on the same order of magnitude as the generated wavelength. The single photons of the biphoton state bridge GHz and THz bandwidths with a separable joint temporal-spectral behavior. Furthermore, they allow the direct observation of the temporal envelope of heralded single photons with state-of-the art photon counters.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heralded generation of high-purity ultrashort single photons in programmable temporal shapes

V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn
Opt. Express 26(3) 2764-2774 (2018)

Pure single photon generation by type-I PDC with backward-wave amplification

A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn
Opt. Express 17(5) 3441-3446 (2009)

An optimized photon pair source for quantum circuits

Georg Harder, Vahid Ansari, Benjamin Brecht, Thomas Dirmeier, Christoph Marquardt, and Christine Silberhorn
Opt. Express 21(12) 13975-13985 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
    [Crossref]
  2. A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
    [Crossref]
  3. J. Giordmaine and R. Miller, “Tunable coherent parametric oscillation in linb o 3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
    [Crossref]
  4. J. U. Kang, Y. J. Ding, W. K. Burns, and J. S. Melinger, “Backward second-harmonic generation in periodically poled bulk linbo 3,” Opt. Lett. 22(12), 862–864 (1997).
    [Crossref]
  5. X. Gu, R. Y. Korotkov, Y. J. Ding, J. U. Kang, and J. B. Khurgin, “Backward second-harmonic generation in periodically poled lithium niobate,” J. Opt. Soc. Am. B 15(5), 1561–1566 (1998).
    [Crossref]
  6. M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66(2), 023815 (2002).
    [Crossref]
  7. A. U’Ren, C. Silberhorn, K. Banaszek, I. Walmsley, R. Erdmann, W. Grice, and M. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).
  8. M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear algaas waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98(6), 063103 (2005).
    [Crossref]
  9. L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. Van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97(17), 173901 (2006).
    [Crossref]
  10. J. Peřina, “Quantum properties of counterpropagating two-photon states generated in a planar waveguide,” Phys. Rev. A 77(1), 013803 (2008).
    [Crossref]
  11. T. Suhara and M. Ohno, “Quantum theory analysis of counterpropagating twin photon generation by parametric downconversion,” IEEE J. Quantum Electron. 46(12), 1739–1745 (2010).
    [Crossref]
  12. Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
    [Crossref]
  13. G. Boucher, A. Eckstein, A. Orieux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Polarization-entanglement generation and control in a counterpropagating phase-matching geometry,” Phys. Rev. A 89(3), 033815 (2014).
    [Crossref]
  14. A. Gatti, T. Corti, and E. Brambilla, “Temporal coherence and correlation of counterpropagating twin photons,” Phys. Rev. A 92(5), 053809 (2015).
    [Crossref]
  15. A. Gatti and E. Brambilla, “Heralding pure single photons: A comparison between counterpropagating and copropagating twin photons,” Phys. Rev. A 97(1), 013838 (2018).
    [Crossref]
  16. M. Bashkansky, M. W. Pruessner, I. Vurgaftman, M. Kim, and J. Reintjes, “Higher-order spontaneous parametric down-conversion with back-propagating idler using a submicron poled ktp waveguide,” Quantum Inf. Comput. IX 9873, 987303 (2016).
    [Crossref]
  17. I. Z. Latypov, A. A. Shukhin, D. O. Akat’ev, A. V. Shkalikov, and A. A. Kalachev, “Backward-wave spontaneous parametric down-conversion in a periodically poled ktp waveguide,” Quantum Electron. 47(9), 827–830 (2017).
    [Crossref]
  18. S. Saravi, T. Pertsch, and F. Setzpfandt, “Generation of counterpropagating path-entangled photon pairs in a single periodic waveguide,” Phys. Rev. Lett. 118(18), 183603 (2017).
    [Crossref]
  19. S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9(3), 114–116 (1966).
    [Crossref]
  20. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
    [Crossref]
  21. A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, “Cascaded counter-propagating nonlinear interactions in highly-efficient sub-µm periodically poled crystals,” Sci. Rep. 7(1), 8037 (2017).
    [Crossref]
  22. A.-L. Viotti, P. Mutter, A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Degenerate mirrorless optical parametric oscillator,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, (Optical Society of America, 2019).
  23. L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
    [Crossref]
  24. V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5(5), 534–550 (2018).
    [Crossref]
  25. T. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8(5), 356–363 (2014).
    [Crossref]
  26. H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 024021 (2017).
    [Crossref]
  27. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “Ppln waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
    [Crossref]
  28. K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65(10), 1141–1160 (2018).
    [Crossref]
  29. P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103(23), 233901 (2009).
    [Crossref]
  30. A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-i pdc with backward-wave amplification,” Opt. Express 17(5), 3441–3446 (2009).
    [Crossref]
  31. J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
    [Crossref]
  32. K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
    [Crossref]
  33. P. Sharapova, K. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of linbo3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
    [Crossref]
  34. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
    [Crossref]
  35. T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56(2), 1534–1541 (1997).
    [Crossref]
  36. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975–13985 (2013).
    [Crossref]
  37. W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6(11), 777–781 (2012).
    [Crossref]
  38. R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5(1), 4502 (2014).
    [Crossref]
  39. R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
    [Crossref]
  40. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351(6271), 357–360 (2016).
    [Crossref]
  41. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-ii periodically poled lithium niobate waveguide,” Opt. Express 15(20), 12769–12776 (2007).
    [Crossref]
  42. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
    [Crossref]
  43. O. Kuzucu, F. N. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
    [Crossref]
  44. J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120(5), 053601 (2018).
    [Crossref]
  45. Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Z. Xie, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).
  46. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
    [Crossref]

2018 (7)

A. Gatti and E. Brambilla, “Heralding pure single photons: A comparison between counterpropagating and copropagating twin photons,” Phys. Rev. A 97(1), 013838 (2018).
[Crossref]

V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5(5), 534–550 (2018).
[Crossref]

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65(10), 1141–1160 (2018).
[Crossref]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref]

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120(5), 053601 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

2017 (6)

P. Sharapova, K. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of linbo3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 024021 (2017).
[Crossref]

I. Z. Latypov, A. A. Shukhin, D. O. Akat’ev, A. V. Shkalikov, and A. A. Kalachev, “Backward-wave spontaneous parametric down-conversion in a periodically poled ktp waveguide,” Quantum Electron. 47(9), 827–830 (2017).
[Crossref]

S. Saravi, T. Pertsch, and F. Setzpfandt, “Generation of counterpropagating path-entangled photon pairs in a single periodic waveguide,” Phys. Rev. Lett. 118(18), 183603 (2017).
[Crossref]

A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, “Cascaded counter-propagating nonlinear interactions in highly-efficient sub-µm periodically poled crystals,” Sci. Rep. 7(1), 8037 (2017).
[Crossref]

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

2016 (2)

M. Bashkansky, M. W. Pruessner, I. Vurgaftman, M. Kim, and J. Reintjes, “Higher-order spontaneous parametric down-conversion with back-propagating idler using a submicron poled ktp waveguide,” Quantum Inf. Comput. IX 9873, 987303 (2016).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

2015 (2)

A. Gatti, T. Corti, and E. Brambilla, “Temporal coherence and correlation of counterpropagating twin photons,” Phys. Rev. A 92(5), 053809 (2015).
[Crossref]

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

2014 (3)

T. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8(5), 356–363 (2014).
[Crossref]

G. Boucher, A. Eckstein, A. Orieux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Polarization-entanglement generation and control in a counterpropagating phase-matching geometry,” Phys. Rev. A 89(3), 033815 (2014).
[Crossref]

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5(1), 4502 (2014).
[Crossref]

2013 (2)

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975–13985 (2013).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
[Crossref]

2012 (1)

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6(11), 777–781 (2012).
[Crossref]

2011 (1)

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[Crossref]

2010 (2)

T. Suhara and M. Ohno, “Quantum theory analysis of counterpropagating twin photon generation by parametric downconversion,” IEEE J. Quantum Electron. 46(12), 1739–1745 (2010).
[Crossref]

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
[Crossref]

2009 (2)

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103(23), 233901 (2009).
[Crossref]

A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-i pdc with backward-wave amplification,” Opt. Express 17(5), 3441–3446 (2009).
[Crossref]

2008 (2)

J. Peřina, “Quantum properties of counterpropagating two-photon states generated in a planar waveguide,” Phys. Rev. A 77(1), 013803 (2008).
[Crossref]

O. Kuzucu, F. N. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
[Crossref]

2007 (3)

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-ii periodically poled lithium niobate waveguide,” Opt. Express 15(20), 12769–12776 (2007).
[Crossref]

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[Crossref]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

2006 (1)

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. Van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97(17), 173901 (2006).
[Crossref]

2005 (2)

A. U’Ren, C. Silberhorn, K. Banaszek, I. Walmsley, R. Erdmann, W. Grice, and M. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear algaas waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98(6), 063103 (2005).
[Crossref]

2004 (1)

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref]

2002 (2)

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66(2), 023815 (2002).
[Crossref]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “Ppln waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

1998 (1)

1997 (2)

J. U. Kang, Y. J. Ding, W. K. Burns, and J. S. Melinger, “Backward second-harmonic generation in periodically poled bulk linbo 3,” Opt. Lett. 22(12), 862–864 (1997).
[Crossref]

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56(2), 1534–1541 (1997).
[Crossref]

1966 (1)

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9(3), 114–116 (1966).
[Crossref]

1965 (1)

J. Giordmaine and R. Miller, “Tunable coherent parametric oscillation in linb o 3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
[Crossref]

Akat’ev, D. O.

I. Z. Latypov, A. A. Shukhin, D. O. Akat’ev, A. V. Shkalikov, and A. A. Kalachev, “Backward-wave spontaneous parametric down-conversion in a periodically poled ktp waveguide,” Quantum Electron. 47(9), 827–830 (2017).
[Crossref]

Ansari, V.

Arie, A.

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
[Crossref]

Assanto, G.

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear algaas waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98(6), 063103 (2005).
[Crossref]

Atatüre, M.

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66(2), 023815 (2002).
[Crossref]

Bajoni, D.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

Baldi, P.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “Ppln waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Banaszek, K.

A. U’Ren, C. Silberhorn, K. Banaszek, I. Walmsley, R. Erdmann, W. Grice, and M. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Bashkansky, M.

M. Bashkansky, M. W. Pruessner, I. Vurgaftman, M. Kim, and J. Reintjes, “Higher-order spontaneous parametric down-conversion with back-propagating idler using a submicron poled ktp waveguide,” Quantum Inf. Comput. IX 9873, 987303 (2016).
[Crossref]

Berger, V.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. Van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97(17), 173901 (2006).
[Crossref]

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear algaas waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98(6), 063103 (2005).
[Crossref]

Blatt, R.

T. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8(5), 356–363 (2014).
[Crossref]

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Booth, M. C.

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66(2), 023815 (2002).
[Crossref]

Boucher, G.

G. Boucher, A. Eckstein, A. Orieux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Polarization-entanglement generation and control in a counterpropagating phase-matching geometry,” Phys. Rev. A 89(3), 033815 (2014).
[Crossref]

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Brambilla, E.

A. Gatti and E. Brambilla, “Heralding pure single photons: A comparison between counterpropagating and copropagating twin photons,” Phys. Rev. A 97(1), 013838 (2018).
[Crossref]

A. Gatti, T. Corti, and E. Brambilla, “Temporal coherence and correlation of counterpropagating twin photons,” Phys. Rev. A 92(5), 053809 (2015).
[Crossref]

Brasch, V.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

Brecht, B.

Burns, W. K.

Canalias, C.

A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, “Cascaded counter-propagating nonlinear interactions in highly-efficient sub-µm periodically poled crystals,” Sci. Rep. 7(1), 8037 (2017).
[Crossref]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

A.-L. Viotti, P. Mutter, A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Degenerate mirrorless optical parametric oscillator,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, (Optical Society of America, 2019).

Caspani, L.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Christ, A.

A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-i pdc with backward-wave amplification,” Opt. Express 17(5), 3441–3446 (2009).
[Crossref]

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103(23), 233901 (2009).
[Crossref]

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Corti, T.

A. Gatti, T. Corti, and E. Brambilla, “Temporal coherence and correlation of counterpropagating twin photons,” Phys. Rev. A 92(5), 053809 (2015).
[Crossref]

Coudreau, T.

G. Boucher, A. Eckstein, A. Orieux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Polarization-entanglement generation and control in a counterpropagating phase-matching geometry,” Phys. Rev. A 89(3), 033815 (2014).
[Crossref]

Cristiani, M.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
[Crossref]

Cruz-Delgado, D.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65(10), 1141–1160 (2018).
[Crossref]

Cruz-Ramirez, H.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65(10), 1141–1160 (2018).
[Crossref]

de Riedmatten, H.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
[Crossref]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “Ppln waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

De Rossi, A.

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear algaas waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98(6), 063103 (2005).
[Crossref]

DeMicheli, M.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “Ppln waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Devitt, S. J.

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6(11), 777–781 (2012).
[Crossref]

Di Giuseppe, G.

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66(2), 023815 (2002).
[Crossref]

Ding, Y. J.

Dirmeier, T.

Donohue, J. M.

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120(5), 053601 (2018).
[Crossref]

V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5(5), 534–550 (2018).
[Crossref]

Duan, J.-C.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Z. Xie, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Ducci, S.

G. Boucher, A. Eckstein, A. Orieux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Polarization-entanglement generation and control in a counterpropagating phase-matching geometry,” Phys. Rev. A 89(3), 033815 (2014).
[Crossref]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. Van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97(17), 173901 (2006).
[Crossref]

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear algaas waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98(6), 063103 (2005).
[Crossref]

Eckstein, A.

G. Boucher, A. Eckstein, A. Orieux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Polarization-entanglement generation and control in a counterpropagating phase-matching geometry,” Phys. Rev. A 89(3), 033815 (2014).
[Crossref]

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103(23), 233901 (2009).
[Crossref]

A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-i pdc with backward-wave amplification,” Opt. Express 17(5), 3441–3446 (2009).
[Crossref]

Eggleton, B. J.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

Erdmann, R.

A. U’Ren, C. Silberhorn, K. Banaszek, I. Walmsley, R. Erdmann, W. Grice, and M. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Fang, B.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65(10), 1141–1160 (2018).
[Crossref]

Favero, I.

G. Boucher, A. Eckstein, A. Orieux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Polarization-entanglement generation and control in a counterpropagating phase-matching geometry,” Phys. Rev. A 89(3), 033815 (2014).
[Crossref]

Fejer, M. M.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[Crossref]

Fekete, J.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
[Crossref]

Felinto, D.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref]

Fickler, R.

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5(1), 4502 (2014).
[Crossref]

Fujii, G.

Galli, M.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

Garay-Palmett, K.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65(10), 1141–1160 (2018).
[Crossref]

Gatti, A.

A. Gatti and E. Brambilla, “Heralding pure single photons: A comparison between counterpropagating and copropagating twin photons,” Phys. Rev. A 97(1), 013838 (2018).
[Crossref]

A. Gatti, T. Corti, and E. Brambilla, “Temporal coherence and correlation of counterpropagating twin photons,” Phys. Rev. A 92(5), 053809 (2015).
[Crossref]

Geiselmann, M.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

Giordmaine, J.

J. Giordmaine and R. Miller, “Tunable coherent parametric oscillation in linb o 3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
[Crossref]

Gisin, N.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “Ppln waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Gong, Y.-X.

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[Crossref]

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Z. Xie, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Gorodetsky, M. L.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

Grice, W.

A. U’Ren, C. Silberhorn, K. Banaszek, I. Walmsley, R. Erdmann, W. Grice, and M. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Gu, X.

Guo, D.-J.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Z. Xie, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Harder, G.

Harris, S. E.

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9(3), 114–116 (1966).
[Crossref]

Harrison, K. A.

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6(11), 777–781 (2012).
[Crossref]

Herr, T.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

Herrmann, H.

P. Sharapova, K. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of linbo3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Huber, M.

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5(1), 4502 (2014).
[Crossref]

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[Crossref]

Ikuta, R.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref]

Inoue, S.

Kalachev, A. A.

I. Z. Latypov, A. A. Shukhin, D. O. Akat’ev, A. V. Shkalikov, and A. A. Kalachev, “Backward-wave spontaneous parametric down-conversion in a periodically poled ktp waveguide,” Quantum Electron. 47(9), 827–830 (2017).
[Crossref]

Kang, J. U.

Kawakami, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref]

Keller, A.

G. Boucher, A. Eckstein, A. Orieux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Polarization-entanglement generation and control in a counterpropagating phase-matching geometry,” Phys. Rev. A 89(3), 033815 (2014).
[Crossref]

Keller, T. E.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56(2), 1534–1541 (1997).
[Crossref]

Khurgin, J. B.

Kim, M.

M. Bashkansky, M. W. Pruessner, I. Vurgaftman, M. Kim, and J. Reintjes, “Higher-order spontaneous parametric down-conversion with back-propagating idler using a submicron poled ktp waveguide,” Quantum Inf. Comput. IX 9873, 987303 (2016).
[Crossref]

Kippenberg, T. J.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

Koashi, M.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref]

Kobayashi, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref]

Korotkov, R. Y.

Krapick, S.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Kurimura, S.

Kuzucu, O.

O. Kuzucu, F. N. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
[Crossref]

Kwiat, P. G.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65(10), 1141–1160 (2018).
[Crossref]

Lanco, L.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. Van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97(17), 173901 (2006).
[Crossref]

Lapkiewicz, R.

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5(1), 4502 (2014).
[Crossref]

Latypov, I. Z.

I. Z. Latypov, A. A. Shukhin, D. O. Akat’ev, A. V. Shkalikov, and A. A. Kalachev, “Backward-wave spontaneous parametric down-conversion in a periodically poled ktp waveguide,” Quantum Electron. 47(9), 827–830 (2017).
[Crossref]

Lavery, M. P.

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5(1), 4502 (2014).
[Crossref]

Lawall, J. R.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref]

Leo, G.

G. Boucher, A. Eckstein, A. Orieux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Polarization-entanglement generation and control in a counterpropagating phase-matching geometry,” Phys. Rev. A 89(3), 033815 (2014).
[Crossref]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. Van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97(17), 173901 (2006).
[Crossref]

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear algaas waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98(6), 063103 (2005).
[Crossref]

Lihachev, G.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

Likforman, J.-P.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. Van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97(17), 173901 (2006).
[Crossref]

Liljestrand, C.

A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, “Cascaded counter-propagating nonlinear interactions in highly-efficient sub-µm periodically poled crystals,” Sci. Rep. 7(1), 8037 (2017).
[Crossref]

Lipson, M.

Liscidini, M.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

Liu, Y.-C.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Z. Xie, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Loncar, M.

Lorenz, V. O.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65(10), 1141–1160 (2018).
[Crossref]

Luo, K.

P. Sharapova, K. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of linbo3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Luo, K.-H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 024021 (2017).
[Crossref]

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

MacLean, J.-P. W.

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120(5), 053601 (2018).
[Crossref]

Marcadet, X.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. Van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97(17), 173901 (2006).
[Crossref]

Marian, A.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref]

Marquardt, C.

Meier, T.

P. Sharapova, K. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of linbo3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Melinger, J. S.

Miki, S.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref]

Miller, R.

J. Giordmaine and R. Miller, “Tunable coherent parametric oscillation in linb o 3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
[Crossref]

Milman, P.

G. Boucher, A. Eckstein, A. Orieux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Polarization-entanglement generation and control in a counterpropagating phase-matching geometry,” Phys. Rev. A 89(3), 033815 (2014).
[Crossref]

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Morandotti, R.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

Mosley, P. J.

A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-i pdc with backward-wave amplification,” Opt. Express 17(5), 3441–3446 (2009).
[Crossref]

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103(23), 233901 (2009).
[Crossref]

Moss, D. J.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

Motoya, M.

Mukai, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref]

Munro, W. J.

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6(11), 777–781 (2012).
[Crossref]

Mutter, P.

A.-L. Viotti, P. Mutter, A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Degenerate mirrorless optical parametric oscillator,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, (Optical Society of America, 2019).

Namekata, N.

Nemoto, K.

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6(11), 777–781 (2012).
[Crossref]

Northup, T.

T. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8(5), 356–363 (2014).
[Crossref]

O’Boyle, M. F.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65(10), 1141–1160 (2018).
[Crossref]

Ohno, M.

T. Suhara and M. Ohno, “Quantum theory analysis of counterpropagating twin photon generation by parametric downconversion,” IEEE J. Quantum Electron. 46(12), 1739–1745 (2010).
[Crossref]

Orieux, A.

G. Boucher, A. Eckstein, A. Orieux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Polarization-entanglement generation and control in a counterpropagating phase-matching geometry,” Phys. Rev. A 89(3), 033815 (2014).
[Crossref]

Ostrowsky, D. B.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “Ppln waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Padgett, M. J.

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5(1), 4502 (2014).
[Crossref]

Pasiskevicius, V.

A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, “Cascaded counter-propagating nonlinear interactions in highly-efficient sub-µm periodically poled crystals,” Sci. Rep. 7(1), 8037 (2017).
[Crossref]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

A.-L. Viotti, P. Mutter, A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Degenerate mirrorless optical parametric oscillator,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, (Optical Society of America, 2019).

Perina, J.

J. Peřina, “Quantum properties of counterpropagating two-photon states generated in a planar waveguide,” Phys. Rev. A 77(1), 013803 (2008).
[Crossref]

Pertsch, T.

S. Saravi, T. Pertsch, and F. Setzpfandt, “Generation of counterpropagating path-entangled photon pairs in a single periodic waveguide,” Phys. Rev. Lett. 118(18), 183603 (2017).
[Crossref]

Pfeiffer, M. H.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

Pruessner, M. W.

M. Bashkansky, M. W. Pruessner, I. Vurgaftman, M. Kim, and J. Reintjes, “Higher-order spontaneous parametric down-conversion with back-propagating idler using a submicron poled ktp waveguide,” Quantum Inf. Comput. IX 9873, 987303 (2016).
[Crossref]

Quiring, V.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Ravaro, M.

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear algaas waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98(6), 063103 (2005).
[Crossref]

Raymer, M.

A. U’Ren, C. Silberhorn, K. Banaszek, I. Walmsley, R. Erdmann, W. Grice, and M. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Reichelt, M.

P. Sharapova, K. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of linbo3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Reintjes, J.

M. Bashkansky, M. W. Pruessner, I. Vurgaftman, M. Kim, and J. Reintjes, “Higher-order spontaneous parametric down-conversion with back-propagating idler using a submicron poled ktp waveguide,” Quantum Inf. Comput. IX 9873, 987303 (2016).
[Crossref]

Resch, K. J.

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120(5), 053601 (2018).
[Crossref]

Ricken, R.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Rieländer, D.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
[Crossref]

Rubin, M. H.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56(2), 1534–1541 (1997).
[Crossref]

Rütz, H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 024021 (2017).
[Crossref]

Saleh, B. E.

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66(2), 023815 (2002).
[Crossref]

Saravi, S.

S. Saravi, T. Pertsch, and F. Setzpfandt, “Generation of counterpropagating path-entangled photon pairs in a single periodic waveguide,” Phys. Rev. Lett. 118(18), 183603 (2017).
[Crossref]

Sergienko, A. V.

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66(2), 023815 (2002).
[Crossref]

Setzpfandt, F.

S. Saravi, T. Pertsch, and F. Setzpfandt, “Generation of counterpropagating path-entangled photon pairs in a single periodic waveguide,” Phys. Rev. Lett. 118(18), 183603 (2017).
[Crossref]

Seurin, Y.

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear algaas waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98(6), 063103 (2005).
[Crossref]

Sharapova, P.

P. Sharapova, K. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of linbo3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Shkalikov, A. V.

I. Z. Latypov, A. A. Shukhin, D. O. Akat’ev, A. V. Shkalikov, and A. A. Kalachev, “Backward-wave spontaneous parametric down-conversion in a periodically poled ktp waveguide,” Quantum Electron. 47(9), 827–830 (2017).
[Crossref]

Shukhin, A. A.

I. Z. Latypov, A. A. Shukhin, D. O. Akat’ev, A. V. Shkalikov, and A. A. Kalachev, “Backward-wave spontaneous parametric down-conversion in a periodically poled ktp waveguide,” Quantum Electron. 47(9), 827–830 (2017).
[Crossref]

Silberhorn, C.

V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5(5), 534–550 (2018).
[Crossref]

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 024021 (2017).
[Crossref]

P. Sharapova, K. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of linbo3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21(12), 13975–13985 (2013).
[Crossref]

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103(23), 233901 (2009).
[Crossref]

A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single photon generation by type-i pdc with backward-wave amplification,” Opt. Express 17(5), 3441–3446 (2009).
[Crossref]

A. U’Ren, C. Silberhorn, K. Banaszek, I. Walmsley, R. Erdmann, W. Grice, and M. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Sohler, W.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Stephens, A. M.

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6(11), 777–781 (2012).
[Crossref]

Stern, B.

Stowe, M. C.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref]

Suche, H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 024021 (2017).
[Crossref]

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Suhara, T.

T. Suhara and M. Ohno, “Quantum theory analysis of counterpropagating twin photon generation by parametric downconversion,” IEEE J. Quantum Electron. 46(12), 1739–1745 (2010).
[Crossref]

Sun, C.-W.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Z. Xie, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Tanzilli, S.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “Ppln waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Teich, M. C.

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66(2), 023815 (2002).
[Crossref]

Terai, H.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref]

Tittel, W.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “Ppln waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Tovstonog, S.

O. Kuzucu, F. N. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
[Crossref]

U’Ren, A.

A. U’Ren, C. Silberhorn, K. Banaszek, I. Walmsley, R. Erdmann, W. Grice, and M. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

U’Ren, A. B.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65(10), 1141–1160 (2018).
[Crossref]

Van Houwelingen, J.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. Van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97(17), 173901 (2006).
[Crossref]

Viotti, A.-L.

A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, “Cascaded counter-propagating nonlinear interactions in highly-efficient sub-µm periodically poled crystals,” Sci. Rep. 7(1), 8037 (2017).
[Crossref]

A.-L. Viotti, P. Mutter, A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Degenerate mirrorless optical parametric oscillator,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, (Optical Society of America, 2019).

Voloch, N.

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
[Crossref]

Vurgaftman, I.

M. Bashkansky, M. W. Pruessner, I. Vurgaftman, M. Kim, and J. Reintjes, “Higher-order spontaneous parametric down-conversion with back-propagating idler using a submicron poled ktp waveguide,” Quantum Inf. Comput. IX 9873, 987303 (2016).
[Crossref]

Walmsley, I.

A. U’Ren, C. Silberhorn, K. Banaszek, I. Walmsley, R. Erdmann, W. Grice, and M. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Wang, C.

Wong, F. N.

O. Kuzucu, F. N. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
[Crossref]

Xie, Z.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Z. Xie, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Xie, Z.-D.

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[Crossref]

Xiong, C.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

Xu, P.

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[Crossref]

Xue, P.

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[Crossref]

Yabuno, M.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref]

Yamamoto, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref]

Yamashita, T.

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref]

Yang, R.

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Z. Xie, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Ye, J.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref]

Yu, X.-Q.

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[Crossref]

Zbinden, H.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. Van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97(17), 173901 (2006).
[Crossref]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “Ppln waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Zeilinger, A.

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5(1), 4502 (2014).
[Crossref]

Zhang, M.

Zhu, S.-N.

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[Crossref]

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Z. Xie, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Zielnicki, K.

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65(10), 1141–1160 (2018).
[Crossref]

Zukauskas, A.

A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, “Cascaded counter-propagating nonlinear interactions in highly-efficient sub-µm periodically poled crystals,” Sci. Rep. 7(1), 8037 (2017).
[Crossref]

A.-L. Viotti, P. Mutter, A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Degenerate mirrorless optical parametric oscillator,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, (Optical Society of America, 2019).

Appl. Phys. Lett. (1)

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9(3), 114–116 (1966).
[Crossref]

C. R. Phys. (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007).
[Crossref]

Eur. Phys. J. D (1)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “Ppln waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Suhara and M. Ohno, “Quantum theory analysis of counterpropagating twin photon generation by parametric downconversion,” IEEE J. Quantum Electron. 46(12), 1739–1745 (2010).
[Crossref]

J. Appl. Phys. (1)

M. Ravaro, Y. Seurin, S. Ducci, G. Leo, V. Berger, A. De Rossi, and G. Assanto, “Nonlinear algaas waveguide for the generation of counterpropagating twin photons in the telecom range,” J. Appl. Phys. 98(6), 063103 (2005).
[Crossref]

J. Mod. Opt. (1)

K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O’Boyle, B. Fang, V. O. Lorenz, A. B. U’Ren, and P. G. Kwiat, “Joint spectral characterization of photon-pair sources,” J. Mod. Opt. 65(10), 1141–1160 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4(3), 355–373 (2010).
[Crossref]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Laser Phys. (1)

A. U’Ren, C. Silberhorn, K. Banaszek, I. Walmsley, R. Erdmann, W. Grice, and M. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys. 15, 146–161 (2005).

Light: Sci. Appl. (1)

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

Nat. Commun. (2)

R. Fickler, R. Lapkiewicz, M. Huber, M. P. Lavery, M. J. Padgett, and A. Zeilinger, “Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information,” Nat. Commun. 5(1), 4502 (2014).
[Crossref]

R. Ikuta, T. Kobayashi, T. Kawakami, S. Miki, M. Yabuno, T. Yamashita, H. Terai, M. Koashi, T. Mukai, and T. Yamamoto, “Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network,” Nat. Commun. 9(1), 1997 (2018).
[Crossref]

Nat. Photonics (3)

T. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photonics 8(5), 356–363 (2014).
[Crossref]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1(8), 459–462 (2007).
[Crossref]

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6(11), 777–781 (2012).
[Crossref]

New J. Phys. (2)

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

P. Sharapova, K. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of linbo3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (7)

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56(2), 1534–1541 (1997).
[Crossref]

J. Peřina, “Quantum properties of counterpropagating two-photon states generated in a planar waveguide,” Phys. Rev. A 77(1), 013803 (2008).
[Crossref]

M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A 66(2), 023815 (2002).
[Crossref]

Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, and S.-N. Zhu, “Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal,” Phys. Rev. A 84(5), 053825 (2011).
[Crossref]

G. Boucher, A. Eckstein, A. Orieux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Polarization-entanglement generation and control in a counterpropagating phase-matching geometry,” Phys. Rev. A 89(3), 033815 (2014).
[Crossref]

A. Gatti, T. Corti, and E. Brambilla, “Temporal coherence and correlation of counterpropagating twin photons,” Phys. Rev. A 92(5), 053809 (2015).
[Crossref]

A. Gatti and E. Brambilla, “Heralding pure single photons: A comparison between counterpropagating and copropagating twin photons,” Phys. Rev. A 97(1), 013838 (2018).
[Crossref]

Phys. Rev. Appl. (1)

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7(2), 024021 (2017).
[Crossref]

Phys. Rev. Lett. (7)

J. Giordmaine and R. Miller, “Tunable coherent parametric oscillation in linb o 3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
[Crossref]

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103(23), 233901 (2009).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110(22), 220502 (2013).
[Crossref]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. Van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97(17), 173901 (2006).
[Crossref]

S. Saravi, T. Pertsch, and F. Setzpfandt, “Generation of counterpropagating path-entangled photon pairs in a single periodic waveguide,” Phys. Rev. Lett. 118(18), 183603 (2017).
[Crossref]

O. Kuzucu, F. N. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett. 101(15), 153602 (2008).
[Crossref]

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120(5), 053601 (2018).
[Crossref]

Quantum Electron. (1)

I. Z. Latypov, A. A. Shukhin, D. O. Akat’ev, A. V. Shkalikov, and A. A. Kalachev, “Backward-wave spontaneous parametric down-conversion in a periodically poled ktp waveguide,” Quantum Electron. 47(9), 827–830 (2017).
[Crossref]

Quantum Inf. Comput. IX (1)

M. Bashkansky, M. W. Pruessner, I. Vurgaftman, M. Kim, and J. Reintjes, “Higher-order spontaneous parametric down-conversion with back-propagating idler using a submicron poled ktp waveguide,” Quantum Inf. Comput. IX 9873, 987303 (2016).
[Crossref]

Sci. Rep. (1)

A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, “Cascaded counter-propagating nonlinear interactions in highly-efficient sub-µm periodically poled crystals,” Sci. Rep. 7(1), 8037 (2017).
[Crossref]

Science (2)

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref]

Other (2)

A.-L. Viotti, P. Mutter, A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Degenerate mirrorless optical parametric oscillator,” in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, (Optical Society of America, 2019).

Y.-C. Liu, D.-J. Guo, R. Yang, C.-W. Sun, J.-C. Duan, Z. Xie, Y.-X. Gong, and S.-N. Zhu, “Narrow-band photonic quantum entanglement with counterpropagating domain engineering,” arXiv:1905.13395 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Sketches of photon pair generation, vector diagrams of quasi-phase-matching (QPM) interactions, and joint spectral amplitudes (JSA) of various PDC processes in a periodically poled ferroelectric waveguide. (a) Conventional PDC via co-propagating phase matching ($k_p =k_s+k_i+k_G$), where the signal and idler photons co-propagate along the same direction as the pump. The JSA is determined by the pump distribution and the phase-matching dispersion inside the medium. Because of the dispersion properties of the nonlinear material, the JSA still shows spectral correlations between signal and idler. (b) Counter-propagating phase-matching ($k_p =k_s-k_i+k_{CG}$) in a waveguide with a much shorter poling period, where the generated idler photon is counter-propagating to the pump photon. Because of the narrow and almost horizontal phase-matching function in the JSA diagram, the PDC process generates decorrelated bi-photon states with a narrow spectral width for the idler photon.
Fig. 2.
Fig. 2. Micrographs of poled domain structures with 1.7 $\mu$m period. The measurement has been performed on a witness sample fabricated simultaneously with the sample that was used for the counter-propagating PDC generation. For visualization, we cut the sample along the sketched planes and subsequently etched the surface in hydrofluoric acid to reveal the domain structure exploiting selective etch rates for opposite domain orientations. The black dotted lines denote the inverted domains. (a) Top view onto the Ti:PPLN waveguide with a zoom to the domain structures. Oblique side views (b) an (c) with different polishing angles through the Ti:PPLN waveguide with a zoom showing the depth of poling structures.
Fig. 3.
Fig. 3. Experimental setup for quantum characterization of the counter-propagating photon pair generation. The system is pumped with either a pump laser around 765 nm with pulse length of 2 ps and repetition rate of 80 MHz, or a continuous-wave laser. The end-face of waveguide are angle-polished. Pump power is set through a combination of half wave plate (HWP) together with a polarizer. In the inset, the coupling to the slant polished facets is visible. A temperature controller stabilizes the sample to a temperature around 160 $^{\circ }$C to obtain quasi-phase-matching for the desired wavelength combination and to prevent luminescence and deterioration due to photo-refraction. During the measurements the sample temperature is stabilized to about $\pm$5 mK. The two opposite output ports from the waveguide are coupled to single-mode fibres behind a filter stage consisting of a coated silicon filter to suppress residual pump light plus a 1.2 nm wide bandpass fiber filter to suppress background photons and a 8 nm wide bandpass filter in the signal and the idler arm, respectively. For the joint temporal intensity (JTI) measurements, the photons are detected with superconducting nanowire detectors (SNSPDs) and a time-to-digital converter (TDC). For the joint spectral intensity (JSI) measurements, long dispersive fibers are inserted in front of the detectors.
Fig. 4.
Fig. 4. Pump independent heralded single photon source. (a) Theoretically predicted counter-propagating joint spectral intensity (JSI) distribution between signal and idler. The theoretical JSI has asymmetric ellipse shape. The gray curve indicates the resolution of the detection system. The expected measured results defined by the detection resolution is shown by solid contour lines, from inside to outside representing the normalized intensity values 0.75 (navy), 0.5 (blue), and 0.25 (cyan), individually. (b) Experimental JSI measurements. The pump pulse duration is around 2 ps. (c) Coincidence envelop es between signal and idler from ps pulse pumping (black) and continuous-wave (cw) pumping (red). The time resolution of the detection system (grey) was obtained by using a typical co-propagating QPM PDC source with short correlation time. (d) Dependence of coincidence counts on averaged pump power when pulse pump is used.
Fig. 5.
Fig. 5. Joint temporal intensity (JTI) results. (a) Theoretical prediction of counter-propagating JTI distribution between signal and idler. (b) Experimental result from JTI measurement, when pulse pump with duration 2 ps is used. The grey curve indicates the resolution of detection systems. The expected measured results defined by the detection system is indicated by solid contour lines, representing the normalized intensity values from inside to outside 0.75 (navy), 0.5 (blue), and 0.25 (cyan), respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k ( ω p = ω s + ω i ) = k ( ω s ) + k ( ω i ) + k G ( m , Λ 1 )
| Ψ P D C d ω s d ω i f ( ω s , ω i ) a ^ s ( ω s ) a ^ i ( ω i ) | 0 ,

Metrics