Abstract

We report the first observation of laser cooling in Yb3+:KYW and validate the results by comparison with experiments in the well-studied material Yb3+:YAG. Radiation from a single-mode Ti:Al2O3 laser was used to achieve cooling of 1.5 K/W in 1% Yb:KYW at 1025 nm, comparing well with the reference material 3% Yb:YAG which cooled by 3.5 K/W at 1030 nm under open lab conditions. Experimental results for KYW crystals mounted on aerogels and doped with 1-20% Yb were in excellent agreement with the theoretical dependence of cooling power on the Yb absorption spectrum. Elimination of thermal conduction through the sample support structure was found to permit the attainment of lower temperatures and to simplify modeling of radiation balance conditions in self-cooled lasers with longitudinal thermal gradients. Contrary to the notion that more coolant ions yield higher cooling power, concentrations of Yb over 1% caused re-absorption of luminescence in KYW crystals, leading to a progressive red shift in the optimal cooling wavelength and the prevention of laser cooling altogether in a 20% sample at room temperature. The prospect of attaining radiation-balanced lasing in commercially-available tungstate crystals is evaluated.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser cooling in Yb3+:YAG

Galina Nemova and Raman Kashyap
J. Opt. Soc. Am. B 31(2) 340-348 (2014)

Local laser cooling of Yb:YLF to 110 K

Denis V. Seletskiy, Seth D. Melgaard, Richard I. Epstein, Alberto Di Lieto, Mauro Tonelli, and Mansoor Sheik-Bahae
Opt. Express 19(19) 18229-18236 (2011)

Characterization of Yb-doped ZBLAN fiber as a platform for radiation-balanced lasers

Mostafa Peysokhan, Esmaeil Mobini, Arman Allahverdi, Behnam Abaie, and Arash Mafi
Photon. Res. 8(2) 202-210 (2020)

References

  • View by:
  • |
  • |
  • |

  1. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
    [Crossref]
  2. P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz-und temperaturstrahlung,” Eur. Phys. J. A 57(11-12), 739–746 (1929).
    [Crossref]
  3. L. Landau, “On the thermodynamics of photoluminescence,” J PhysMoscow10, (1946).
  4. S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71(6), 807–811 (2000).
    [Crossref]
  5. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
    [Crossref]
  6. S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380 (2016).
    [Crossref]
  7. M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
    [Crossref]
  8. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
    [Crossref]
  9. S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41(12), 1510–1517 (2005).
    [Crossref]
  10. Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Radiation Balanced Thin Disk Lasers,” in Conference on Lasers and Electro-Optics (2018), Paper SM4N.5 (Optical Society of America, 2018), p. SM4N.5.
  11. Z. Yang, J. Meng, A. R. Albrecht, and M. Sheik-Bahae, “Radiation-balanced Yb:YAG disk laser,” Opt. Express 27(2), 1392–1400 (2019).
    [Crossref]
  12. E. S. de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Laser-induced cooling of a Yb: YAG crystal in air at atmospheric pressure,” Opt. Express 21(21), 24711–24720 (2013).
    [Crossref]
  13. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  14. J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 C and 200 C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493–2502 (2012).
    [Crossref]
  15. A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method o Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
    [Crossref]
  16. D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Fast differential luminescence thermometry,” in Laser Refrigeration of Solids II (International Society for Optics and Photonics, 2009), Vol. 7228, p. 72280K.
  17. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2-3), 385–396 (1992).
    [Crossref]
  18. J. R. Silva, L. C. Malacarne, M. L. Baesso, S. M. Lima, L. H. C. Andrade, C. Jacinto, M. P. Hehlen, and N. G. C. Astrath, “Modeling the population lens effect in thermal lens spectrometry,” Opt. Lett. 38(4), 422–424 (2013).
    [Crossref]
  19. X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
    [Crossref]
  20. D. V. Seletskiy, S. D. Melgaard, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
    [Crossref]
  21. A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb: KYW laser properties,” J. Alloys Compd. 300-301, 238–241 (2000).
    [Crossref]

2019 (1)

2018 (1)

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

2016 (1)

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380 (2016).
[Crossref]

2013 (3)

2012 (1)

2010 (1)

2006 (1)

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

2005 (1)

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41(12), 1510–1517 (2005).
[Crossref]

2004 (1)

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method o Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

2000 (2)

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb: KYW laser properties,” J. Alloys Compd. 300-301, 238–241 (2000).
[Crossref]

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71(6), 807–811 (2000).
[Crossref]

1999 (1)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
[Crossref]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

1992 (1)

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2-3), 385–396 (1992).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

1929 (1)

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz-und temperaturstrahlung,” Eur. Phys. J. A 57(11-12), 739–746 (1929).
[Crossref]

Aguiló, M.

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Albrecht, A. R.

Z. Yang, J. Meng, A. R. Albrecht, and M. Sheik-Bahae, “Radiation-balanced Yb:YAG disk laser,” Opt. Express 27(2), 1392–1400 (2019).
[Crossref]

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380 (2016).
[Crossref]

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Radiation Balanced Thin Disk Lasers,” in Conference on Lasers and Electro-Optics (2018), Paper SM4N.5 (Optical Society of America, 2018), p. SM4N.5.

Andrade, L. H. C.

Astrath, N. G. C.

Baesso, M. L.

Biswal, S.

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41(12), 1510–1517 (2005).
[Crossref]

Bowman, S. R.

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41(12), 1510–1517 (2005).
[Crossref]

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71(6), 807–811 (2000).
[Crossref]

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
[Crossref]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Danailov, M. B.

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb: KYW laser properties,” J. Alloys Compd. 300-301, 238–241 (2000).
[Crossref]

de Lima Filho, E. S.

Demidovich, A. A.

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb: KYW laser properties,” J. Alloys Compd. 300-301, 238–241 (2000).
[Crossref]

Di Lieto, A.

Díaz, F.

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Edwards, B. C.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Epstein, R. I.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Fast differential luminescence thermometry,” in Laser Refrigeration of Solids II (International Society for Optics and Photonics, 2009), Vol. 7228, p. 72280K.

Gavaldà, J.

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Gragossian, A.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

Hamilton, C. E.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

Hasselbeck, M. P.

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Fast differential luminescence thermometry,” in Laser Refrigeration of Solids II (International Society for Optics and Photonics, 2009), Vol. 7228, p. 72280K.

Hehlen, M. P.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380 (2016).
[Crossref]

J. R. Silva, L. C. Malacarne, M. L. Baesso, S. M. Lima, L. H. C. Andrade, C. Jacinto, M. P. Hehlen, and N. G. C. Astrath, “Modeling the population lens effect in thermal lens spectrometry,” Opt. Lett. 38(4), 422–424 (2013).
[Crossref]

Hein, J.

Jacinto, C.

Kahle, M.

Kaluza, M. C.

Kashyap, R.

Kisel’, VÉ

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method o Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Kloepfel, D.

Koerner, J.

Kuleshov, N. V.

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method o Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Kuzmin, A. N.

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb: KYW laser properties,” J. Alloys Compd. 300-301, 238–241 (2000).
[Crossref]

Landau, L.

L. Landau, “On the thermodynamics of photoluminescence,” J PhysMoscow10, (1946).

Lee, E. R.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

Liebetrau, H.

Lieto, A. D.

Lima, S. M.

Loranger, S.

Love, S. P.

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

Lowe, R. D.

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2-3), 385–396 (1992).
[Crossref]

Malacarne, L. C.

Mandrik, A. V.

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method o Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Massons, J.

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Mateos, X.

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Melgaard, S. D.

Meng, J.

Z. Yang, J. Meng, A. R. Albrecht, and M. Sheik-Bahae, “Radiation-balanced Yb:YAG disk laser,” Opt. Express 27(2), 1392–1400 (2019).
[Crossref]

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Radiation Balanced Thin Disk Lasers,” in Conference on Lasers and Electro-Optics (2018), Paper SM4N.5 (Optical Society of America, 2018), p. SM4N.5.

Mungan, C. E.

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71(6), 807–811 (2000).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Nemova, G.

O’Connor, S. P.

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41(12), 1510–1517 (2005).
[Crossref]

Pringsheim, P.

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz-und temperaturstrahlung,” Eur. Phys. J. A 57(11-12), 739–746 (1929).
[Crossref]

Ryabtsev, G. I.

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb: KYW laser properties,” J. Alloys Compd. 300-301, 238–241 (2000).
[Crossref]

Seifert, R.

Seletskiy, D. V.

Shcherbitskii, V. G.

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method o Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Sheik-Bahae, M.

Z. Yang, J. Meng, A. R. Albrecht, and M. Sheik-Bahae, “Radiation-balanced Yb:YAG disk laser,” Opt. Express 27(2), 1392–1400 (2019).
[Crossref]

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380 (2016).
[Crossref]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
[Crossref]

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Radiation Balanced Thin Disk Lasers,” in Conference on Lasers and Electro-Optics (2018), Paper SM4N.5 (Optical Society of America, 2018), p. SM4N.5.

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Fast differential luminescence thermometry,” in Laser Refrigeration of Solids II (International Society for Optics and Photonics, 2009), Vol. 7228, p. 72280K.

Shen, J.

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2-3), 385–396 (1992).
[Crossref]

Silva, J. R.

Snook, R. D.

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2-3), 385–396 (1992).
[Crossref]

Solé, R.

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Strek, W.

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb: KYW laser properties,” J. Alloys Compd. 300-301, 238–241 (2000).
[Crossref]

Titov, A. N.

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb: KYW laser properties,” J. Alloys Compd. 300-301, 238–241 (2000).
[Crossref]

Tonelli, M.

Vorholt, C.

Yang, Z.

Z. Yang, J. Meng, A. R. Albrecht, and M. Sheik-Bahae, “Radiation-balanced Yb:YAG disk laser,” Opt. Express 27(2), 1392–1400 (2019).
[Crossref]

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Radiation Balanced Thin Disk Lasers,” in Conference on Lasers and Electro-Optics (2018), Paper SM4N.5 (Optical Society of America, 2018), p. SM4N.5.

Yasyukevich, A. S.

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method o Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Appl. Phys. B (1)

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71(6), 807–811 (2000).
[Crossref]

Chem. Phys. (1)

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165(2-3), 385–396 (1992).
[Crossref]

Eur. Phys. J. A (1)

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz-und temperaturstrahlung,” Eur. Phys. J. A 57(11-12), 739–746 (1929).
[Crossref]

IEEE J. Quantum Electron. (2)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
[Crossref]

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41(12), 1510–1517 (2005).
[Crossref]

J. Alloys Compd. (1)

A. A. Demidovich, A. N. Kuzmin, G. I. Ryabtsev, M. B. Danailov, W. Strek, and A. N. Titov, “Influence of Yb concentration on Yb: KYW laser properties,” J. Alloys Compd. 300-301, 238–241 (2000).
[Crossref]

J. Appl. Spectrosc. (1)

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method o Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (1)

M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, “First demonstration of an all-solid-state optical cryocooler,” Light: Sci. Appl. 7(1), 15 (2018).
[Crossref]

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Sci. Rep. (1)

S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, “Solid-state optical refrigeration to sub-100 Kelvin regime,” Sci. Rep. 6(1), 20380 (2016).
[Crossref]

Other (3)

L. Landau, “On the thermodynamics of photoluminescence,” J PhysMoscow10, (1946).

Z. Yang, A. R. Albrecht, J. Meng, and M. Sheik-Bahae, “Radiation Balanced Thin Disk Lasers,” in Conference on Lasers and Electro-Optics (2018), Paper SM4N.5 (Optical Society of America, 2018), p. SM4N.5.

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Fast differential luminescence thermometry,” in Laser Refrigeration of Solids II (International Society for Optics and Photonics, 2009), Vol. 7228, p. 72280K.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Absorption and emission cross sections for 3% Yb:YAG. (b) Absorption and emission cross sections for 1% Yb:KYW (polarization E||Nm). (c) Emission spectra for samples of Yb:KYW doped with 1, 2, 10, and 20% Yb3+ (polarization E||Nm). (d) DLT calibration plot for 1% Yb:KYW.
Fig. 2.
Fig. 2. (a) TLS transient signals for 1% Yb:KYW at 942 nm (heating) and 1025 nm (cooling), magnified by a factor of 7. (b) TLS measurements of cooling efficiency in the same sample as a function of wavelength. The external quantum efficiency and background absorption coefficient are obtained by the best fit of Eq. (2) to the data and are listed in Table 1.
Fig. 3.
Fig. 3. (a) Data from the infrared camera, showing image lineouts of temperature versus time of the 1% Yb:KYW crystal (blue) and the glass support next to it (red). Because the camera was focused on the crystal, not the glass, only the left scale is accurately calibrated. (b) Image lineouts and DLT data on temperature versus time for the same sample on aerogel. For comparison, in each of Figs. 3(a) and 3(b), temperature versus time obtained by the DLT method is also displayed (black). (c) Longitudinal temperature distribution of the crystal on glass supports. (d) Longitudinal temperature distribution of the crystal on an aerogel disk. For Figs. 3(c) and 3(d), insets show the thermal camera image and pump beam (introduced from the left).
Fig. 4.
Fig. 4. (a) Images of the crystal and mesh geometries used for the COMSOL simulation. The upper inset shows the 3-D mesh of the crystal end and the lower one shows the 2-D mesh grid on that surface. (b)-(e) COMSOL simulations of laser cooling with input power of 1 W at 1025 nm in a 1×1×10 mm3 sample of 1% Yb:KYW, on various platforms. (b) On glass. (c) On aerogel. (d),(e) are identical to (b) and (c) but have magnified temperature scales to highlight local heating and gradients. The calculated temperature drops are 0.87 K in (b), (d) and 1.73 K in (c), (e). (f) Simulation of laser cooling with a substrate thermal conductivity of zero. The calculated temperature drop is ΔT = 2.45 K. All simulations include thermal conduction, convection and black-body radiation. Crystal parameters were taken from Table 1.
Fig. 5.
Fig. 5. (a) Experimental measurements of sample temperature versus time in Yb-doped samples of YAG and KYW. (b-f) Temperature change versus wavelength, with a theoretical fit (solid curve) of cooling power from Eq. (1) using the best fit parameters of Table 1. Pump power was 1 W for (b) and (c), 0.8 W for (e) and 0.1 W for (f). In (d), the pump power was 1 W for wavelengths shorter than 1036 nm, and 0.8 W for the rest due to laser tuning limitations.

Tables (1)

Tables Icon

Table 1. Sample specifications and parameters deduced from TLS and DLT analysis.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P c = ( η e x t η a b s ( λ λ f l ) 1 ) P a b s .
η c = η e x t ( α c ( λ ) α c ( λ ) + α b ) λ λ f l 1.

Metrics