Abstract

A receiver for weak frequency-coded microwave signal reception based on microring resonators array is proposed. This setup uses the nonlinear interaction of a microwave signal and an optical pump to generate an up-conversion signal to achieve the wideband signal reception. The minimum detectable power of this method reaches -93.2 dBm, which is suitable for the detection of weak signals. The results demonstrate a huge power conversion efficiency with η = 4.37×104, a wide conversion bandwidth of 2π×200 MHz, and a large 1-dB compressed dynamic range of 70.2 dB. The receiver can directly use the microwave signal received by the antenna that greatly reduces the volume and power consumption of the detection system. It is highly competitive in microwave photonics radar fields.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang, H. Zeng, J. Yang, Z. Yin, Q. Sun, and W. Li, “Novel RF-source-free reconfigurable microwave photonic radar,” Opt. Express 28(9), 13650–13661 (2020).
    [Crossref]
  2. F. Berland, T. Fromenteze, D. Boudescoque, P. Di Bin, H. H. Elwan, C. Aupetit-Berthelemot, and C. Decroze, “Microwave Photonic MIMO Radar for Short-Range 3D Imaging,” IEEE Access 8, 107326–107334 (2020).
    [Crossref]
  3. X. Zhang, Q. Sun, J. Yang, J. Cao, and W. Li, “Reconfigurable multi-band microwave photonic radar transmitter with a wide operating frequency range,” Opt. Express 27(24), 34519–34529 (2019).
    [Crossref]
  4. A. Scannapieco, A. Renga, and A. Moccia, “Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation,” Sensors 15(2), 2309–2335 (2015).
    [Crossref]
  5. M. Caris, T. Brehm, S. Palm, S. Sieger, F. Klöppel, R. Sommer, D. Janssen, V. Port, and S. Stanko, “High resolution dual-channel SAR-system for airborne applications,” in Proceedings of IEEE Conference on 2017 18th International Radar Symposium (IRS) (2017), pp. 1–7.
  6. Q. Chen, X. Zhang, Q. Yang, L. Ye, and M. Zhao, “Performance Bound for Joint Multiple Parameter Target Estimation in Sparse Stepped-Frequency Radar: A Comparison Analysis,” Sensors 19(9), 2002 (2019).
    [Crossref]
  7. A. Aubry, V. Carotenuto, A. De Maio, and L. Pallotta, “High range resolution profile estimation via a cognitive stepped frequency technique,” IEEE Trans. Aerosp. Electron. Syst. 55(1), 444–458 (2019).
    [Crossref]
  8. D. Marpaung, J. Yao, and J. E. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
    [Crossref]
  9. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lon V C Ar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
    [Crossref]
  10. V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
    [Crossref]
  11. M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233 (2018).
    [Crossref]
  12. B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, and D. L. Elder, “120 GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178 mV,” Opt. Express 27(12), 16823–16832 (2019).
    [Crossref]
  13. F. Norouzian, E. Marchetti, M. Gashinova, E. Hoare, C. Constantinou, P. Gardner, and M. Cherniakov, “Rain attenuation at millimeter wave and low-THz frequencies,” IEEE Trans. Antennas Propag. 68(1), 421–431 (2020).
    [Crossref]
  14. J. Huang, Y. Cao, X. Raimundo, A. Cheema, and S. Salous, “Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links,” IEEE Access 7, 156110–156120 (2019).
    [Crossref]
  15. C. Javerzacgaly, K. Plekhanov, N. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94(5), 053815 (2016).
    [Crossref]
  16. M. Goryachev, N. Kostylev, and M. E. Tobar, “Single-photon level study of microwave properties of lithium niobate at millikelvin temperatures,” Phys. Rev. B 92(6), 060406 (2015).
    [Crossref]
  17. I. Lekavicius, D. A. Golter, T. Oo, and H. Wang, “Transfer of Phase Information between Microwave and Optical Fields via an Electron Spin,” Phys. Rev. Lett. 119(6), 063601 (2017).
    [Crossref]
  18. A. Rueda, F. Sedlmeir, M. C. Collodo, U. Vogl, B. Stiller, G. Schunk, D. V. Strekalov, C. Marquardt, J. M. Fink, O. Painter, G. Leuchs, and H. G. L. Schwefel, “Efficient microwave to optical photon conversion: an electro-optical realization,” Optica 3(6), 597 (2016).
    [Crossref]
  19. G. Santamaría Botello, F. Sedlmeir, A. Rueda, K. A. Abdalmalak, E. R. Brown, G. Leuchs, S. Preu, D. Segovia-Vargas, D. V. Strekalov, L. E. García Muñoz, and H. G. L. Schwefel, “Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters,” Optica 5(10), 1210 (2018).
    [Crossref]
  20. R. W. Andrews, A. P. Reed, K. Cicak, J. D. Teufel, and K. W. Lehnert, “Quantum-enabled temporal and spectral mode conversion of microwave signals,” Nat. Commun. 6(1), 10021–5 (2015).
    [Crossref]
  21. L. S. Trainor, F. Sedlmeir, C. Peuntinger, and H. G. L. Schwefel, “Selective Coupling Enhances Harmonic Generation of Whispering-Gallery Modes,” Phys. Rev. Lett. 9(2), 24007 (2018).
    [Crossref]
  22. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
    [Crossref]
  23. W. M. Robertson, G. Arjavalingam, and G. V. Kopcsay, “Broadband microwave dielectric properties of lithium niobate,” Electron. Lett. 27(2), 175–176 (1991).
    [Crossref]
  24. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  25. I. Krasnokutska, J. J. Tambasco, and A. Peruzzo, “Tunable large free spectral range microring resonators in lithium niobate on insulator,” Sci. Rep. 9(1), 11086–7 (2019).
    [Crossref]
  26. Y. Ehrlichman, A. Khilo, and M. A. Popović, “Optimal design of a microring cavity optical modulator for efficient RF-to-optical conversion,” Opt. Express 26(3), 2462 (2018).
    [Crossref]
  27. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536 (2017).
    [Crossref]
  28. Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
    [Crossref]

2020 (3)

X. Zhang, H. Zeng, J. Yang, Z. Yin, Q. Sun, and W. Li, “Novel RF-source-free reconfigurable microwave photonic radar,” Opt. Express 28(9), 13650–13661 (2020).
[Crossref]

F. Berland, T. Fromenteze, D. Boudescoque, P. Di Bin, H. H. Elwan, C. Aupetit-Berthelemot, and C. Decroze, “Microwave Photonic MIMO Radar for Short-Range 3D Imaging,” IEEE Access 8, 107326–107334 (2020).
[Crossref]

F. Norouzian, E. Marchetti, M. Gashinova, E. Hoare, C. Constantinou, P. Gardner, and M. Cherniakov, “Rain attenuation at millimeter wave and low-THz frequencies,” IEEE Trans. Antennas Propag. 68(1), 421–431 (2020).
[Crossref]

2019 (7)

J. Huang, Y. Cao, X. Raimundo, A. Cheema, and S. Salous, “Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links,” IEEE Access 7, 156110–156120 (2019).
[Crossref]

X. Zhang, Q. Sun, J. Yang, J. Cao, and W. Li, “Reconfigurable multi-band microwave photonic radar transmitter with a wide operating frequency range,” Opt. Express 27(24), 34519–34529 (2019).
[Crossref]

Q. Chen, X. Zhang, Q. Yang, L. Ye, and M. Zhao, “Performance Bound for Joint Multiple Parameter Target Estimation in Sparse Stepped-Frequency Radar: A Comparison Analysis,” Sensors 19(9), 2002 (2019).
[Crossref]

A. Aubry, V. Carotenuto, A. De Maio, and L. Pallotta, “High range resolution profile estimation via a cognitive stepped frequency technique,” IEEE Trans. Aerosp. Electron. Syst. 55(1), 444–458 (2019).
[Crossref]

D. Marpaung, J. Yao, and J. E. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

B. Baeuerle, W. Heni, C. Hoessbacher, Y. Fedoryshyn, U. Koch, A. Josten, T. Watanabe, C. Uhl, H. Hettrich, and D. L. Elder, “120 GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178 mV,” Opt. Express 27(12), 16823–16832 (2019).
[Crossref]

I. Krasnokutska, J. J. Tambasco, and A. Peruzzo, “Tunable large free spectral range microring resonators in lithium niobate on insulator,” Sci. Rep. 9(1), 11086–7 (2019).
[Crossref]

2018 (7)

Y. Ehrlichman, A. Khilo, and M. A. Popović, “Optimal design of a microring cavity optical modulator for efficient RF-to-optical conversion,” Opt. Express 26(3), 2462 (2018).
[Crossref]

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

L. S. Trainor, F. Sedlmeir, C. Peuntinger, and H. G. L. Schwefel, “Selective Coupling Enhances Harmonic Generation of Whispering-Gallery Modes,” Phys. Rev. Lett. 9(2), 24007 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lon V C Ar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
[Crossref]

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233 (2018).
[Crossref]

G. Santamaría Botello, F. Sedlmeir, A. Rueda, K. A. Abdalmalak, E. R. Brown, G. Leuchs, S. Preu, D. Segovia-Vargas, D. V. Strekalov, L. E. García Muñoz, and H. G. L. Schwefel, “Sensitivity limits of millimeter-wave photonic radiometers based on efficient electro-optic upconverters,” Optica 5(10), 1210 (2018).
[Crossref]

2017 (2)

I. Lekavicius, D. A. Golter, T. Oo, and H. Wang, “Transfer of Phase Information between Microwave and Optical Fields via an Electron Spin,” Phys. Rev. Lett. 119(6), 063601 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536 (2017).
[Crossref]

2016 (2)

A. Rueda, F. Sedlmeir, M. C. Collodo, U. Vogl, B. Stiller, G. Schunk, D. V. Strekalov, C. Marquardt, J. M. Fink, O. Painter, G. Leuchs, and H. G. L. Schwefel, “Efficient microwave to optical photon conversion: an electro-optical realization,” Optica 3(6), 597 (2016).
[Crossref]

C. Javerzacgaly, K. Plekhanov, N. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94(5), 053815 (2016).
[Crossref]

2015 (3)

M. Goryachev, N. Kostylev, and M. E. Tobar, “Single-photon level study of microwave properties of lithium niobate at millikelvin temperatures,” Phys. Rev. B 92(6), 060406 (2015).
[Crossref]

R. W. Andrews, A. P. Reed, K. Cicak, J. D. Teufel, and K. W. Lehnert, “Quantum-enabled temporal and spectral mode conversion of microwave signals,” Nat. Commun. 6(1), 10021–5 (2015).
[Crossref]

A. Scannapieco, A. Renga, and A. Moccia, “Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation,” Sensors 15(2), 2309–2335 (2015).
[Crossref]

2012 (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

1991 (1)

W. M. Robertson, G. Arjavalingam, and G. V. Kopcsay, “Broadband microwave dielectric properties of lithium niobate,” Electron. Lett. 27(2), 175–176 (1991).
[Crossref]

1984 (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[Crossref]

Abdalmalak, K. A.

Andrews, R. W.

R. W. Andrews, A. P. Reed, K. Cicak, J. D. Teufel, and K. W. Lehnert, “Quantum-enabled temporal and spectral mode conversion of microwave signals,” Nat. Commun. 6(1), 10021–5 (2015).
[Crossref]

Arjavalingam, G.

W. M. Robertson, G. Arjavalingam, and G. V. Kopcsay, “Broadband microwave dielectric properties of lithium niobate,” Electron. Lett. 27(2), 175–176 (1991).
[Crossref]

Asselberghs, I.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
[Crossref]

Aubry, A.

A. Aubry, V. Carotenuto, A. De Maio, and L. Pallotta, “High range resolution profile estimation via a cognitive stepped frequency technique,” IEEE Trans. Aerosp. Electron. Syst. 55(1), 444–458 (2019).
[Crossref]

Aupetit-Berthelemot, C.

F. Berland, T. Fromenteze, D. Boudescoque, P. Di Bin, H. H. Elwan, C. Aupetit-Berthelemot, and C. Decroze, “Microwave Photonic MIMO Radar for Short-Range 3D Imaging,” IEEE Access 8, 107326–107334 (2020).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Baeuerle, B.

Berland, F.

F. Berland, T. Fromenteze, D. Boudescoque, P. Di Bin, H. H. Elwan, C. Aupetit-Berthelemot, and C. Decroze, “Microwave Photonic MIMO Radar for Short-Range 3D Imaging,” IEEE Access 8, 107326–107334 (2020).
[Crossref]

Bernier, N.

C. Javerzacgaly, K. Plekhanov, N. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94(5), 053815 (2016).
[Crossref]

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lon V C Ar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Boudescoque, D.

F. Berland, T. Fromenteze, D. Boudescoque, P. Di Bin, H. H. Elwan, C. Aupetit-Berthelemot, and C. Decroze, “Microwave Photonic MIMO Radar for Short-Range 3D Imaging,” IEEE Access 8, 107326–107334 (2020).
[Crossref]

Brehm, T.

M. Caris, T. Brehm, S. Palm, S. Sieger, F. Klöppel, R. Sommer, D. Janssen, V. Port, and S. Stanko, “High resolution dual-channel SAR-system for airborne applications,” in Proceedings of IEEE Conference on 2017 18th International Radar Symposium (IRS) (2017), pp. 1–7.

Brown, E. R.

Campione, S.

Cao, J.

Cao, Y.

J. Huang, Y. Cao, X. Raimundo, A. Cheema, and S. Salous, “Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links,” IEEE Access 7, 156110–156120 (2019).
[Crossref]

Capmany, J. E.

D. Marpaung, J. Yao, and J. E. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

Caris, M.

M. Caris, T. Brehm, S. Palm, S. Sieger, F. Klöppel, R. Sommer, D. Janssen, V. Port, and S. Stanko, “High resolution dual-channel SAR-system for airborne applications,” in Proceedings of IEEE Conference on 2017 18th International Radar Symposium (IRS) (2017), pp. 1–7.

Carotenuto, V.

A. Aubry, V. Carotenuto, A. De Maio, and L. Pallotta, “High range resolution profile estimation via a cognitive stepped frequency technique,” IEEE Trans. Aerosp. Electron. Syst. 55(1), 444–458 (2019).
[Crossref]

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lon V C Ar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Cheema, A.

J. Huang, Y. Cao, X. Raimundo, A. Cheema, and S. Salous, “Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links,” IEEE Access 7, 156110–156120 (2019).
[Crossref]

Chen, Q.

Q. Chen, X. Zhang, Q. Yang, L. Ye, and M. Zhao, “Performance Bound for Joint Multiple Parameter Target Estimation in Sparse Stepped-Frequency Radar: A Comparison Analysis,” Sensors 19(9), 2002 (2019).
[Crossref]

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lon V C Ar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Cheng, H.

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

Cheng, R.

Cherniakov, M.

F. Norouzian, E. Marchetti, M. Gashinova, E. Hoare, C. Constantinou, P. Gardner, and M. Cherniakov, “Rain attenuation at millimeter wave and low-THz frequencies,” IEEE Trans. Antennas Propag. 68(1), 421–431 (2020).
[Crossref]

Cicak, K.

R. W. Andrews, A. P. Reed, K. Cicak, J. D. Teufel, and K. W. Lehnert, “Quantum-enabled temporal and spectral mode conversion of microwave signals,” Nat. Commun. 6(1), 10021–5 (2015).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Collodo, M. C.

Constantinou, C.

F. Norouzian, E. Marchetti, M. Gashinova, E. Hoare, C. Constantinou, P. Gardner, and M. Cherniakov, “Rain attenuation at millimeter wave and low-THz frequencies,” IEEE Trans. Antennas Propag. 68(1), 421–431 (2020).
[Crossref]

Contestabile, G.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Maio, A.

A. Aubry, V. Carotenuto, A. De Maio, and L. Pallotta, “High range resolution profile estimation via a cognitive stepped frequency technique,” IEEE Trans. Aerosp. Electron. Syst. 55(1), 444–458 (2019).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Decroze, C.

F. Berland, T. Fromenteze, D. Boudescoque, P. Di Bin, H. H. Elwan, C. Aupetit-Berthelemot, and C. Decroze, “Microwave Photonic MIMO Radar for Short-Range 3D Imaging,” IEEE Access 8, 107326–107334 (2020).
[Crossref]

Di Bin, P.

F. Berland, T. Fromenteze, D. Boudescoque, P. Di Bin, H. H. Elwan, C. Aupetit-Berthelemot, and C. Decroze, “Microwave Photonic MIMO Radar for Short-Range 3D Imaging,” IEEE Access 8, 107326–107334 (2020).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[Crossref]

Ehrlichman, Y.

Elder, D. L.

Elwan, H. H.

F. Berland, T. Fromenteze, D. Boudescoque, P. Di Bin, H. H. Elwan, C. Aupetit-Berthelemot, and C. Decroze, “Microwave Photonic MIMO Radar for Short-Range 3D Imaging,” IEEE Access 8, 107326–107334 (2020).
[Crossref]

Fedoryshyn, Y.

Feng, Z.

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

Feofanov, A. K.

C. Javerzacgaly, K. Plekhanov, N. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94(5), 053815 (2016).
[Crossref]

Ferrari, A. C.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
[Crossref]

Fink, J. M.

Fromenteze, T.

F. Berland, T. Fromenteze, D. Boudescoque, P. Di Bin, H. H. Elwan, C. Aupetit-Berthelemot, and C. Decroze, “Microwave Photonic MIMO Radar for Short-Range 3D Imaging,” IEEE Access 8, 107326–107334 (2020).
[Crossref]

Gan, J.

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

García Muñoz, L. E.

Gardner, P.

F. Norouzian, E. Marchetti, M. Gashinova, E. Hoare, C. Constantinou, P. Gardner, and M. Cherniakov, “Rain attenuation at millimeter wave and low-THz frequencies,” IEEE Trans. Antennas Propag. 68(1), 421–431 (2020).
[Crossref]

Gashinova, M.

F. Norouzian, E. Marchetti, M. Gashinova, E. Hoare, C. Constantinou, P. Gardner, and M. Cherniakov, “Rain attenuation at millimeter wave and low-THz frequencies,” IEEE Trans. Antennas Propag. 68(1), 421–431 (2020).
[Crossref]

Golter, D. A.

I. Lekavicius, D. A. Golter, T. Oo, and H. Wang, “Transfer of Phase Information between Microwave and Optical Fields via an Electron Spin,” Phys. Rev. Lett. 119(6), 063601 (2017).
[Crossref]

Goryachev, M.

M. Goryachev, N. Kostylev, and M. E. Tobar, “Single-photon level study of microwave properties of lithium niobate at millikelvin temperatures,” Phys. Rev. B 92(6), 060406 (2015).
[Crossref]

Goykhman, I.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
[Crossref]

Heni, W.

Hettrich, H.

Hoare, E.

F. Norouzian, E. Marchetti, M. Gashinova, E. Hoare, C. Constantinou, P. Gardner, and M. Cherniakov, “Rain attenuation at millimeter wave and low-THz frequencies,” IEEE Trans. Antennas Propag. 68(1), 421–431 (2020).
[Crossref]

Hoessbacher, C.

Huang, J.

J. Huang, Y. Cao, X. Raimundo, A. Cheema, and S. Salous, “Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links,” IEEE Access 7, 156110–156120 (2019).
[Crossref]

Huyghebaert, C.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
[Crossref]

Janssen, D.

M. Caris, T. Brehm, S. Palm, S. Sieger, F. Klöppel, R. Sommer, D. Janssen, V. Port, and S. Stanko, “High resolution dual-channel SAR-system for airborne applications,” in Proceedings of IEEE Conference on 2017 18th International Radar Symposium (IRS) (2017), pp. 1–7.

Javerzacgaly, C.

C. Javerzacgaly, K. Plekhanov, N. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94(5), 053815 (2016).
[Crossref]

Josten, A.

Keeler, G. A.

Khilo, A.

Kippenberg, T. J.

C. Javerzacgaly, K. Plekhanov, N. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94(5), 053815 (2016).
[Crossref]

Klöppel, F.

M. Caris, T. Brehm, S. Palm, S. Sieger, F. Klöppel, R. Sommer, D. Janssen, V. Port, and S. Stanko, “High resolution dual-channel SAR-system for airborne applications,” in Proceedings of IEEE Conference on 2017 18th International Radar Symposium (IRS) (2017), pp. 1–7.

Koch, U.

Kopcsay, G. V.

W. M. Robertson, G. Arjavalingam, and G. V. Kopcsay, “Broadband microwave dielectric properties of lithium niobate,” Electron. Lett. 27(2), 175–176 (1991).
[Crossref]

Kostylev, N.

M. Goryachev, N. Kostylev, and M. E. Tobar, “Single-photon level study of microwave properties of lithium niobate at millikelvin temperatures,” Phys. Rev. B 92(6), 060406 (2015).
[Crossref]

Krasnokutska, I.

I. Krasnokutska, J. J. Tambasco, and A. Peruzzo, “Tunable large free spectral range microring resonators in lithium niobate on insulator,” Sci. Rep. 9(1), 11086–7 (2019).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[Crossref]

Lehnert, K. W.

R. W. Andrews, A. P. Reed, K. Cicak, J. D. Teufel, and K. W. Lehnert, “Quantum-enabled temporal and spectral mode conversion of microwave signals,” Nat. Commun. 6(1), 10021–5 (2015).
[Crossref]

Lekavicius, I.

I. Lekavicius, D. A. Golter, T. Oo, and H. Wang, “Transfer of Phase Information between Microwave and Optical Fields via an Electron Spin,” Phys. Rev. Lett. 119(6), 063601 (2017).
[Crossref]

Leuchs, G.

Li, W.

Lon V C Ar, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lon V C Ar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Loncar, M.

Luk, T. S.

Marchetti, E.

F. Norouzian, E. Marchetti, M. Gashinova, E. Hoare, C. Constantinou, P. Gardner, and M. Cherniakov, “Rain attenuation at millimeter wave and low-THz frequencies,” IEEE Trans. Antennas Propag. 68(1), 421–431 (2020).
[Crossref]

Marpaung, D.

D. Marpaung, J. Yao, and J. E. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

Marquardt, C.

Midrio, M.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
[Crossref]

Moccia, A.

A. Scannapieco, A. Renga, and A. Moccia, “Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation,” Sensors 15(2), 2309–2335 (2015).
[Crossref]

Norouzian, F.

F. Norouzian, E. Marchetti, M. Gashinova, E. Hoare, C. Constantinou, P. Gardner, and M. Cherniakov, “Rain attenuation at millimeter wave and low-THz frequencies,” IEEE Trans. Antennas Propag. 68(1), 421–431 (2020).
[Crossref]

Oo, T.

I. Lekavicius, D. A. Golter, T. Oo, and H. Wang, “Transfer of Phase Information between Microwave and Optical Fields via an Electron Spin,” Phys. Rev. Lett. 119(6), 063601 (2017).
[Crossref]

Ott, A. K.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
[Crossref]

Painter, O.

Pallotta, L.

A. Aubry, V. Carotenuto, A. De Maio, and L. Pallotta, “High range resolution profile estimation via a cognitive stepped frequency technique,” IEEE Trans. Aerosp. Electron. Syst. 55(1), 444–458 (2019).
[Crossref]

Palm, S.

M. Caris, T. Brehm, S. Palm, S. Sieger, F. Klöppel, R. Sommer, D. Janssen, V. Port, and S. Stanko, “High resolution dual-channel SAR-system for airborne applications,” in Proceedings of IEEE Conference on 2017 18th International Radar Symposium (IRS) (2017), pp. 1–7.

Parameswaran, S.

Peng, M.

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

Peruzzo, A.

I. Krasnokutska, J. J. Tambasco, and A. Peruzzo, “Tunable large free spectral range microring resonators in lithium niobate on insulator,” Sci. Rep. 9(1), 11086–7 (2019).
[Crossref]

Peuntinger, C.

L. S. Trainor, F. Sedlmeir, C. Peuntinger, and H. G. L. Schwefel, “Selective Coupling Enhances Harmonic Generation of Whispering-Gallery Modes,” Phys. Rev. Lett. 9(2), 24007 (2018).
[Crossref]

Plekhanov, K.

C. Javerzacgaly, K. Plekhanov, N. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94(5), 053815 (2016).
[Crossref]

Popovic, M. A.

Port, V.

M. Caris, T. Brehm, S. Palm, S. Sieger, F. Klöppel, R. Sommer, D. Janssen, V. Port, and S. Stanko, “High resolution dual-channel SAR-system for airborne applications,” in Proceedings of IEEE Conference on 2017 18th International Radar Symposium (IRS) (2017), pp. 1–7.

Preu, S.

Raimundo, X.

J. Huang, Y. Cao, X. Raimundo, A. Cheema, and S. Salous, “Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links,” IEEE Access 7, 156110–156120 (2019).
[Crossref]

Reed, A. P.

R. W. Andrews, A. P. Reed, K. Cicak, J. D. Teufel, and K. W. Lehnert, “Quantum-enabled temporal and spectral mode conversion of microwave signals,” Nat. Commun. 6(1), 10021–5 (2015).
[Crossref]

Renga, A.

A. Scannapieco, A. Renga, and A. Moccia, “Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation,” Sensors 15(2), 2309–2335 (2015).
[Crossref]

Robertson, W. M.

W. M. Robertson, G. Arjavalingam, and G. V. Kopcsay, “Broadband microwave dielectric properties of lithium niobate,” Electron. Lett. 27(2), 175–176 (1991).
[Crossref]

Romagnoli, M.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
[Crossref]

Rueda, A.

Salous, S.

J. Huang, Y. Cao, X. Raimundo, A. Cheema, and S. Salous, “Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links,” IEEE Access 7, 156110–156120 (2019).
[Crossref]

Santamaría Botello, G.

Scannapieco, A.

A. Scannapieco, A. Renga, and A. Moccia, “Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation,” Sensors 15(2), 2309–2335 (2015).
[Crossref]

Schunk, G.

Schwefel, H. G. L.

Sedlmeir, F.

Segovia-Vargas, D.

Serkland, D. K.

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lon V C Ar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536 (2017).
[Crossref]

Sieger, S.

M. Caris, T. Brehm, S. Palm, S. Sieger, F. Klöppel, R. Sommer, D. Janssen, V. Port, and S. Stanko, “High resolution dual-channel SAR-system for airborne applications,” in Proceedings of IEEE Conference on 2017 18th International Radar Symposium (IRS) (2017), pp. 1–7.

Sommer, R.

M. Caris, T. Brehm, S. Palm, S. Sieger, F. Klöppel, R. Sommer, D. Janssen, V. Port, and S. Stanko, “High resolution dual-channel SAR-system for airborne applications,” in Proceedings of IEEE Conference on 2017 18th International Radar Symposium (IRS) (2017), pp. 1–7.

Sorianello, V.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
[Crossref]

Stanko, S.

M. Caris, T. Brehm, S. Palm, S. Sieger, F. Klöppel, R. Sommer, D. Janssen, V. Port, and S. Stanko, “High resolution dual-channel SAR-system for airborne applications,” in Proceedings of IEEE Conference on 2017 18th International Radar Symposium (IRS) (2017), pp. 1–7.

Stiller, B.

Strekalov, D. V.

Sun, Q.

Tambasco, J. J.

I. Krasnokutska, J. J. Tambasco, and A. Peruzzo, “Tunable large free spectral range microring resonators in lithium niobate on insulator,” Sci. Rep. 9(1), 11086–7 (2019).
[Crossref]

Tan, T.

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

Teufel, J. D.

R. W. Andrews, A. P. Reed, K. Cicak, J. D. Teufel, and K. W. Lehnert, “Quantum-enabled temporal and spectral mode conversion of microwave signals,” Nat. Commun. 6(1), 10021–5 (2015).
[Crossref]

Tobar, M. E.

M. Goryachev, N. Kostylev, and M. E. Tobar, “Single-photon level study of microwave properties of lithium niobate at millikelvin temperatures,” Phys. Rev. B 92(6), 060406 (2015).
[Crossref]

Toth, L. D.

C. Javerzacgaly, K. Plekhanov, N. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94(5), 053815 (2016).
[Crossref]

Trainor, L. S.

L. S. Trainor, F. Sedlmeir, C. Peuntinger, and H. G. L. Schwefel, “Selective Coupling Enhances Harmonic Generation of Whispering-Gallery Modes,” Phys. Rev. Lett. 9(2), 24007 (2018).
[Crossref]

Uhl, C.

Van Campenhout, J.

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vogl, U.

Wang, C.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lon V C Ar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536 (2017).
[Crossref]

Wang, H.

I. Lekavicius, D. A. Golter, T. Oo, and H. Wang, “Transfer of Phase Information between Microwave and Optical Fields via an Electron Spin,” Phys. Rev. Lett. 119(6), 063601 (2017).
[Crossref]

Watanabe, T.

Wendt, J. R.

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lon V C Ar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Wood, M. G.

Wu, B.

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

Xu, S.

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

Yang, C.

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

Yang, J.

Yang, Q.

Q. Chen, X. Zhang, Q. Yang, L. Ye, and M. Zhao, “Performance Bound for Joint Multiple Parameter Target Estimation in Sparse Stepped-Frequency Radar: A Comparison Analysis,” Sensors 19(9), 2002 (2019).
[Crossref]

Yang, Z.

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

Yao, J.

D. Marpaung, J. Yao, and J. E. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

Ye, L.

Q. Chen, X. Zhang, Q. Yang, L. Ye, and M. Zhao, “Performance Bound for Joint Multiple Parameter Target Estimation in Sparse Stepped-Frequency Radar: A Comparison Analysis,” Sensors 19(9), 2002 (2019).
[Crossref]

Yin, Z.

Zeng, H.

Zhang, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lon V C Ar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536 (2017).
[Crossref]

Zhang, X.

Zhang, Z.

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

Zhao, M.

Q. Chen, X. Zhang, Q. Yang, L. Ye, and M. Zhao, “Performance Bound for Joint Multiple Parameter Target Estimation in Sparse Stepped-Frequency Radar: A Comparison Analysis,” Sensors 19(9), 2002 (2019).
[Crossref]

Zhao, Q.

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

Electron. Lett. (1)

W. M. Robertson, G. Arjavalingam, and G. V. Kopcsay, “Broadband microwave dielectric properties of lithium niobate,” Electron. Lett. 27(2), 175–176 (1991).
[Crossref]

IEEE Access (2)

F. Berland, T. Fromenteze, D. Boudescoque, P. Di Bin, H. H. Elwan, C. Aupetit-Berthelemot, and C. Decroze, “Microwave Photonic MIMO Radar for Short-Range 3D Imaging,” IEEE Access 8, 107326–107334 (2020).
[Crossref]

J. Huang, Y. Cao, X. Raimundo, A. Cheema, and S. Salous, “Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links,” IEEE Access 7, 156110–156120 (2019).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (1)

A. Aubry, V. Carotenuto, A. De Maio, and L. Pallotta, “High range resolution profile estimation via a cognitive stepped frequency technique,” IEEE Trans. Aerosp. Electron. Syst. 55(1), 444–458 (2019).
[Crossref]

IEEE Trans. Antennas Propag. (1)

F. Norouzian, E. Marchetti, M. Gashinova, E. Hoare, C. Constantinou, P. Gardner, and M. Cherniakov, “Rain attenuation at millimeter wave and low-THz frequencies,” IEEE Trans. Antennas Propag. 68(1), 421–431 (2020).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nat. Commun. (1)

R. W. Andrews, A. P. Reed, K. Cicak, J. D. Teufel, and K. W. Lehnert, “Quantum-enabled temporal and spectral mode conversion of microwave signals,” Nat. Commun. 6(1), 10021–5 (2015).
[Crossref]

Nat. Photonics (2)

V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, “Graphene–silicon phase modulators with gigahertz bandwidth,” Nat. Photonics 12(1), 40–44 (2018).
[Crossref]

D. Marpaung, J. Yao, and J. E. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lon V C Ar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Opt. Express (4)

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[Crossref]

Optica (4)

Photonics Res. (1)

Q. Zhao, Z. Zhang, B. Wu, T. Tan, C. Yang, J. Gan, H. Cheng, Z. Feng, M. Peng, Z. Yang, and S. Xu, “Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection,” Photonics Res. 6(4), 326–331 (2018).
[Crossref]

Phys. Rev. A (1)

C. Javerzacgaly, K. Plekhanov, N. Bernier, L. D. Toth, A. K. Feofanov, and T. J. Kippenberg, “On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator,” Phys. Rev. A 94(5), 053815 (2016).
[Crossref]

Phys. Rev. B (1)

M. Goryachev, N. Kostylev, and M. E. Tobar, “Single-photon level study of microwave properties of lithium niobate at millikelvin temperatures,” Phys. Rev. B 92(6), 060406 (2015).
[Crossref]

Phys. Rev. Lett. (2)

I. Lekavicius, D. A. Golter, T. Oo, and H. Wang, “Transfer of Phase Information between Microwave and Optical Fields via an Electron Spin,” Phys. Rev. Lett. 119(6), 063601 (2017).
[Crossref]

L. S. Trainor, F. Sedlmeir, C. Peuntinger, and H. G. L. Schwefel, “Selective Coupling Enhances Harmonic Generation of Whispering-Gallery Modes,” Phys. Rev. Lett. 9(2), 24007 (2018).
[Crossref]

Sci. Rep. (1)

I. Krasnokutska, J. J. Tambasco, and A. Peruzzo, “Tunable large free spectral range microring resonators in lithium niobate on insulator,” Sci. Rep. 9(1), 11086–7 (2019).
[Crossref]

Sensors (2)

A. Scannapieco, A. Renga, and A. Moccia, “Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation,” Sensors 15(2), 2309–2335 (2015).
[Crossref]

Q. Chen, X. Zhang, Q. Yang, L. Ye, and M. Zhao, “Performance Bound for Joint Multiple Parameter Target Estimation in Sparse Stepped-Frequency Radar: A Comparison Analysis,” Sensors 19(9), 2002 (2019).
[Crossref]

Other (1)

M. Caris, T. Brehm, S. Palm, S. Sieger, F. Klöppel, R. Sommer, D. Janssen, V. Port, and S. Stanko, “High resolution dual-channel SAR-system for airborne applications,” in Proceedings of IEEE Conference on 2017 18th International Radar Symposium (IRS) (2017), pp. 1–7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) The stepped-frequency pulse signal with the pulse duration of T, the stepped frequency of Δω, and the pulse period of Tr. (b) The schematic of the MRRs array for receiving frequency-coded pulse signal.
Fig. 2.
Fig. 2. (a) The details of the up-conversion cavity. The t1, t2 are the transmission coefficients of the add-port and drop-port, respectively, and κ is the coupling coefficient of the MRR. (b) The spectra of the optical input, the microwave signal and the output optical signal with multiple sidebands ωc − ωm and ωc + ωm generated by the cavity.
Fig. 3.
Fig. 3. (a) The increment of FSR versus the radius of the cavity, (b) The conversion bandwidth of the receiver versus the coupling coefficient of MRR in different radius offset.
Fig. 4.
Fig. 4. The effective refractive index of the microwave field and optical field in the cavity versus the thickness of the cavity.
Fig. 5.
Fig. 5. The up-converted optical power spectral density versus the input microwave power spectral density.
Fig. 6.
Fig. 6. The schematic of weak microwave signal reception. OBPF, optical band-pass filter; MRRs array, microring resonators array; DFB, distributed feedback laser; LO, local oscillator; PD, photodetector.
Fig. 7.
Fig. 7. The output SNR of the receiver versus the input microwave power spectral density.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

u ( t ) = 1 N n = 0 N 1 r e c t ( t n T r T ) e x p ( j n Δ ω t ) e x p ( j ω 0 t ) .
P s = Q m ( 8 g Q ω c ω m ω c 3 ω m 2 + 32 g 2 Q 2 Q m P m ) 2 P c P m ,
η = ( 8 g Q ω c ) 2 Q m ω n 2 .
H ( ω ) = n = 0 N 1 sinc ( ω ( ω 0 + n Δ ω ) 2 π B ) ,
FSR = c 2 π R n e ,
B = ω c 2 π Q = c ( 1 t 1 t 2 a ) π n e ( 2 π R ) t 1 t 2 a ,
g = ω c χ ( 2 ) n e 2 n m ω m 8 ε 0 V m 1 V c V d V Ψ c Ψ m Ψ c ,
ζ = 10 log 10 ( 16 g 2 π 2 B 3 ω m ) .
N 1 = 2 q P c G ( ω ) R L ,
N 2 = 1 2 10 RIN 10 ( P c ) 2 G ( ω ) R L ,
N 3 = K T G ( ω ) ,
NF = N 1 + N 2 + N 3 4 η P c k T .