Abstract

This study presents a 50X five-group zoom lens design with two moving groups and one focus tunable lens (FTL) by applying Gaussian brackets and lens modules. After qualitative analysis of the paraxial properties, the initial structure is obtained by solving the power equations consisting of five groups by numerical analysis method. The optimized nearly 60X lens has a focal length of 5.1-300mm and f-number of 1.8-5.0 in wide and tele positions, with a total length of 160mm. The lens achieves a maximum FOV of 63° at short focal length. The tolerance analysis indicates that the design is suitable for mass production. The method eases the difficulty in initial structure design of the zoom lens with high zoom ratio, improves its optical design efficiency, and can be applied to the fields such as customs security cameras, military detecting devices, machine vision and industrial inspection, etc.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Sun, S. Sheng, W. Meng, Y. Wang, Q. Ou, and X. Pu, “Design of spherical aberration free liquid-filled cylindrical zoom lenses over a wide focal length range based on ZEMAX,” Opt. Express 28(5), 6806–6819 (2020).
    [Crossref]
  2. M. Herzberger, “Gaussian optics and Gaussian brackets,” J. Opt. Soc. Am. 33(12), 651–652 (1943).
    [Crossref]
  3. S. C. Park and W. S. Lee, “Design and analysis of a one-moving-group zoom system using a liquid lens,” J. Korean Phys. Soc. 62(3), 435–442 (2013).
    [Crossref]
  4. S. C. Park and W. S. Lee, “Paraxial design method based on an analytic calculation and its application to a three-group inner-focus zoom system,” J. Korean Phys. Soc. 64(11), 1671–1676 (2014).
    [Crossref]
  5. A. Miks and J. Novak, “Paraxial analysis of zoom lens composed of three tunable-focus elements with fixed position of image-space focal point and object-image distance,” Opt. Express 22(22), 27056–27062 (2014).
    [Crossref]
  6. D. Lee and S. C. Park, “Design of an 8x four-group inner-focus zoom system using a focus tunable lens,” J. Opt. Soc. Korea 20(2), 283–290 (2016).
    [Crossref]
  7. S. H. Jo and S. C. Park, “Design and analysis of an 8x four-group zoom system using focus tunable lenses,” Opt. Express 26(10), 13370–13382 (2018).
    [Crossref]
  8. A. Mikš and P. Novák, “Paraxial design of four-component zoom lens with fixed position of optical center composed of members with variable focal length,” Opt. Express 26(20), 25611–25616 (2018).
    [Crossref]
  9. A. Mikš and P. Novák, “Paraxial design of a four-component zoom lens with zero separation of principal planes and fixed position of an image focal point composed of members with constant focal length,” Appl. Opt. 58(15), 3957–3961 (2019).
    [Crossref]
  10. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 1 : Four-component type,” Appl. Opt. 21(12), 2174–2183 (1982).
    [Crossref]
  11. S. C. Park and S. H. Lee, “Zoom lens design for a 10x slim camera using successive procedures,” J. Opt. Soc. Korea 17(6), 518–524 (2013).
    [Crossref]
  12. S. C. Park and R. R. Shannon, “Zoom lens design using lens modules,” Opt. Eng. 35(6), 1668–1676 (1996).
    [Crossref]
  13. S. C. Park, S. H. Lee, and J. G. Kim, “Compact Zoom Lens Design for a 5x Mobile Camera Using Prism,” J. Opt. Soc. Korea 13(2), 206–212 (2009).
    [Crossref]
  14. Q. Hao, X. Cheng, and K. Du, “Four-group stabilized zoom lens design of two focal-length-variable elements,” Opt. Express 21(6), 7758–7767 (2013).
    [Crossref]
  15. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 3: Five-component type,” Appl. Opt. 22(4), 541–553 (1983).
    [Crossref]
  16. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 2: Generalization of Yamaji type V,” Appl. Opt. 21(22), 4045–4053 (1982).
    [Crossref]
  17. https://www.mathworks.com/products/matlab.html .
  18. https://www.optotune.com/downloads .
  19. https://www.corning.com/worldwide/en/innovation/corning-emerging-innovations/corning-varioptic-lenses.html .
  20. https://www.synopsys.com/optical-solutions/codev.html .
  21. A. Mikš and P. Novák, “Double-sided telecentric zoom lens consisting of four tunable lenses with fixed distance between object and image plane,” Appl. Opt. 56(25), 7020–7023 (2017).
    [Crossref]
  22. https://www.sony-semicon.co.jp/e/products/IS/security/product.html .
  23. W. S. Sun, P. Y. Chu, C. L. Tien, and M. F. Chung, “Zoom lens design for 10.2-megapixel APS-C digital SLR cameras,” Appl. Opt. 56(3), 446–456 (2017).
    [Crossref]

2020 (1)

2019 (1)

2018 (2)

2017 (2)

2016 (1)

2014 (2)

S. C. Park and W. S. Lee, “Paraxial design method based on an analytic calculation and its application to a three-group inner-focus zoom system,” J. Korean Phys. Soc. 64(11), 1671–1676 (2014).
[Crossref]

A. Miks and J. Novak, “Paraxial analysis of zoom lens composed of three tunable-focus elements with fixed position of image-space focal point and object-image distance,” Opt. Express 22(22), 27056–27062 (2014).
[Crossref]

2013 (3)

2009 (1)

1996 (1)

S. C. Park and R. R. Shannon, “Zoom lens design using lens modules,” Opt. Eng. 35(6), 1668–1676 (1996).
[Crossref]

1983 (1)

1982 (2)

1943 (1)

Cheng, X.

Chu, P. Y.

Chung, M. F.

Du, K.

Hao, Q.

Herzberger, M.

Jo, S. H.

Kim, J. G.

Lee, D.

Lee, S. H.

Lee, W. S.

S. C. Park and W. S. Lee, “Paraxial design method based on an analytic calculation and its application to a three-group inner-focus zoom system,” J. Korean Phys. Soc. 64(11), 1671–1676 (2014).
[Crossref]

S. C. Park and W. S. Lee, “Design and analysis of a one-moving-group zoom system using a liquid lens,” J. Korean Phys. Soc. 62(3), 435–442 (2013).
[Crossref]

Meng, W.

Miks, A.

Mikš, A.

Novak, J.

Novák, P.

Ou, Q.

Park, S. C.

S. H. Jo and S. C. Park, “Design and analysis of an 8x four-group zoom system using focus tunable lenses,” Opt. Express 26(10), 13370–13382 (2018).
[Crossref]

D. Lee and S. C. Park, “Design of an 8x four-group inner-focus zoom system using a focus tunable lens,” J. Opt. Soc. Korea 20(2), 283–290 (2016).
[Crossref]

S. C. Park and W. S. Lee, “Paraxial design method based on an analytic calculation and its application to a three-group inner-focus zoom system,” J. Korean Phys. Soc. 64(11), 1671–1676 (2014).
[Crossref]

S. C. Park and W. S. Lee, “Design and analysis of a one-moving-group zoom system using a liquid lens,” J. Korean Phys. Soc. 62(3), 435–442 (2013).
[Crossref]

S. C. Park and S. H. Lee, “Zoom lens design for a 10x slim camera using successive procedures,” J. Opt. Soc. Korea 17(6), 518–524 (2013).
[Crossref]

S. C. Park, S. H. Lee, and J. G. Kim, “Compact Zoom Lens Design for a 5x Mobile Camera Using Prism,” J. Opt. Soc. Korea 13(2), 206–212 (2009).
[Crossref]

S. C. Park and R. R. Shannon, “Zoom lens design using lens modules,” Opt. Eng. 35(6), 1668–1676 (1996).
[Crossref]

Pu, X.

Shannon, R. R.

S. C. Park and R. R. Shannon, “Zoom lens design using lens modules,” Opt. Eng. 35(6), 1668–1676 (1996).
[Crossref]

Sheng, S.

Sun, L.

Sun, W. S.

Tanaka, K.

Tien, C. L.

Wang, Y.

Appl. Opt. (6)

J. Korean Phys. Soc. (2)

S. C. Park and W. S. Lee, “Design and analysis of a one-moving-group zoom system using a liquid lens,” J. Korean Phys. Soc. 62(3), 435–442 (2013).
[Crossref]

S. C. Park and W. S. Lee, “Paraxial design method based on an analytic calculation and its application to a three-group inner-focus zoom system,” J. Korean Phys. Soc. 64(11), 1671–1676 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Korea (3)

Opt. Eng. (1)

S. C. Park and R. R. Shannon, “Zoom lens design using lens modules,” Opt. Eng. 35(6), 1668–1676 (1996).
[Crossref]

Opt. Express (5)

Other (5)

https://www.mathworks.com/products/matlab.html .

https://www.optotune.com/downloads .

https://www.corning.com/worldwide/en/innovation/corning-emerging-innovations/corning-varioptic-lenses.html .

https://www.synopsys.com/optical-solutions/codev.html .

https://www.sony-semicon.co.jp/e/products/IS/security/product.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. ‘Six-step method’ for initial design of the 50X five-group inner-focus zoom lens.
Fig. 2.
Fig. 2. Power calculation process by using enumeration method in executing ‘Fsolve’.
Fig. 3.
Fig. 3. Initial lens module system of 50X five-group inner-focus zoom lens.
Fig. 4.
Fig. 4. Zoom curve for initial design of 50X five-group inner-focus zoom lens modules.
Fig. 5.
Fig. 5. Focal lengths of FTL in lens module system of 50X five-group inner-focus zoom lens.
Fig. 6.
Fig. 6. A simple classification model of the lens group.
Fig. 7.
Fig. 7. The initial structure of 50X five-group inner-focus zoom lens based on Table 3.
Fig. 8.
Fig. 8. The final structure of 50X five-group inner-focus zoom lens (IMH: image height).
Fig. 9.
Fig. 9. Distortion (a) and powers of FTL (b) for the optimized 50X five-group inner-focus zoom lens.
Fig. 10.
Fig. 10. MTF and tolerance performance of optimized 50X five-group inner-focus zoom lens.

Tables (3)

Tables Icon

Table 1. Initial parameters of 50X five-group inner-focus zoom lens by ‘Six-step method’(Unit: mm)

Tables Icon

Table 2. Initial focal length of each group in 50X five-group inner-focus zoom lens (Unit: mm)

Tables Icon

Table 3. Improved initial parameters of 50X five-group inner-focus zoom lens after conversion (Unit: mm)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

K = [ k 1 , z 1 , k 2 , z 2 , k 3 , z 3 , k 4 , z 4 , k 5 ] , K z 5 = [ k 1 , z 1 , k 2 , z 2 , k 3 , z 3 , k 4 , z 4 ] ,
[ a 1 , a k ] = a 1 [ a 2 , a k ] + [ a 3 , a k ] ,
K = k 1 [ z 1 , k 2 , z 2 , k 3 , z 3 , k 4 , z 4 , k 5 ] + [ k 2 , z 2 , k 3 , z 3 , k 4 , z 4 , k 5 ] , K z 5 = k 1 [ z 1 , k 2 , z 2 , k 3 , z 3 , k 4 , z 4 ] + [ k 2 , z 2 , k 3 , z 3 , k 4 , z 4 ] ,
K = ( k 1 + k 2 k 1 z 1 k 2 ) E 1 + ( 1 k 1 z 1 ) E 2 , K z 5 = ( k 1 + k 2 k 1 z 1 k 2 ) E 3 + ( 1 k 1 z 1 ) E 4 ,
E 1 = z 2 k 3 z 3 k 4 z 4 k 5 + z 2 k 3 z 3 k 4 + z 2 k 4 z 4 k 5 + z 3 k 4 z 4 k 5 + z 2 k 3 z 3 k 5 + z 2 k 3 z 4 k 5 z 2 k 4 z 3 k 4 z 2 k 5 z 3 k 5 z 2 k 3 z 4 k 5 + 1 , E 2 = k 3 z 3 k 4 z 4 k 5 k 3 z 3 k 4 k 3 z 3 k 5 k 3 z 4 k 5 k 4 z 4 k 5 + k 3 + k 4 + k 5 , E 3 = z 2 k 3 z 3 k 4 z 4 + z 2 k 3 z 3 + z 2 k 3 z 4 + z 2 k 4 z 4 + z 3 k 4 z 4 z 2 z 3 z 4 , E 4 = k 3 z 3 k 4 z 4 k 3 z 3 k 3 z 4 k 4 z 4 + 1.
a = K ( K z 5 E 1 K E 3 ) E 2 E 1 E 4 E 2 E 3 E 1 , b = K z 5 E 1 K E 3 E 1 E 4 E 2 E 3 .
k 1 = 1 b z 1 , k 2 = a × z 1 1 + b b × z 1 .
E q 1 = k 1 w k 1 m , E q 2 = k 1 w k 1 t , E q 3 = k 2 w k 2 m , E q 4 = k 2 w k 2 t .
1 2 × 2 μ m = 250 l p / m m .
f s e n s o r 2 × f l e n s .