Abstract

In this paper, the annular folded lens (AFL) is applied to the realization of a miniaturized system for the visible and near-IR spectrums (0.45-1.1μm). In order to correct the chromatic aberration, a hybrid AFL is designed with the multilayer diffractive optical element (MLDOE) in which the substrate materials are precision molded glasses. We propose a new design method of the MLDOE to improve the polychromatic integral diffraction efficiency (PIDE) that makes it suitable for the optical path of the AFL. By comparing the characteristic angle weighted PIDE (CAW-PIDE), the optimal microstructure heights of the MLDOE can be obtained, and the effect of diffraction efficiency on image quality can be minimized for the entire incident angle range. The design results show that the ratio of total length to the focal length is only 0.332, and comprehensive modulation transfer function considering the diffraction efficiency is larger than 0.26 at 166 lp/mm. This study can provide a new idea for designing a broadband, miniaturized, and low-cost imaging system.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Fuerschbach, G. E. Davis, K. P. Thompson, and J. P. Rolland, “Assembly of a freeform off-axis optical system employing three -polynomial Zernike mirrors,” Opt. Lett. 39(10), 2896–2899 (2014).
    [Crossref]
  2. R. Tang, B. Zhang, G. Jin, and J. Zhu, “Multiple surface expansion method for design of freeform imaging systems,” Opt. Express 26(3), 2983–2994 (2018).
    [Crossref]
  3. Q. Meng, H. Wang, W. Liang, Z. Yan, and B. Wang, “Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view,” Appl. Opt. 58(3), 609–615 (2019).
    [Crossref]
  4. R. Li, “Passively athermalized broadband optical design using doublet combinations,” Appl. Opt. 53(18), 3903–3907 (2014).
    [Crossref]
  5. T. Lim and S. Park, “Achromatic and athermal lens design by redistributing the element powers on an athermal glass map,” Opt. Express 24(16), 18049–18058 (2016).
    [Crossref]
  6. M. Galan, M. Strojnik, and Y. Wang, “Design method for compact, achromatic, high-performance, solid catadioptric system (SoCatS), from visible to IR,” Opt. Express 27(1), 142–149 (2019).
    [Crossref]
  7. J. Ford, E. Tremblay, and S. Fainman, “Multiple reflective lenses and lens systems,” US Patent, 7898749B2 (2011).
  8. L. Li, D. Wang, C. Liu, and Q. Wang, “Ultrathin zoom telescopic objective,” Opt. Express 24(16), 18674–18684 (2016).
    [Crossref]
  9. E. J. Tremblay, R. A. Stack, R. L. Morrison, J. H. Karp, and J. E. Ford, “Ultrathin four-reflection imager,” Appl. Opt. 48(2), 343–354 (2009).
    [Crossref]
  10. E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, “Ultrathin cameras using annular folded optics,” Appl. Opt. 46(4), 463–471 (2007).
    [Crossref]
  11. B. Zhang, M. Piao, and Q. Cui, “Achromatic annular folded lens with reflective-diffractive optics,” Opt. Express 27(22), 32337–32348 (2019).
    [Crossref]
  12. Y. G. Soskind, “Diffractive optics technologies in infrared systems,” Proc. SPIE 9451, 94511 (2015).
    [Crossref]
  13. B. Zhang, Q. Cui, M. Piao, and Y. Hu, “Design of dual-band infrared zoom lens with multilayer diffractive optical elements,” Appl. Opt. 58(8), 2058–2067 (2019).
    [Crossref]
  14. L. Yang, C. Liu, R. Guo, and Y. Zhao, “Comprehensive polychromatic integral diffraction efficiency sensitivity to tilt error for multilayer diffractive optical elements with oblique incidence,” Appl. Opt. 59(2), 508–514 (2020).
    [Crossref]
  15. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE: 2004).
  16. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Lincoln Laboratory Technical Report 914 (1991).
  17. D. A. Buralli and G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31(22), 4389–4396 (1992).
    [Crossref]
  18. “Low TG Glass for Precision Molding,” http://www.us.schott.com/advanced_optics/English/products/optical-materials/optical-glass/low-tg-glass-for-precision-molding/index.html .
  19. S. Bäumer, Handbook of Plastic Optics, 2nd Edition, (Wiley-VCH, 2010).
    [Crossref]
  20. Zemax Development Corporation, “OpticStudio User Manual,” (2016).
  21. B. Zhang, Q. Cui, and M. Piao, “Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation,” Opt. Commun. 415, 156–163 (2018).
    [Crossref]
  22. C. Xue and Q. Cui, “Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency,” Opt. Lett. 35(7), 986–988 (2010).
    [Crossref]
  23. T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13(3), 035711 (2011).
    [Crossref]
  24. C. Bigwood, “New infrared optical systems using diffractive optics,” Proc. SPIE 4767, 1–12 (2002).
    [Crossref]
  25. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design, 2nd Edition (SPIE: 2008).

2020 (1)

2019 (4)

2018 (2)

R. Tang, B. Zhang, G. Jin, and J. Zhu, “Multiple surface expansion method for design of freeform imaging systems,” Opt. Express 26(3), 2983–2994 (2018).
[Crossref]

B. Zhang, Q. Cui, and M. Piao, “Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation,” Opt. Commun. 415, 156–163 (2018).
[Crossref]

2016 (2)

2015 (1)

Y. G. Soskind, “Diffractive optics technologies in infrared systems,” Proc. SPIE 9451, 94511 (2015).
[Crossref]

2014 (2)

2011 (1)

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13(3), 035711 (2011).
[Crossref]

2010 (1)

2009 (1)

2007 (1)

2002 (1)

C. Bigwood, “New infrared optical systems using diffractive optics,” Proc. SPIE 4767, 1–12 (2002).
[Crossref]

1992 (1)

Bäumer, S.

S. Bäumer, Handbook of Plastic Optics, 2nd Edition, (Wiley-VCH, 2010).
[Crossref]

Bigwood, C.

C. Bigwood, “New infrared optical systems using diffractive optics,” Proc. SPIE 4767, 1–12 (2002).
[Crossref]

Buralli, D. A.

Cui, Q.

Davis, G. E.

Fainman, S.

J. Ford, E. Tremblay, and S. Fainman, “Multiple reflective lenses and lens systems,” US Patent, 7898749B2 (2011).

Fischer, R. E.

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design, 2nd Edition (SPIE: 2008).

Ford, J.

J. Ford, E. Tremblay, and S. Fainman, “Multiple reflective lenses and lens systems,” US Patent, 7898749B2 (2011).

Ford, J. E.

Fuerschbach, K.

Galan, M.

Guo, R.

Hu, Y.

Jin, G.

Karp, J. H.

Kathman, A. D.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE: 2004).

Li, L.

Li, R.

Liang, W.

Lim, T.

Liu, C.

Liu, H.

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13(3), 035711 (2011).
[Crossref]

Lu, Z.

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13(3), 035711 (2011).
[Crossref]

Meng, Q.

Morris, G. M.

Morrison, R. L.

O’Shea, D. C.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE: 2004).

Park, S.

Piao, M.

Prather, D. W.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE: 2004).

Rolland, J. P.

Soskind, Y. G.

Y. G. Soskind, “Diffractive optics technologies in infrared systems,” Proc. SPIE 9451, 94511 (2015).
[Crossref]

Stack, R. A.

Strojnik, M.

Suleski, T. J.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE: 2004).

Sun, Q.

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13(3), 035711 (2011).
[Crossref]

Swanson, G. J.

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Lincoln Laboratory Technical Report 914 (1991).

Tadic-Galeb, B.

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design, 2nd Edition (SPIE: 2008).

Tang, R.

Thompson, K. P.

Tremblay, E.

J. Ford, E. Tremblay, and S. Fainman, “Multiple reflective lenses and lens systems,” US Patent, 7898749B2 (2011).

Tremblay, E. J.

Wang, B.

Wang, D.

Wang, H.

Wang, Q.

Wang, T.

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13(3), 035711 (2011).
[Crossref]

Wang, Y.

Xue, C.

Yan, Z.

Yang, L.

Yoder, P. R.

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design, 2nd Edition (SPIE: 2008).

Zhang, B.

Zhang, H.

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13(3), 035711 (2011).
[Crossref]

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13(3), 035711 (2011).
[Crossref]

Zhao, Y.

Zhu, J.

Appl. Opt. (7)

J. Opt. (1)

T. Wang, H. Liu, H. Zhang, H. Zhang, Q. Sun, and Z. Lu, “Effect of incidence angles and manufacturing errors on the imaging performance of hybrid systems,” J. Opt. 13(3), 035711 (2011).
[Crossref]

Opt. Commun. (1)

B. Zhang, Q. Cui, and M. Piao, “Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation,” Opt. Commun. 415, 156–163 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (2)

C. Bigwood, “New infrared optical systems using diffractive optics,” Proc. SPIE 4767, 1–12 (2002).
[Crossref]

Y. G. Soskind, “Diffractive optics technologies in infrared systems,” Proc. SPIE 9451, 94511 (2015).
[Crossref]

Other (7)

J. Ford, E. Tremblay, and S. Fainman, “Multiple reflective lenses and lens systems,” US Patent, 7898749B2 (2011).

“Low TG Glass for Precision Molding,” http://www.us.schott.com/advanced_optics/English/products/optical-materials/optical-glass/low-tg-glass-for-precision-molding/index.html .

S. Bäumer, Handbook of Plastic Optics, 2nd Edition, (Wiley-VCH, 2010).
[Crossref]

Zemax Development Corporation, “OpticStudio User Manual,” (2016).

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE: 2004).

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Lincoln Laboratory Technical Report 914 (1991).

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design, 2nd Edition (SPIE: 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The flow diagram of the optimization method of MLDOE
Fig. 2.
Fig. 2. Relationship between outer diameter and obscuration ration of AFL
Fig. 3.
Fig. 3. System layout of the final designed hybrid AFL with three-layer DOE
Fig. 4.
Fig. 4. Exploded solid model of the hybrid AFL. (a) Front view. (b) Rear view.
Fig. 5.
Fig. 5. PIDE versus incident angle for different design methods.
Fig. 6.
Fig. 6. Diffraction efficiency versus wavelength and incident angle for previous and optimized MLDOE.
Fig. 7.
Fig. 7. Image quality evaluation of the AFL with MLDOE. (a) Comprehensive MTF. (b) Spot diagram

Tables (4)

Tables Icon

Table 1. Design specifications of AFL

Tables Icon

Table 2. Lens data of hybrid AFL with three-layer DOE

Tables Icon

Table 3. Comparison of parameters corresponding to different design method of MLDOE

Tables Icon

Table 4. Comprehensive MTF values of the AFL at different field of views

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η m ( λ , θ ) = sin c 2 [ m ϕ ( λ , θ ) ] ,
ϕ ( λ , θ ) = k = 1 N ( 1 ) k + 1 [ H k ( n k i 2 ( λ ) n 1 i 2 ( λ ) sin 2 θ n k t 2 ( λ ) n 1 i 2 ( λ ) sin 2 θ ) ] λ ,
{ H 1 = m λ 2 A ( λ 1 ) m λ 1 A ( λ 2 ) B ( λ 2 ) A ( λ 1 ) B ( λ 1 ) A ( λ 2 ) H 2 = m λ 1 B ( λ 2 ) m λ 2 A ( λ 1 ) B ( λ 2 ) A ( λ 1 ) B ( λ 1 ) A ( λ 2 ) ,
{ A ( λ ) = n 2 t 2 ( λ ) n 1 i 2 ( λ ) sin 2 θ n 2 i 2 n 1 i 2 ( λ ) sin 2 θ B ( λ ) = n 1 i 2 ( λ ) n 1 i 2 ( λ ) sin 2 θ n 1 t 2 n 1 i 2 ( λ ) sin 2 θ ,
η ¯ m ( λ , θ ) = 1 λ max λ min λ min λ max sin c 2 [ m ϕ ( λ , θ ) ] d λ .
η ¯ m C A W ( λ ) = j = 1 N W C A W j η ¯ m C _ θ j ( λ ) ,
d e f f = d 1 α o b s 2 ,
z = c r 2 1 + 1 ( 1 + p ) c 2 r 2 + i = 1 8 α i r 2 i ,
Φ B i n a r y 2 = M i = 1 N A i ρ 2 i ,
ρ  =  r r n o r m a l ,