Abstract

A diffractive optical element was fabricated by monolithically integrating two volume phase-gratings (VPGs) in the bulk of a single-piece transparent material. A computer model of the diffraction generated by the double volume phase-grating (DVPG) was made with a rigorous coupled wave analysis simulator. Simulations and experiments show that the diffractive behavior of a DVPG can be controlled by arranging the relative displacement and the distance between the VPGs according to Talbot self-imaging planes. In order to diffract the total incident light, the phase accumulation in the VPGs has to be π/2, which was achieved by single-scan femtosecond laser processing of a nanocrystal doped glass as the substrate material. Ex situ microscope images of the cross-sections are presented for laser processed lines in the form of VPGs and DVPGs. The far-field diffraction of DVPGs formed by selectively located VPGs was characterized with a monochromatic 633 nm and a supercontinuum white light. Functional designs of high diffraction efficiency with potential applications in photonics were successfully fabricated in a one-step and free of chemicals process.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Yang and P. Yeh, “Form birefringence of volume gratings in photopolymers,” Appl. Phys. Lett. 69(23), 3468–3470 (1996).
    [Crossref]
  2. L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” J. Hologr. Speckle 5(1), 77–84 (2009).
    [Crossref]
  3. B. Robertson, C. Godsalve, and M. R. Taghizadeh, “Dichromated gelatin holography: an investigation into laser-induced damage,” Appl. Opt. 32(33), 6587 (1993).
    [Crossref]
  4. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
    [Crossref]
  5. K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Fabrication of volume grating induced in silica glass by femtosecond laser,” in I. Miyamoto, A. Ostendorf, K. Sugioka, and H. Helvajian, eds. (International Society for Optics and Photonics, 2003), 5063, p. 474.
  6. C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol. 21(1), 246–253 (2003).
    [Crossref]
  7. D. Lee, R. R. Thomson, and C. R. Cunningham, “Performance of volume phase gratings manufactured using ultrafast laser inscription,” in Modern Technologies in Space- and Ground-Based Telescopes and Instrumentation II, R. Navarro, C. R. Cunningham, and E. Prieto, eds. (SPIE, 2012), 8450, p. 84502X.
  8. D. G. MacLachlan, R. R. Thomson, C. R. Cunningham, and D. Lee, “Mid-Infrared Volume Phase Gratings Manufactured using Ultrafast Laser Inscription,” Opt. Mater. Express 3(10), 1616 (2013).
    [Crossref]
  9. M. Mikutis, T. Kudrius, G. Šlekys, D. Paipulas, and S. Juodkazis, “High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams,” Opt. Mater. Express 3(11), 1862 (2013).
    [Crossref]
  10. J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B 86(1), 151–154 (2006).
    [Crossref]
  11. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27(24), 2200 (2002).
    [Crossref]
  12. W. Watanabe, D. Kuroda, K. Itoh, and J. Nishii, “Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses,” Opt. Express 10(19), 978 (2002).
    [Crossref]
  13. K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29(16), 1846 (2004).
    [Crossref]
  14. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref]
  15. B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90(7), 073503 (2007).
    [Crossref]
  16. Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
    [Crossref]
  17. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2003).
  18. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
    [Crossref]
  19. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26(1), 42 (2001).
    [Crossref]
  20. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360 (2002).
    [Crossref]
  21. T. K. Gaylord and M. G. Moharam, “Planar dielectric grating diffraction theories,” Appl. Phys. B 28(1), 1–14 (1982).
    [Crossref]
  22. A. Bunkowski, O. Burmeister, T. Clausnitzer, E. B. Kley, A. Tünnermann, K. Danzmann, and R. Schnabel, “Optical characterization of ultrahigh diffraction efficiency gratings,” Appl. Opt. 45(23), 5795–5799 (2006).
    [Crossref]
  23. T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E.-B. Kley, and A. Tünnermann, “Reflection-reduced encapsulated transmission grating,” Opt. Lett. 33(17), 1972 (2008).
    [Crossref]
  24. M. L. Ng, D. Chanda, and P. R. Herman, “Coherent stitching of light in multilayered diffractive optical elements,” Opt. Express 20(21), 23960 (2012).
    [Crossref]
  25. L. Yuan, M. L. Ng, and P. R. Herman, “Femtosecond laser writing of phase-tuned volume gratings for symmetry control in 3D photonic crystal holographic lithography,” Opt. Mater. Express 5(3), 515 (2015).
    [Crossref]
  26. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581 (2007).
    [Crossref]
  27. C. Kappel, A. Selle, M. A. Bader, and G. Marowsky, “Resonant double-grating waveguide structures as inverted Fabry–Perot interferometers,” J. Opt. Soc. Am. B 21(6), 1127 (2004).
    [Crossref]
  28. L. Poletto, F. Frassetto, and P. Villoresi, “Design of an extreme-ultraviolet attosecond compressor,” J. Opt. Soc. Am. B 25(7), B133 (2008).
    [Crossref]
  29. L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Continuous self-imaging regime with a double-grating mask,” Appl. Opt. 48(30), 5722–5727 (2009).
    [Crossref]
  30. R. Martinez-Vazquez, R. Osellame, G. Cerullo, R. Ramponi, and O. Svelto, “Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses,” Opt. Express 15(20), 12628–12635 (2007).
    [Crossref]
  31. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
    [Crossref]
  32. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  33. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
    [Crossref]
  34. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt. 51(16-18), 2533–2542 (2004).
    [Crossref]
  35. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708 (2005).
    [Crossref]
  36. P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
    [Crossref]
  37. D. M. Rayner, A. Naumov, and P. B. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13(9), 3208 (2005).
    [Crossref]
  38. R. Osellame, R. M. Vazquez, G. Cerullo, R. Ramponi, O. Svelto, V. Russo, A. Li Bassi, C. E. Bottani, and C. Spinella, “Interaction between femtosecond laser pulses and CdSxSe1−x quantum dots in glasses,” Phys. Rev. B 76(4), 045340 (2007).
    [Crossref]
  39. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443 (2008).
    [Crossref]

2015 (1)

2013 (2)

2012 (1)

2011 (1)

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref]

2010 (1)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref]

2009 (2)

L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” J. Hologr. Speckle 5(1), 77–84 (2009).
[Crossref]

L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Continuous self-imaging regime with a double-grating mask,” Appl. Opt. 48(30), 5722–5727 (2009).
[Crossref]

2008 (3)

2007 (4)

R. Osellame, R. M. Vazquez, G. Cerullo, R. Ramponi, O. Svelto, V. Russo, A. Li Bassi, C. E. Bottani, and C. Spinella, “Interaction between femtosecond laser pulses and CdSxSe1−x quantum dots in glasses,” Phys. Rev. B 76(4), 045340 (2007).
[Crossref]

R. Martinez-Vazquez, R. Osellame, G. Cerullo, R. Ramponi, and O. Svelto, “Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses,” Opt. Express 15(20), 12628–12635 (2007).
[Crossref]

S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581 (2007).
[Crossref]

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90(7), 073503 (2007).
[Crossref]

2006 (2)

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B 86(1), 151–154 (2006).
[Crossref]

A. Bunkowski, O. Burmeister, T. Clausnitzer, E. B. Kley, A. Tünnermann, K. Danzmann, and R. Schnabel, “Optical characterization of ultrahigh diffraction efficiency gratings,” Appl. Opt. 45(23), 5795–5799 (2006).
[Crossref]

2005 (2)

2004 (3)

2003 (3)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol. 21(1), 246–253 (2003).
[Crossref]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

2002 (3)

2001 (1)

1999 (2)

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
[Crossref]

1997 (1)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

1996 (1)

C. Yang and P. Yeh, “Form birefringence of volume gratings in photopolymers,” Appl. Phys. Lett. 69(23), 3468–3470 (1996).
[Crossref]

1993 (1)

1982 (1)

T. K. Gaylord and M. G. Moharam, “Planar dielectric grating diffraction theories,” Appl. Phys. B 28(1), 1–14 (1982).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Arai, A. Y.

Audouard, E.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref]

Bader, M. A.

Baumberg, J. J.

Beresna, M.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref]

Bernabeu, E.

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref]

Borrelli, N. F.

Bottani, C. E.

R. Osellame, R. M. Vazquez, G. Cerullo, R. Ramponi, O. Svelto, V. Russo, A. Li Bassi, C. E. Bottani, and C. Spinella, “Interaction between femtosecond laser pulses and CdSxSe1−x quantum dots in glasses,” Phys. Rev. B 76(4), 045340 (2007).
[Crossref]

Bovatsek, J.

Bricchi, E.

Brückner, F.

Bunkowski, A.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt. 51(16-18), 2533–2542 (2004).
[Crossref]

Burmeister, O.

Cerullo, G.

R. Martinez-Vazquez, R. Osellame, G. Cerullo, R. Ramponi, and O. Svelto, “Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses,” Opt. Express 15(20), 12628–12635 (2007).
[Crossref]

R. Osellame, R. M. Vazquez, G. Cerullo, R. Ramponi, O. Svelto, V. Russo, A. Li Bassi, C. E. Bottani, and C. Spinella, “Interaction between femtosecond laser pulses and CdSxSe1−x quantum dots in glasses,” Phys. Rev. B 76(4), 045340 (2007).
[Crossref]

Chanda, D.

Chang, S.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B 86(1), 151–154 (2006).
[Crossref]

Chen, W.-J.

Chichkov, B. N.

Clausnitzer, T.

Corkum, P. B.

Cunningham, C. R.

D. G. MacLachlan, R. R. Thomson, C. R. Cunningham, and D. Lee, “Mid-Infrared Volume Phase Gratings Manufactured using Ultrafast Laser Inscription,” Opt. Mater. Express 3(10), 1616 (2013).
[Crossref]

D. Lee, R. R. Thomson, and C. R. Cunningham, “Performance of volume phase gratings manufactured using ultrafast laser inscription,” in Modern Technologies in Space- and Ground-Based Telescopes and Instrumentation II, R. Navarro, C. R. Cunningham, and E. Prieto, eds. (SPIE, 2012), 8450, p. 84502X.

Danzmann, K.

Eaton, S. M.

Emadi, A.

Florea, C.

Flueraru, C.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B 86(1), 151–154 (2006).
[Crossref]

Franco, M.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
[Crossref]

Frassetto, F.

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Gaylord, T. K.

T. K. Gaylord and M. G. Moharam, “Planar dielectric grating diffraction theories,” Appl. Phys. B 28(1), 1–14 (1982).
[Crossref]

Glebov, L. B.

L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” J. Hologr. Speckle 5(1), 77–84 (2009).
[Crossref]

Godsalve, C.

Grabarnik, S.

Gu, M.

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90(7), 073503 (2007).
[Crossref]

Heinze, R.

Herman, P. R.

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref]

Hirao, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Ho, S.

Inouye, H.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Itoh, K.

K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29(16), 1846 (2004).
[Crossref]

W. Watanabe, D. Kuroda, K. Itoh, and J. Nishii, “Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses,” Opt. Express 10(19), 978 (2002).
[Crossref]

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Fabrication of volume grating induced in silica glass by femtosecond laser,” in I. Miyamoto, A. Ostendorf, K. Sugioka, and H. Helvajian, eds. (International Society for Optics and Photonics, 2003), 5063, p. 474.

Jia, B.

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90(7), 073503 (2007).
[Crossref]

Juodkazis, S.

Kämpfe, T.

Kappel, C.

Kathman, A. D.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2003).

Kazansky, P. G.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27(24), 2200 (2002).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Kim, H.

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90(7), 073503 (2007).
[Crossref]

Kintaka, K.

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Fabrication of volume grating induced in silica glass by femtosecond laser,” in I. Miyamoto, A. Ostendorf, K. Sugioka, and H. Helvajian, eds. (International Society for Optics and Photonics, 2003), 5063, p. 474.

Klappauf, B. G.

Kley, E. B.

Kley, E.-B.

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kudrius, T.

Kuroda, D.

Lee, B.

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90(7), 073503 (2007).
[Crossref]

Lee, D.

D. G. MacLachlan, R. R. Thomson, C. R. Cunningham, and D. Lee, “Mid-Infrared Volume Phase Gratings Manufactured using Ultrafast Laser Inscription,” Opt. Mater. Express 3(10), 1616 (2013).
[Crossref]

D. Lee, R. R. Thomson, and C. R. Cunningham, “Performance of volume phase gratings manufactured using ultrafast laser inscription,” in Modern Technologies in Space- and Ground-Based Telescopes and Instrumentation II, R. Navarro, C. R. Cunningham, and E. Prieto, eds. (SPIE, 2012), 8450, p. 84502X.

Li, J.

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443 (2008).
[Crossref]

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90(7), 073503 (2007).
[Crossref]

Li, Y.

Li Bassi, A.

R. Osellame, R. M. Vazquez, G. Cerullo, R. Ramponi, O. Svelto, V. Russo, A. Li Bassi, C. E. Bottani, and C. Spinella, “Interaction between femtosecond laser pulses and CdSxSe1−x quantum dots in glasses,” Phys. Rev. B 76(4), 045340 (2007).
[Crossref]

Liu, J.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B 86(1), 151–154 (2006).
[Crossref]

Loktev, M.

Lu, Z.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B 86(1), 151–154 (2006).
[Crossref]

MacLachlan, D. G.

Marowsky, G.

Martinez-Vazquez, R.

Mauclair, C.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref]

Mazur, E.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Mermillod-Blondin, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref]

Mikutis, M.

Mills, J. D.

Mitsuyu, T.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Miura, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Moharam, M. G.

T. K. Gaylord and M. G. Moharam, “Planar dielectric grating diffraction theories,” Appl. Phys. B 28(1), 1–14 (1982).
[Crossref]

Mysyrowicz, A.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
[Crossref]

Naumov, A.

Ng, M. L.

Nishii, J.

K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29(16), 1846 (2004).
[Crossref]

W. Watanabe, D. Kuroda, K. Itoh, and J. Nishii, “Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses,” Opt. Express 10(19), 978 (2002).
[Crossref]

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Fabrication of volume grating induced in silica glass by femtosecond laser,” in I. Miyamoto, A. Ostendorf, K. Sugioka, and H. Helvajian, eds. (International Society for Optics and Photonics, 2003), 5063, p. 474.

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt. 51(16-18), 2533–2542 (2004).
[Crossref]

M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360 (2002).
[Crossref]

O’Shea, D. C.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2003).

Osellame, R.

R. Martinez-Vazquez, R. Osellame, G. Cerullo, R. Ramponi, and O. Svelto, “Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses,” Opt. Express 15(20), 12628–12635 (2007).
[Crossref]

R. Osellame, R. M. Vazquez, G. Cerullo, R. Ramponi, O. Svelto, V. Russo, A. Li Bassi, C. E. Bottani, and C. Spinella, “Interaction between femtosecond laser pulses and CdSxSe1−x quantum dots in glasses,” Phys. Rev. B 76(4), 045340 (2007).
[Crossref]

Paipulas, D.

Poletto, L.

Prade, B.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
[Crossref]

Prather, D. W.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2003).

Qiu, J.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Ramponi, R.

R. Martinez-Vazquez, R. Osellame, G. Cerullo, R. Ramponi, and O. Svelto, “Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses,” Opt. Express 15(20), 12628–12635 (2007).
[Crossref]

R. Osellame, R. M. Vazquez, G. Cerullo, R. Ramponi, O. Svelto, V. Russo, A. Li Bassi, C. E. Bottani, and C. Spinella, “Interaction between femtosecond laser pulses and CdSxSe1−x quantum dots in glasses,” Phys. Rev. B 76(4), 045340 (2007).
[Crossref]

Rayner, D. M.

Robertson, B.

Rosenfeld, A.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref]

Russo, V.

R. Osellame, R. M. Vazquez, G. Cerullo, R. Ramponi, O. Svelto, V. Russo, A. Li Bassi, C. E. Bottani, and C. Spinella, “Interaction between femtosecond laser pulses and CdSxSe1−x quantum dots in glasses,” Phys. Rev. B 76(4), 045340 (2007).
[Crossref]

Sakakura, M.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref]

Sanchez-Brea, L. M.

Schaffer, C. B.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Schnabel, R.

Selle, A.

Serbin, J.

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90(7), 073503 (2007).
[Crossref]

Shah, L.

Shimotsuma, Y.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

Šlekys, G.

Sokolova, E.

Spinella, C.

R. Osellame, R. M. Vazquez, G. Cerullo, R. Ramponi, O. Svelto, V. Russo, A. Li Bassi, C. E. Bottani, and C. Spinella, “Interaction between femtosecond laser pulses and CdSxSe1−x quantum dots in glasses,” Phys. Rev. B 76(4), 045340 (2007).
[Crossref]

Starrost, F.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Stoian, R.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref]

Streltsov, A. M.

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
[Crossref]

Suleski, T. J.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2003).

Sun, F.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B 86(1), 151–154 (2006).
[Crossref]

Svelto, O.

R. Martinez-Vazquez, R. Osellame, G. Cerullo, R. Ramponi, and O. Svelto, “Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses,” Opt. Express 15(20), 12628–12635 (2007).
[Crossref]

R. Osellame, R. M. Vazquez, G. Cerullo, R. Ramponi, O. Svelto, V. Russo, A. Li Bassi, C. E. Bottani, and C. Spinella, “Interaction between femtosecond laser pulses and CdSxSe1−x quantum dots in glasses,” Phys. Rev. B 76(4), 045340 (2007).
[Crossref]

Taghizadeh, M. R.

Thomson, R. R.

D. G. MacLachlan, R. R. Thomson, C. R. Cunningham, and D. Lee, “Mid-Infrared Volume Phase Gratings Manufactured using Ultrafast Laser Inscription,” Opt. Mater. Express 3(10), 1616 (2013).
[Crossref]

D. Lee, R. R. Thomson, and C. R. Cunningham, “Performance of volume phase gratings manufactured using ultrafast laser inscription,” in Modern Technologies in Space- and Ground-Based Telescopes and Instrumentation II, R. Navarro, C. R. Cunningham, and E. Prieto, eds. (SPIE, 2012), 8450, p. 84502X.

Torcal-Milla, F. J.

Tünnermann, A.

Vazquez, R. M.

R. Osellame, R. M. Vazquez, G. Cerullo, R. Ramponi, O. Svelto, V. Russo, A. Li Bassi, C. E. Bottani, and C. Spinella, “Interaction between femtosecond laser pulses and CdSxSe1−x quantum dots in glasses,” Phys. Rev. B 76(4), 045340 (2007).
[Crossref]

Vdovin, G.

Villoresi, P.

Watanabe, W.

K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29(16), 1846 (2004).
[Crossref]

W. Watanabe, D. Kuroda, K. Itoh, and J. Nishii, “Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses,” Opt. Express 10(19), 978 (2002).
[Crossref]

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Fabrication of volume grating induced in silica glass by femtosecond laser,” in I. Miyamoto, A. Ostendorf, K. Sugioka, and H. Helvajian, eds. (International Society for Optics and Photonics, 2003), 5063, p. 474.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt. 51(16-18), 2533–2542 (2004).
[Crossref]

M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360 (2002).
[Crossref]

Winick, K. A.

Wolffenbuttel, R.

Xiao, G.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B 86(1), 151–154 (2006).
[Crossref]

Yamada, K.

K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29(16), 1846 (2004).
[Crossref]

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Fabrication of volume grating induced in silica glass by femtosecond laser,” in I. Miyamoto, A. Ostendorf, K. Sugioka, and H. Helvajian, eds. (International Society for Optics and Photonics, 2003), 5063, p. 474.

Yang, C.

C. Yang and P. Yeh, “Form birefringence of volume gratings in photopolymers,” Appl. Phys. Lett. 69(23), 3468–3470 (1996).
[Crossref]

Yeh, P.

C. Yang and P. Yeh, “Form birefringence of volume gratings in photopolymers,” Appl. Phys. Lett. 69(23), 3468–3470 (1996).
[Crossref]

Yoshino, F.

Yuan, L.

Zhang, H.

Zhang, Z.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B 86(1), 151–154 (2006).
[Crossref]

Adv. Mater. (1)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[Crossref]

Appl. Opt. (4)

Appl. Phys. A: Mater. Sci. Process. (1)

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Appl. Phys. B (2)

T. K. Gaylord and M. G. Moharam, “Planar dielectric grating diffraction theories,” Appl. Phys. B 28(1), 1–14 (1982).
[Crossref]

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B 86(1), 151–154 (2006).
[Crossref]

Appl. Phys. Lett. (3)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

C. Yang and P. Yeh, “Form birefringence of volume gratings in photopolymers,” Appl. Phys. Lett. 69(23), 3468–3470 (1996).
[Crossref]

B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90(7), 073503 (2007).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

J. Hologr. Speckle (1)

L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” J. Hologr. Speckle 5(1), 77–84 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: New options for three-dimensional photonic structures,” J. Mod. Opt. 51(16-18), 2533–2542 (2004).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171(4-6), 279–284 (1999).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Opt. Mater. Express (3)

Phys. Rev. B (1)

R. Osellame, R. M. Vazquez, G. Cerullo, R. Ramponi, O. Svelto, V. Russo, A. Li Bassi, C. E. Bottani, and C. Spinella, “Interaction between femtosecond laser pulses and CdSxSe1−x quantum dots in glasses,” Phys. Rev. B 76(4), 045340 (2007).
[Crossref]

Phys. Rev. Lett. (2)

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

Rev. Sci. Instrum. (1)

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011).
[Crossref]

Other (3)

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2003).

D. Lee, R. R. Thomson, and C. R. Cunningham, “Performance of volume phase gratings manufactured using ultrafast laser inscription,” in Modern Technologies in Space- and Ground-Based Telescopes and Instrumentation II, R. Navarro, C. R. Cunningham, and E. Prieto, eds. (SPIE, 2012), 8450, p. 84502X.

K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, and K. Itoh, “Fabrication of volume grating induced in silica glass by femtosecond laser,” in I. Miyamoto, A. Ostendorf, K. Sugioka, and H. Helvajian, eds. (International Society for Optics and Photonics, 2003), 5063, p. 474.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. a) Cross-section microscope image (10x) of a double volume phase-grating fabricated in the nanostructured glass with a femtosecond laser. b) Scheme of the laser fabrication strategy followed in this work. c) Droplet shape approximation taken for the simulation with the RCWA numerical solver. The definitions of the widths a and thickness L, together with the relative displacement $\Delta x$ and the distance between the gratings $\Delta z$ are illustrated.
Fig. 2.
Fig. 2. a) Optical microscope images of the cross-sections of the laser inscribed lines at different pulse energies (40x magnification). b) Experimental and simulated far-field diffraction efficiencies of VPG fabricated at different pulse energies. Simulations were done by taking the dimensions of the laser modified zones observed in the microscope cross-sections. The refractive index changes implemented in the simulations for each pulse energy are Δn = 0.003, Δn = 0.0055, Δn = 0.006, Δn = 0.0065, Δn = 0.0075 and Δn = 0.0055. The combined efficiency is shown meaning that both sides ${\pm} $ for each diffraction order have been summed. Experimental and simulated results were obtained at λ = 633 nm and perpendicular illumination.
Fig. 3.
Fig. 3. Microscope images of the cross-sections of two DVPGs fabricated at 1.2 µJ and 1.6 µJ pulse energies, 500 kHz, 2 mm/s, at depths of ${\sim} $ 200 µm and ${\sim} $ 440 µm. Images were taken at 10x and 40x magnification. Experimental and simulated combined diffraction efficiency of separated VPGs and DVPG at 1.2 µJ and 1.6 µJ are shown. RCWA simulations were done by taking the dimensions measured from the microscope image (listed in Table 1) and Δn = 0.006 and Δn = 0.0075, respectively. Experimental and simulated results were obtained at λ = 633 nm and perpendicular illumination.
Fig. 4.
Fig. 4. Experimental and simulated far-field efficiencies at m = 0, m = ${\pm} $1 and m = ${\pm} $2 diffraction orders of DVPGs fabricated at different distances Δz, for a relative displacement of Δx = 0 and Δx =Λ /2. DVPGs were fabricated at 1.6µJ. Distances between the VPGs were measured from microscope images. RCWA simulations were done with the droplet profile and sizes taken for VPG fabricated at 1.6µJ, width of a = 8µm, thickness L = 36µm and the refractive index change was Δn=0.0075. Experimental and simulated results were obtained at λ = 633 nm and perpendicular illumination.
Fig. 5.
Fig. 5. Experimental and simulated far-field diffraction efficiencies at the orders m = -1, m = 0 and m = 1 of a DVPG when the angle of incidence is variated. A DVPG with a Δx =Λ /2 and a Δz = 244.2µm was fabricated at 1.6µJ, 500 kHz and a scanning speed of 2 mm/s. Experimental measurements were taken by changing the angle of incidence in steps of 0.5 °. In order to see asymmetrical effects, 1st diffraction orders are shown for both sides (+1 and -1). RCWA simulations were done with droplet elements with a = 8µm width, L = 30µm thickness and Δn = 0.007. Experimental and simulated results were obtained illuminating at λ = 633 nm.
Fig. 6.
Fig. 6. Experimental and simulated far-field diffraction efficiency of the combined 1st order of a DVPG when illuminated at different wavelengths. DVPGs were fabricated by overlapping two layers of gratings in each VPG, with a Δx =Λ /2 and varying the Δz. DVPGs were fabricated at 1.6µJ, 500 kHz and a scanning speed of 2 mm/s. The white light source was impinged perpendicularly to the DVPG. RCWA simulations were done with a droplet profile of a = 8µm width, L = 40 µm thickness and Δn = 0.0075.

Tables (1)

Tables Icon

Table 1. Thicknesses of separately fabricated VPGs and DVPGs