Abstract

The total internal reflection ellipsometry (TIRE) method was used for the excitation and study of the sensitivity properties of the hybrid Tamm plasmon polariton – surface plasmon polariton (TPP-SPP) and single surface plasmon resonance (SPR) modes of the GCSF receptor immobilization. Additionally, the optimized sensitivity of the hybrid TPP-SPP mode was investigated and compared with the single SPR mode when the BSA proteins formed a layer on the gold surface. The dispersion relations for the hybrid TPP-SPP and single SPR modes were used to explain the enhanced sensitivity of the ellipsometric parameters for the hybrid TPP-SPP mode over the conventional SPR. The SPP component (δΔh-SPP/δλ=53.9°/nm) of the hybrid TPP-SPP mode was about 6.4 times more sensitive than single SPR (δΔSPR/δλ=8.4°/nm) for the BSA protein layer on the gold film. It was found that the sensitivity of the hybrid plasmonic mode can be made controllable by using the strong coupling effect between the TPP and SPP components. The strong coupling regime reduces absorption and scattering losses of the metal for the SPP component in the hybrid TPP-SPP mode and, as a result, narrows the plasmonic resonance.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1-2), 3–15 (1999).
    [Crossref]
  2. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance - how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
    [Crossref]
  3. A. Kausaite-Minkstimiene, A. Ramanaviciene, J. Kirlyte, and A. Ramanavicius, “Comparative Study of Random and Oriented Antibody Immobilization Techniques on the Binding Capacity of Immunosensor,” Anal. Chem. 82(15), 6401–6408 (2010).
    [Crossref]
  4. W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
    [Crossref]
  5. J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, and L. Fu, “Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices,” Biosens. Bioelectron. 142, 111449 (2019).
    [Crossref]
  6. A. Makaraviciute and A. Ramanaviciene, “Site-directed antibody immobilization techniques for immunosensors,” Biosens. Bioelectron. 50, 460–471 (2013).
    [Crossref]
  7. Z. Balevicius, J. Talbot, L. Tamosaitis, I. Plikusiene, A. Stirke, G. Mickiene, S. Balevicius, A. Paulauskas, and A. Ramanavicius, “Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands,” Sens. Actuators, B 297, 126770 (2019).
    [Crossref]
  8. Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand–receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
    [Crossref]
  9. A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, and J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sens. Actuators, B 149(1), 194–198 (2010).
    [Crossref]
  10. A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
    [Crossref]
  11. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8(4), S87–S93 (2006).
    [Crossref]
  12. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
    [Crossref]
  13. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media I General theory*,” J. Opt. Soc. Am. 67(4), 423 (1977).
    [Crossref]
  14. T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M.-P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616 (2016).
    [Crossref]
  15. Z. Balevicius and A. Baskys, “Optical Dispersions of Bloch Surface Waves and Surface Plasmon Polaritons: Towards Advanced Biosensors,” Materials 12(19), 3147 (2019).
    [Crossref]
  16. M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
    [Crossref]
  17. I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Eur. Phys. J. A 76(11-12), 849–850 (1932).
    [Crossref]
  18. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
    [Crossref]
  19. B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
    [Crossref]
  20. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref]
  21. S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
    [Crossref]
  22. H. Arwin, “TIRE and SPR-Enhanced SE for Adsorption Processes,” in Ellipsometry of Functional Organic Surfaces and Films, K. Hinrichs and K.-J. Eichhorn, eds. (SpringerBerlin Heidelberg, 2014), 52, pp. 249–264.
  23. Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators, B 181, 119–124 (2013).
    [Crossref]
  24. I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
    [Crossref]
  25. S.-G. Huang, K.-P. Chen, and S.-C. Jeng, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express 7(4), 1267 (2017).
    [Crossref]
  26. W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524 (2014).
    [Crossref]
  27. B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
    [Crossref]
  28. Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
    [Crossref]
  29. R. Das, T. Srivastava, and R. Jha, “Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures,” Opt. Lett. 39(4), 896 (2014).
    [Crossref]
  30. R. Das, T. Srivastava, and R. Jha, “On the performance of Tamm-plasmon and surface-plasmon hybrid-mode refractive-index sensor in metallo-dielectric heterostructure configuration,” Sens. Actuators, B 206, 443–448 (2015).
    [Crossref]
  31. I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, and S. Jurga, “Study on Structural, Mechanical, and Optical Properties of Al2O3–TiO2 Nanolaminates Prepared by Atomic Layer Deposition,” J. Phys. Chem. C 119(35), 20591–20599 (2015).
    [Crossref]
  32. I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
    [Crossref]
  33. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028 (2004).
    [Crossref]
  34. V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic Surface Lattice Resonances: A Review of Properties and Applications,” Chem. Rev. 118(12), 5912–5951 (2018).
    [Crossref]
  35. A. Paulauskas, S. Tumenas, A. Selskis, T. Tolenis, A. Valavicius, and Z. Balevicius, “Hybrid Tamm-surface plasmon polaritons mode for detection of mercury adsorption on 1D photonic crystal/gold nanostructures by total internal reflection ellipsometry,” Opt. Express 26(23), 30400 (2018).
    [Crossref]
  36. E. Buzavaite-Verteliene, A. Valavicius, L. Grineviciute, T. Tolenis, R. Lukose, G. Niaura, and Z. Balevicius, “Influence of the graphene layer on the strong coupling in the hybrid Tamm-plasmon polariton mode,” Opt. Express 28(7), 10308 (2020).
    [Crossref]
  37. J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978).
    [Crossref]
  38. V. Ball and J. J. Ramsden, “Buffer dependence of refractive index increments of protein solutions,” Biopolymers 46(7), 489–492 (1998).
    [Crossref]

2020 (2)

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

E. Buzavaite-Verteliene, A. Valavicius, L. Grineviciute, T. Tolenis, R. Lukose, G. Niaura, and Z. Balevicius, “Influence of the graphene layer on the strong coupling in the hybrid Tamm-plasmon polariton mode,” Opt. Express 28(7), 10308 (2020).
[Crossref]

2019 (3)

J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, and L. Fu, “Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices,” Biosens. Bioelectron. 142, 111449 (2019).
[Crossref]

Z. Balevicius, J. Talbot, L. Tamosaitis, I. Plikusiene, A. Stirke, G. Mickiene, S. Balevicius, A. Paulauskas, and A. Ramanavicius, “Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands,” Sens. Actuators, B 297, 126770 (2019).
[Crossref]

Z. Balevicius and A. Baskys, “Optical Dispersions of Bloch Surface Waves and Surface Plasmon Polaritons: Towards Advanced Biosensors,” Materials 12(19), 3147 (2019).
[Crossref]

2018 (4)

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic Surface Lattice Resonances: A Review of Properties and Applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

A. Paulauskas, S. Tumenas, A. Selskis, T. Tolenis, A. Valavicius, and Z. Balevicius, “Hybrid Tamm-surface plasmon polaritons mode for detection of mercury adsorption on 1D photonic crystal/gold nanostructures by total internal reflection ellipsometry,” Opt. Express 26(23), 30400 (2018).
[Crossref]

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

2017 (1)

2016 (2)

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M.-P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616 (2016).
[Crossref]

2015 (3)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

R. Das, T. Srivastava, and R. Jha, “On the performance of Tamm-plasmon and surface-plasmon hybrid-mode refractive-index sensor in metallo-dielectric heterostructure configuration,” Sens. Actuators, B 206, 443–448 (2015).
[Crossref]

I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, and S. Jurga, “Study on Structural, Mechanical, and Optical Properties of Al2O3–TiO2 Nanolaminates Prepared by Atomic Layer Deposition,” J. Phys. Chem. C 119(35), 20591–20599 (2015).
[Crossref]

2014 (4)

W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524 (2014).
[Crossref]

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

R. Das, T. Srivastava, and R. Jha, “Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures,” Opt. Lett. 39(4), 896 (2014).
[Crossref]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand–receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

2013 (4)

A. Makaraviciute and A. Ramanaviciene, “Site-directed antibody immobilization techniques for immunosensors,” Biosens. Bioelectron. 50, 460–471 (2013).
[Crossref]

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
[Crossref]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators, B 181, 119–124 (2013).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref]

2012 (2)

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

2010 (3)

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

A. Kausaite-Minkstimiene, A. Ramanaviciene, J. Kirlyte, and A. Ramanavicius, “Comparative Study of Random and Oriented Antibody Immobilization Techniques on the Binding Capacity of Immunosensor,” Anal. Chem. 82(15), 6401–6408 (2010).
[Crossref]

A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, and J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sens. Actuators, B 149(1), 194–198 (2010).
[Crossref]

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

2006 (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

2004 (1)

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

1998 (1)

V. Ball and J. J. Ramsden, “Buffer dependence of refractive index increments of protein solutions,” Biopolymers 46(7), 489–492 (1998).
[Crossref]

1995 (1)

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance - how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref]

1978 (1)

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

1977 (1)

1932 (1)

I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Eur. Phys. J. A 76(11-12), 849–850 (1932).
[Crossref]

Abdala, N. L.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Abram, R. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Afinogenov, B. I.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
[Crossref]

Angelomé, P. C.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Arwin, H.

H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028 (2004).
[Crossref]

H. Arwin, “TIRE and SPR-Enhanced SE for Adsorption Processes,” in Ellipsometry of Functional Organic Surfaces and Films, K. Hinrichs and K.-J. Eichhorn, eds. (SpringerBerlin Heidelberg, 2014), 52, pp. 249–264.

Auguié, B.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Ayzatsky, M. I.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Azzini, S.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Babonas, G.-J.

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators, B 181, 119–124 (2013).
[Crossref]

Balevicius, S.

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

Z. Balevicius, J. Talbot, L. Tamosaitis, I. Plikusiene, A. Stirke, G. Mickiene, S. Balevicius, A. Paulauskas, and A. Ramanavicius, “Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands,” Sens. Actuators, B 297, 126770 (2019).
[Crossref]

Balevicius, Z.

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

E. Buzavaite-Verteliene, A. Valavicius, L. Grineviciute, T. Tolenis, R. Lukose, G. Niaura, and Z. Balevicius, “Influence of the graphene layer on the strong coupling in the hybrid Tamm-plasmon polariton mode,” Opt. Express 28(7), 10308 (2020).
[Crossref]

Z. Balevicius, J. Talbot, L. Tamosaitis, I. Plikusiene, A. Stirke, G. Mickiene, S. Balevicius, A. Paulauskas, and A. Ramanavicius, “Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands,” Sens. Actuators, B 297, 126770 (2019).
[Crossref]

Z. Balevicius and A. Baskys, “Optical Dispersions of Bloch Surface Waves and Surface Plasmon Polaritons: Towards Advanced Biosensors,” Materials 12(19), 3147 (2019).
[Crossref]

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

A. Paulauskas, S. Tumenas, A. Selskis, T. Tolenis, A. Valavicius, and Z. Balevicius, “Hybrid Tamm-surface plasmon polaritons mode for detection of mercury adsorption on 1D photonic crystal/gold nanostructures by total internal reflection ellipsometry,” Opt. Express 26(23), 30400 (2018).
[Crossref]

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M.-P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616 (2016).
[Crossref]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand–receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators, B 181, 119–124 (2013).
[Crossref]

Baleviciute, I.

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M.-P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616 (2016).
[Crossref]

I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, and S. Jurga, “Study on Structural, Mechanical, and Optical Properties of Al2O3–TiO2 Nanolaminates Prepared by Atomic Layer Deposition,” J. Phys. Chem. C 119(35), 20591–20599 (2015).
[Crossref]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand–receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref]

Ball, V.

V. Ball and J. J. Ramsden, “Buffer dependence of refractive index increments of protein solutions,” Biopolymers 46(7), 489–492 (1998).
[Crossref]

Barnes, W. L.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic Surface Lattice Resonances: A Review of Properties and Applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

Baskys, A.

Z. Balevicius and A. Baskys, “Optical Dispersions of Bloch Surface Waves and Surface Plasmon Polaritons: Towards Advanced Biosensors,” Materials 12(19), 3147 (2019).
[Crossref]

Beck, U.

A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, and J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sens. Actuators, B 149(1), 194–198 (2010).
[Crossref]

Bellessa, J.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Benjamins, J.

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

Benoit, J.-M.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Bernal, M.-P.

Bessonov, V. O.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
[Crossref]

Blanchard, C.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Boriskin, V. N.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Boriskina, S. V.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Brand, S.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Bukauskas, V.

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators, B 181, 119–124 (2013).
[Crossref]

Buzavaite-Verteliene, E.

Chamberlain, J. M.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Chen, G.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Chen, K.-P.

Coy, E.

I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, and S. Jurga, “Study on Structural, Mechanical, and Optical Properties of Al2O3–TiO2 Nanolaminates Prepared by Atomic Layer Deposition,” J. Phys. Chem. C 119(35), 20591–20599 (2015).
[Crossref]

Danz, N.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Das, R.

R. Das, T. Srivastava, and R. Jha, “On the performance of Tamm-plasmon and surface-plasmon hybrid-mode refractive-index sensor in metallo-dielectric heterostructure configuration,” Sens. Actuators, B 206, 443–448 (2015).
[Crossref]

R. Das, T. Srivastava, and R. Jha, “Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures,” Opt. Lett. 39(4), 896 (2014).
[Crossref]

De Feijter, J. A.

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

Descrovi, E.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Dominici, L.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Egorov, A. Y.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Fainstein, A.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Fedyanin, A. A.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
[Crossref]

Fu, L.

J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, and L. Fu, “Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices,” Biosens. Bioelectron. 142, 111449 (2019).
[Crossref]

Fuertes, M. C.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

Greffet, J.-J.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Grigorenko, A. N.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic Surface Lattice Resonances: A Review of Properties and Applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

Grineviciute, L.

Grosjean, T.

Häyrinen, M.

Hertwig, A.

A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, and J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sens. Actuators, B 149(1), 194–198 (2010).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

Hong, C.-S.

Huang, S.-G.

Iatsunskyi, I.

I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, and S. Jurga, “Study on Structural, Mechanical, and Optical Properties of Al2O3–TiO2 Nanolaminates Prepared by Atomic Layer Deposition,” J. Phys. Chem. C 119(35), 20591–20599 (2015).
[Crossref]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Iorsh, I. V.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Jancelewicz, M.

I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, and S. Jurga, “Study on Structural, Mechanical, and Optical Properties of Al2O3–TiO2 Nanolaminates Prepared by Atomic Layer Deposition,” J. Phys. Chem. C 119(35), 20591–20599 (2015).
[Crossref]

Jeng, S.-C.

Jha, R.

R. Das, T. Srivastava, and R. Jha, “On the performance of Tamm-plasmon and surface-plasmon hybrid-mode refractive-index sensor in metallo-dielectric heterostructure configuration,” Sens. Actuators, B 206, 443–448 (2015).
[Crossref]

R. Das, T. Srivastava, and R. Jha, “Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures,” Opt. Lett. 39(4), 896 (2014).
[Crossref]

Jiang, Y.

Johansen, K.

Jurga, S.

I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, and S. Jurga, “Study on Structural, Mechanical, and Optical Properties of Al2O3–TiO2 Nanolaminates Prepared by Atomic Layer Deposition,” J. Phys. Chem. C 119(35), 20591–20599 (2015).
[Crossref]

Kabashin, A. V.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic Surface Lattice Resonances: A Review of Properties and Applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Kaliteevski, M. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Kausaite-Minkstimiene, A.

A. Kausaite-Minkstimiene, A. Ramanaviciene, J. Kirlyte, and A. Ramanavicius, “Comparative Study of Random and Oriented Antibody Immobilization Techniques on the Binding Capacity of Immunosensor,” Anal. Chem. 82(15), 6401–6408 (2010).
[Crossref]

Kavokin, A. V.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Kirlyte, J.

A. Kausaite-Minkstimiene, A. Ramanaviciene, J. Kirlyte, and A. Ramanavicius, “Comparative Study of Random and Oriented Antibody Immobilization Techniques on the Binding Capacity of Immunosensor,” Anal. Chem. 82(15), 6401–6408 (2010).
[Crossref]

Kovalevich, T.

Krause, A.

A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, and J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sens. Actuators, B 149(1), 194–198 (2010).
[Crossref]

Kravets, V. G.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic Surface Lattice Resonances: A Review of Properties and Applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

Krüger, H.

A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, and J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sens. Actuators, B 149(1), 194–198 (2010).
[Crossref]

Kuittinen, M.

Lemaitre, A.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Lheureux, G.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance - how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref]

Liu, G.

J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, and L. Fu, “Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices,” Biosens. Bioelectron. 142, 111449 (2019).
[Crossref]

Liu, Q.

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref]

Lohse, V.

A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, and J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sens. Actuators, B 149(1), 194–198 (2010).
[Crossref]

Lukose, R.

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance - how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref]

Machekhin, Y. P.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Makaraviciute, A.

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand–receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

A. Makaraviciute and A. Ramanaviciene, “Site-directed antibody immobilization techniques for immunosensors,” Biosens. Bioelectron. 50, 460–471 (2013).
[Crossref]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators, B 181, 119–124 (2013).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref]

Michelotti, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Mickiene, G.

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

Z. Balevicius, J. Talbot, L. Tamosaitis, I. Plikusiene, A. Stirke, G. Mickiene, S. Balevicius, A. Paulauskas, and A. Ramanavicius, “Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands,” Sens. Actuators, B 297, 126770 (2019).
[Crossref]

Mikhrin, V. S.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Munzert, P.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Nagaraj, V. J.

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref]

Ndao, A.

Negendank, D.

A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, and J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sens. Actuators, B 149(1), 194–198 (2010).
[Crossref]

Niaura, G.

Nikulin, A. A.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
[Crossref]

Nooke, A.

A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, and J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sens. Actuators, B 149(1), 194–198 (2010).
[Crossref]

Nowaczyk, G.

I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, and S. Jurga, “Study on Structural, Mechanical, and Optical Properties of Al2O3–TiO2 Nanolaminates Prepared by Atomic Layer Deposition,” J. Phys. Chem. C 119(35), 20591–20599 (2015).
[Crossref]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance - how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref]

Paulauskas, A.

Z. Balevicius, J. Talbot, L. Tamosaitis, I. Plikusiene, A. Stirke, G. Mickiene, S. Balevicius, A. Paulauskas, and A. Ramanavicius, “Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands,” Sens. Actuators, B 297, 126770 (2019).
[Crossref]

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

A. Paulauskas, S. Tumenas, A. Selskis, T. Tolenis, A. Valavicius, and Z. Balevicius, “Hybrid Tamm-surface plasmon polaritons mode for detection of mercury adsorption on 1D photonic crystal/gold nanostructures by total internal reflection ellipsometry,” Opt. Express 26(23), 30400 (2018).
[Crossref]

Plikusiene, I.

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

Z. Balevicius, J. Talbot, L. Tamosaitis, I. Plikusiene, A. Stirke, G. Mickiene, S. Balevicius, A. Paulauskas, and A. Ramanavicius, “Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands,” Sens. Actuators, B 297, 126770 (2019).
[Crossref]

Poksinski, M.

Qi, Q.

J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, and L. Fu, “Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices,” Biosens. Bioelectron. 142, 111449 (2019).
[Crossref]

Qian, Y.

J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, and L. Fu, “Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices,” Biosens. Bioelectron. 142, 111449 (2019).
[Crossref]

Ramanaviciene, A.

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand–receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

A. Makaraviciute and A. Ramanaviciene, “Site-directed antibody immobilization techniques for immunosensors,” Biosens. Bioelectron. 50, 460–471 (2013).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators, B 181, 119–124 (2013).
[Crossref]

A. Kausaite-Minkstimiene, A. Ramanaviciene, J. Kirlyte, and A. Ramanavicius, “Comparative Study of Random and Oriented Antibody Immobilization Techniques on the Binding Capacity of Immunosensor,” Anal. Chem. 82(15), 6401–6408 (2010).
[Crossref]

Ramanavicius, A.

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

Z. Balevicius, J. Talbot, L. Tamosaitis, I. Plikusiene, A. Stirke, G. Mickiene, S. Balevicius, A. Paulauskas, and A. Ramanavicius, “Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands,” Sens. Actuators, B 297, 126770 (2019).
[Crossref]

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M.-P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616 (2016).
[Crossref]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand–receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators, B 181, 119–124 (2013).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref]

A. Kausaite-Minkstimiene, A. Ramanaviciene, J. Kirlyte, and A. Ramanavicius, “Comparative Study of Random and Oriented Antibody Immobilization Techniques on the Binding Capacity of Immunosensor,” Anal. Chem. 82(15), 6401–6408 (2010).
[Crossref]

Ramsden, J. J.

V. Ball and J. J. Ramsden, “Buffer dependence of refractive index increments of protein solutions,” Biopolymers 46(7), 489–492 (1998).
[Crossref]

Rao, Y. J.

Roussey, M.

Sasin, M. E.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Sauvan, C.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Seisyan, R. P.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Selskis, A.

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

A. Paulauskas, S. Tumenas, A. Selskis, T. Tolenis, A. Valavicius, and Z. Balevicius, “Hybrid Tamm-surface plasmon polaritons mode for detection of mercury adsorption on 1D photonic crystal/gold nanostructures by total internal reflection ellipsometry,” Opt. Express 26(23), 30400 (2018).
[Crossref]

Semenov, A.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Senellart, P.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Shelykh, I. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Sinibaldi, A.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Soler Illia, G. J. A. A.

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Sonntag, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Srivastava, T.

R. Das, T. Srivastava, and R. Jha, “On the performance of Tamm-plasmon and surface-plasmon hybrid-mode refractive-index sensor in metallo-dielectric heterostructure configuration,” Sens. Actuators, B 206, 443–448 (2015).
[Crossref]

R. Das, T. Srivastava, and R. Jha, “Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures,” Opt. Lett. 39(4), 896 (2014).
[Crossref]

Steinbach, J.

A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, and J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sens. Actuators, B 149(1), 194–198 (2010).
[Crossref]

Stirke, A.

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

Z. Balevicius, J. Talbot, L. Tamosaitis, I. Plikusiene, A. Stirke, G. Mickiene, S. Balevicius, A. Paulauskas, and A. Ramanavicius, “Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands,” Sens. Actuators, B 297, 126770 (2019).
[Crossref]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand–receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

Suarez, M.

Symonds, C.

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

Talbot, J.

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

Z. Balevicius, J. Talbot, L. Tamosaitis, I. Plikusiene, A. Stirke, G. Mickiene, S. Balevicius, A. Paulauskas, and A. Ramanavicius, “Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands,” Sens. Actuators, B 297, 126770 (2019).
[Crossref]

Tamm, I.

I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Eur. Phys. J. A 76(11-12), 849–850 (1932).
[Crossref]

Tamosaitis, L.

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

Z. Balevicius, J. Talbot, L. Tamosaitis, I. Plikusiene, A. Stirke, G. Mickiene, S. Balevicius, A. Paulauskas, and A. Ramanavicius, “Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands,” Sens. Actuators, B 297, 126770 (2019).
[Crossref]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand–receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

Tao, N.

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref]

Tereshchenko, A.

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

Tolenis, T.

Tong, J. K.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Tsurimaki, Y.

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Tumenas, S.

A. Paulauskas, S. Tumenas, A. Selskis, T. Tolenis, A. Valavicius, and Z. Balevicius, “Hybrid Tamm-surface plasmon polaritons mode for detection of mercury adsorption on 1D photonic crystal/gold nanostructures by total internal reflection ellipsometry,” Opt. Express 26(23), 30400 (2018).
[Crossref]

T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Häyrinen, M. Roussey, M. Kuittinen, T. Grosjean, and M.-P. Bernal, “Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films,” Opt. Lett. 41(23), 5616 (2016).
[Crossref]

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand–receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators, B 181, 119–124 (2013).
[Crossref]

Vaicikauskas, V.

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

Valavicius, A.

Vasil’ev, A. P.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Veer, F. A.

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

Viter, R.

I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, and S. Jurga, “Study on Structural, Mechanical, and Optical Properties of Al2O3–TiO2 Nanolaminates Prepared by Atomic Layer Deposition,” J. Phys. Chem. C 119(35), 20591–20599 (2015).
[Crossref]

Wang, C.

J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, and L. Fu, “Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices,” Biosens. Bioelectron. 142, 111449 (2019).
[Crossref]

Wang, F.

Wang, S.

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref]

Wang, W.

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref]

Wang, Y.

J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, and L. Fu, “Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices,” Biosens. Bioelectron. 142, 111449 (2019).
[Crossref]

Wu, J.

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref]

Yang, Y.

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref]

Yariv, A.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

Yeh, P.

Zaleski, K.

I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, and S. Jurga, “Study on Structural, Mechanical, and Optical Properties of Al2O3–TiO2 Nanolaminates Prepared by Atomic Layer Deposition,” J. Phys. Chem. C 119(35), 20591–20599 (2015).
[Crossref]

Zhang, W. L.

Zhou, J.

J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, and L. Fu, “Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices,” Biosens. Bioelectron. 142, 111449 (2019).
[Crossref]

Zvirblis, G.

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

ACS Photonics (3)

S. Azzini, G. Lheureux, C. Symonds, J.-M. Benoit, P. Senellart, A. Lemaitre, J.-J. Greffet, C. Blanchard, C. Sauvan, and J. Bellessa, “Generation and Spatial Control of Hybrid Tamm Plasmon/Surface Plasmon Modes,” ACS Photonics 3(10), 1776–1781 (2016).
[Crossref]

B. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm Plasmon Resonance in Mesoporous Multilayers: Toward a Sensing Application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Y. Tsurimaki, J. K. Tong, V. N. Boriskin, A. Semenov, M. I. Ayzatsky, Y. P. Machekhin, G. Chen, and S. V. Boriskina, “Topological Engineering of Interfacial Optical Tamm States for Highly Sensitive Near-Singular-Phase Optical Detection,” ACS Photonics 5(3), 929–938 (2018).
[Crossref]

Anal. Chem. (1)

A. Kausaite-Minkstimiene, A. Ramanaviciene, J. Kirlyte, and A. Ramanavicius, “Comparative Study of Random and Oriented Antibody Immobilization Techniques on the Binding Capacity of Immunosensor,” Anal. Chem. 82(15), 6401–6408 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103(6), 061112 (2013).
[Crossref]

Appl. Surf. Sci. (1)

A. Paulauskas, A. Selskis, V. Bukauskas, V. Vaicikauskas, A. Ramanavicius, and Z. Balevicius, “Real time study of amalgam formation and mercury adsorption on thin gold film by total internal reflection ellipsometry,” Appl. Surf. Sci. 427, 298–303 (2018).
[Crossref]

Biopolymers (2)

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17(7), 1759–1772 (1978).
[Crossref]

V. Ball and J. J. Ramsden, “Buffer dependence of refractive index increments of protein solutions,” Biopolymers 46(7), 489–492 (1998).
[Crossref]

Biosens. Bioelectron. (5)

I. Plikusiene, Z. Balevicius, A. Ramanaviciene, J. Talbot, G. Mickiene, S. Balevicius, A. Stirke, A. Tereshchenko, L. Tamosaitis, G. Zvirblis, and A. Ramanavicius, “Evaluation of affinity sensor response kinetics towards dimeric ligands linked with spacers of different rigidity: Immobilized recombinant granulocyte colony-stimulating factor based synthetic receptor binding with genetically engineered dimeric analyte derivatives,” Biosens. Bioelectron. 156, 112112 (2020).
[Crossref]

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance - how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref]

J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, and L. Fu, “Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices,” Biosens. Bioelectron. 142, 111449 (2019).
[Crossref]

A. Makaraviciute and A. Ramanaviciene, “Site-directed antibody immobilization techniques for immunosensors,” Biosens. Bioelectron. 50, 460–471 (2013).
[Crossref]

I. Baleviciute, Z. Balevicius, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “Study of antibody/antigen binding kinetics by total internal reflection ellipsometry,” Biosens. Bioelectron. 39(1), 170–176 (2013).
[Crossref]

Chem. Rev. (1)

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic Surface Lattice Resonances: A Review of Properties and Applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

Eur. Phys. J. A (1)

I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Eur. Phys. J. A 76(11-12), 849–850 (1932).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, and S. Jurga, “Study on Structural, Mechanical, and Optical Properties of Al2O3–TiO2 Nanolaminates Prepared by Atomic Layer Deposition,” J. Phys. Chem. C 119(35), 20591–20599 (2015).
[Crossref]

Materials (1)

Z. Balevicius and A. Baskys, “Optical Dispersions of Bloch Surface Waves and Surface Plasmon Polaritons: Towards Advanced Biosensors,” Materials 12(19), 3147 (2019).
[Crossref]

Nat. Chem. (1)

W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, “Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells,” Nat. Chem. 4(10), 846–853 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref]

Sens. Actuators, B (6)

A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Krüger, V. Lohse, D. Negendank, and J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sens. Actuators, B 149(1), 194–198 (2010).
[Crossref]

Z. Balevicius, A. Makaraviciute, G.-J. Babonas, S. Tumenas, V. Bukauskas, A. Ramanaviciene, and A. Ramanavicius, “Study of optical anisotropy in thin molecular layers by total internal reflection ellipsometry,” Sens. Actuators, B 181, 119–124 (2013).
[Crossref]

R. Das, T. Srivastava, and R. Jha, “On the performance of Tamm-plasmon and surface-plasmon hybrid-mode refractive-index sensor in metallo-dielectric heterostructure configuration,” Sens. Actuators, B 206, 443–448 (2015).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1-2), 3–15 (1999).
[Crossref]

Z. Balevicius, J. Talbot, L. Tamosaitis, I. Plikusiene, A. Stirke, G. Mickiene, S. Balevicius, A. Paulauskas, and A. Ramanavicius, “Modelling of immunosensor response: the evaluation of binding kinetics between an immobilized receptor and structurally-different genetically engineered ligands,” Sens. Actuators, B 297, 126770 (2019).
[Crossref]

Superlattices Microstruct. (1)

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Thin Solid Films (1)

Z. Balevicius, I. Baleviciute, S. Tumenas, L. Tamosaitis, A. Stirke, A. Makaraviciute, A. Ramanaviciene, and A. Ramanavicius, “In situ study of ligand–receptor interaction by total internal reflection ellipsometry,” Thin Solid Films 571, 744–748 (2014).
[Crossref]

Other (1)

H. Arwin, “TIRE and SPR-Enhanced SE for Adsorption Processes,” in Ellipsometry of Functional Organic Surfaces and Films, K. Hinrichs and K.-J. Eichhorn, eds. (SpringerBerlin Heidelberg, 2014), 52, pp. 249–264.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Total internal reflection geometry schematic of the Au (left) and PC/Au (right) samples with a self-assembling monolayer (11-MUA) and the GCSF-R or BSA protein in PBS solution.
Fig. 2.
Fig. 2. Spectra of ellipsometric parameters (a) - Ψ (λ) and (b) - Δ (λ) for single SPR and for the hybrid TPP-SPP mode (c) - Ψ (λ) and (d) - Δ (λ), curve 1 – base line registered in PBS (pH 7.4), curve 2 – after immobilization of GCSF-R protein for 45 min.
Fig. 3.
Fig. 3. Comparison of the numerically calculated dispersion relations of the hybrid TPP-SPP mode (a) generated in the PC (TiO2/SiO2 (120 nm/200 nm))/Au (40 nm) structure and for the single SPR mode (b) in a Cr/Au (50 nm) structure.
Fig. 4.
Fig. 4. Spectra of ellipsometric parameters (a) - Ψ (λ) and (b) - Δ (λ) for single SPR and for the hybrid TPP-SPP mode (c) - Ψ (λ) and (d) - Δ (λ), curve 1 – base line registered in PBS (pH 7.4), curve 2 – after incubation in 100 µg/mL of BSA for 45 min.

Tables (1)

Tables Icon

Table 1. Calculated thickness d, refractive index nprot, surface mass Γ and experimental values of the ellipsometric Ψ and Δ parameters of the BSA and GCSF-R layers formed on the thin gold layers of samples Cr/Au and PC/Au.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ = d ( n n b u f f e r ) d n / d C × 100.