Abstract

We have developed a diagnostic that uses time-domain spectroscopy to measure transient infrared absorption spectra in gases. Using a time-stretch Fourier transform approach, we can determine pressure, temperature, and gas concentrations with sub-microsecond time resolution for over two milliseconds. We demonstrate high-resolution (0.015 nm), time-resolved spectral measurements in an acetylene-oxygen gas mixture undergoing combustion. Within a 5 µs period during the reaction, the acetylene line intensities decrease substantially, and new spectra appear that are consistent with the hydroxyl (OH) radical, a common by-product in the combustion, deflagration, and detonation of fuels and explosives. Post-reaction pressures and temperatures were estimated from the OH spectra. The technique measures spectra from 1520 to 1620 nm using fiber optics, photodetectors, and digitizers. No cameras or spectrometers are required.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Winey and Y. M. Gupta, “UV-visible absorption spectroscopy to examine shock-induced decomposition in neat nitromethane,” J. Phys. Chem. A 101(49), 9333–9340 (1997).
    [Crossref]
  2. A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
    [Crossref]
  3. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
    [Crossref]
  4. P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time domain optical sensing,” Proc. 1999 IEEE LEOS Annual Meeting (San Francisco)1, 381–382 (1999).
    [Crossref]
  5. H. Xia and C. Zhang, “Ultrafast and Doppler-free femtosecond optical ranging based on dispersive frequency-modulated interferometry,” Opt. Express 18(5), 4118–4129 (2010).
    [Crossref]
  6. B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
    [Crossref]
  7. A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
    [Crossref]
  8. J. G. Mance, B. M. La Lone, D. H. Dolan, S. L. Payne, D. L. Ramsey, and L. R. Veeser, “Time-stretched photonic Doppler velocimetry,” Opt. Express 27(18), 25022–25030 (2019).
    [Crossref]
  9. T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
    [Crossref]
  10. G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
    [Crossref]
  11. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
    [Crossref]
  12. J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
    [Crossref]
  13. Z. Zhang, H. Xia, S. Yu, L. Zhao, T. Wei, and M. Li, “Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection,” Appl. Phys. Lett. 93(13), 131109 (2008).
    [Crossref]
  14. T. Werblinski, S. R. Engel, R. Engelbrecht, L. Zigan, and S. Will, “Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications,” Opt. Express 21(11), 13656–13667 (2013).
    [Crossref]
  15. F. Saltarelli, V. Kumar, D. Viola, F. Crisafi, F. Preda, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher,” Opt. Express 24(19), 21264–21275 (2016).
    [Crossref]
  16. J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
    [Crossref]
  17. J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion Measurement in Optical Fibers Using Supercontinuum Pulses,” J. Lightwave Technol. 25(3), 820–824 (2007).
    [Crossref]
  18. K. Goda, K. Tsia, and B. Jalali, “Amplified Dispersive Fourier-Transform Imaging for Ultrafast Displacement Sensing and Barcode Reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
    [Crossref]
  19. P. T. S. DeVore, B. W. Buckley, M. Asghari, D. R. Solli, and B. Jalali, “Coherent Time-Stretch Transform for Near-Field Spectroscopy,” IEEE Photonics J. 6(2), 1–7 (2014).
    [Crossref]
  20. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
    [Crossref]
  21. C. Dorrer, “Chromatic dispersion characterization by direct instantaneous frequency measurement,” Opt. Lett. 29(2), 204–206 (2004).
    [Crossref]
  22. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref]
  23. A. M. Khokhlov, E. S. Oran, and G. O. Thomas, “Numerical simulation of deflagration-to-detonation transition: the role of shock–flame interactions in turbulent flames,” Combust. Flame 117(1-2), 323–339 (1999).
    [Crossref]
  24. K. D. Rein, S. Roy, S. T. Sanders, A. W. Caswell, F. R. Schauer, and J. R. Gord, “Multispecies absorption spectroscopy of detonation events at 100  kHz using a fiber-coupled, time-division-multiplexed quantum-cascade-laser system,” Appl. Opt. 55(23), 6256–6262 (2016).
    [Crossref]
  25. G. Ciccarelli and S. Dorofeev, “Flame acceleration and transition to detonation in ducts,” Prog. Energy Combust. Sci. 34(4), 499–550 (2008).
    [Crossref]
  26. T. R. Meyer, S. Roy, V. M. Belovich, E. Corporan, and J. R. Gord, “Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames,” Appl. Opt. 44(3), 445–454 (2005).
    [Crossref]
  27. C. S. Goldenstein, I. A. Schultz, R. M. Spearrin, J. B. Jefferies, and R. K. Hanson, “Scanned-wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in a hydrocarbon-fueled scramjet combustor,” Appl. Phys. B 116(3), 717–727 (2014).
    [Crossref]
  28. G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.
  29. We tested several commercial modulators before finding one with a free spectral range suitable to pulse pick the 100 nm wide laser pulse.
  30. DCM Lite FC200 from Telecom Engineering USA, Inc., 200 km Dispersion Compensation Module using non-channelized dispersion compensating fiber for compensating G652 fiber.
  31. C. S. Goldenstein, V. A. Miller, R. M. Spearrin, and C. L. Strand, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transfer 200, 249–257 (2017).
    [Crossref]

2019 (1)

2017 (2)

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

C. S. Goldenstein, V. A. Miller, R. M. Spearrin, and C. L. Strand, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transfer 200, 249–257 (2017).
[Crossref]

2016 (3)

2015 (1)

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

2014 (2)

C. S. Goldenstein, I. A. Schultz, R. M. Spearrin, J. B. Jefferies, and R. K. Hanson, “Scanned-wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in a hydrocarbon-fueled scramjet combustor,” Appl. Phys. B 116(3), 717–727 (2014).
[Crossref]

P. T. S. DeVore, B. W. Buckley, M. Asghari, D. R. Solli, and B. Jalali, “Coherent Time-Stretch Transform for Near-Field Spectroscopy,” IEEE Photonics J. 6(2), 1–7 (2014).
[Crossref]

2013 (2)

2011 (1)

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

2010 (1)

2008 (5)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[Crossref]

Z. Zhang, H. Xia, S. Yu, L. Zhao, T. Wei, and M. Li, “Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

K. Goda, K. Tsia, and B. Jalali, “Amplified Dispersive Fourier-Transform Imaging for Ultrafast Displacement Sensing and Barcode Reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

G. Ciccarelli and S. Dorofeev, “Flame acceleration and transition to detonation in ducts,” Prog. Energy Combust. Sci. 34(4), 499–550 (2008).
[Crossref]

2007 (4)

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion Measurement in Optical Fibers Using Supercontinuum Pulses,” J. Lightwave Technol. 25(3), 820–824 (2007).
[Crossref]

2005 (1)

2004 (2)

C. Dorrer, “Chromatic dispersion characterization by direct instantaneous frequency measurement,” Opt. Lett. 29(2), 204–206 (2004).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

1999 (1)

A. M. Khokhlov, E. S. Oran, and G. O. Thomas, “Numerical simulation of deflagration-to-detonation transition: the role of shock–flame interactions in turbulent flames,” Combust. Flame 117(1-2), 323–339 (1999).
[Crossref]

1997 (1)

J. M. Winey and Y. M. Gupta, “UV-visible absorption spectroscopy to examine shock-induced decomposition in neat nitromethane,” J. Phys. Chem. A 101(49), 9333–9340 (1997).
[Crossref]

Alden, C. B.

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

Asghari, M.

P. T. S. DeVore, B. W. Buckley, M. Asghari, D. R. Solli, and B. Jalali, “Coherent Time-Stretch Transform for Near-Field Spectroscopy,” IEEE Photonics J. 6(2), 1–7 (2014).
[Crossref]

Ayazi, A.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

Barland, S.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Baumann, E.

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

Belovich, V. M.

Ben Salem, A.

Bhushan, A. S.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time domain optical sensing,” Proc. 1999 IEEE LEOS Annual Meeting (San Francisco)1, 381–382 (1999).
[Crossref]

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Broderick, N.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Buckley, B. W.

P. T. S. DeVore, B. W. Buckley, M. Asghari, D. R. Solli, and B. Jalali, “Coherent Time-Stretch Transform for Near-Field Spectroscopy,” IEEE Photonics J. 6(2), 1–7 (2014).
[Crossref]

Caswell, A. W.

Cerullo, G.

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[Crossref]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

Churkin, D. V.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Ciccarelli, G.

G. Ciccarelli and S. Dorofeev, “Flame acceleration and transition to detonation in ducts,” Prog. Energy Combust. Sci. 34(4), 499–550 (2008).
[Crossref]

Coburn, S. C.

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

Coddington, I.

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

Coppinger, F.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time domain optical sensing,” Proc. 1999 IEEE LEOS Annual Meeting (San Francisco)1, 381–382 (1999).
[Crossref]

Corporan, E.

Cossel, K. C.

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

Crisafi, F.

DeVore, P. T. S.

P. T. S. DeVore, B. W. Buckley, M. Asghari, D. R. Solli, and B. Jalali, “Coherent Time-Stretch Transform for Near-Field Spectroscopy,” IEEE Photonics J. 6(2), 1–7 (2014).
[Crossref]

Dias, F.

Dolan, D. H.

Dorofeev, S.

G. Ciccarelli and S. Dorofeev, “Flame acceleration and transition to detonation in ducts,” Prog. Energy Combust. Sci. 34(4), 499–550 (2008).
[Crossref]

Dorrer, C.

Dudley, J. M.

Engel, S. R.

Engelbrecht, R.

Fard, A.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

Genty, G.

Giorgetta, F.

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

Goda, K.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

K. Goda, K. Tsia, and B. Jalali, “Amplified Dispersive Fourier-Transform Imaging for Ultrafast Displacement Sensing and Barcode Reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Godin, T.

Goldenstein, C. S.

C. S. Goldenstein, V. A. Miller, R. M. Spearrin, and C. L. Strand, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transfer 200, 249–257 (2017).
[Crossref]

C. S. Goldenstein, I. A. Schultz, R. M. Spearrin, J. B. Jefferies, and R. K. Hanson, “Scanned-wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in a hydrocarbon-fueled scramjet combustor,” Appl. Phys. B 116(3), 717–727 (2014).
[Crossref]

Gord, J. R.

Gupta, Y. M.

J. M. Winey and Y. M. Gupta, “UV-visible absorption spectroscopy to examine shock-induced decomposition in neat nitromethane,” J. Phys. Chem. A 101(49), 9333–9340 (1997).
[Crossref]

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

Hanson, R. K.

C. S. Goldenstein, I. A. Schultz, R. M. Spearrin, J. B. Jefferies, and R. K. Hanson, “Scanned-wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in a hydrocarbon-fueled scramjet combustor,” Appl. Phys. B 116(3), 717–727 (2014).
[Crossref]

Herink, G.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Hult, J.

Jalali, B.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

P. T. S. DeVore, B. W. Buckley, M. Asghari, D. R. Solli, and B. Jalali, “Coherent Time-Stretch Transform for Near-Field Spectroscopy,” IEEE Photonics J. 6(2), 1–7 (2014).
[Crossref]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[Crossref]

K. Goda, K. Tsia, and B. Jalali, “Amplified Dispersive Fourier-Transform Imaging for Ultrafast Displacement Sensing and Barcode Reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time domain optical sensing,” Proc. 1999 IEEE LEOS Annual Meeting (San Francisco)1, 381–382 (1999).
[Crossref]

Jefferies, J. B.

C. S. Goldenstein, I. A. Schultz, R. M. Spearrin, J. B. Jefferies, and R. K. Hanson, “Scanned-wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in a hydrocarbon-fueled scramjet combustor,” Appl. Phys. B 116(3), 717–727 (2014).
[Crossref]

Kaminski, C. F.

Kelkar, P. V.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time domain optical sensing,” Proc. 1999 IEEE LEOS Annual Meeting (San Francisco)1, 381–382 (1999).
[Crossref]

Khokhlov, A. M.

A. M. Khokhlov, E. S. Oran, and G. O. Thomas, “Numerical simulation of deflagration-to-detonation transition: the role of shock–flame interactions in turbulent flames,” Combust. Flame 117(1-2), 323–339 (1999).
[Crossref]

Kim, S. H.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref]

Kudlinski, A.

Kumar, V.

La Lone, B. M.

J. G. Mance, B. M. La Lone, D. H. Dolan, S. L. Payne, D. L. Ramsey, and L. R. Veeser, “Time-stretched photonic Doppler velocimetry,” Opt. Express 27(18), 25022–25030 (2019).
[Crossref]

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Larger, L.

Li, M.

Z. Zhang, H. Xia, S. Yu, L. Zhao, T. Wei, and M. Li, “Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Mahjoubfar, A.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

Mance, J. G.

Marshall, B. R.

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Meyer, T. R.

Miller, E. K.

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Miller, V. A.

C. S. Goldenstein, V. A. Miller, R. M. Spearrin, and C. L. Strand, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transfer 200, 249–257 (2017).
[Crossref]

Mussot, A.

Newbury, N. R.

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

Oran, E. S.

A. M. Khokhlov, E. S. Oran, and G. O. Thomas, “Numerical simulation of deflagration-to-detonation transition: the role of shock–flame interactions in turbulent flames,” Combust. Flame 117(1-2), 323–339 (1999).
[Crossref]

Payne, S. L.

Polli, D.

Preda, F.

Ramsey, D. L.

Rein, K. D.

Rieker, G. B.

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

Ropers, C.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref]

Roy, S.

Saltarelli, F.

Sanders, S. T.

Schauer, F. R.

Schroeder, P. J.

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

Schultz, I. A.

C. S. Goldenstein, I. A. Schultz, R. M. Spearrin, J. B. Jefferies, and R. K. Hanson, “Scanned-wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in a hydrocarbon-fueled scramjet combustor,” Appl. Phys. B 116(3), 717–727 (2014).
[Crossref]

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Solli, D. R.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

P. T. S. DeVore, B. W. Buckley, M. Asghari, D. R. Solli, and B. Jalali, “Coherent Time-Stretch Transform for Near-Field Spectroscopy,” IEEE Photonics J. 6(2), 1–7 (2014).
[Crossref]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref]

Spearrin, R. M.

C. S. Goldenstein, V. A. Miller, R. M. Spearrin, and C. L. Strand, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transfer 200, 249–257 (2017).
[Crossref]

C. S. Goldenstein, I. A. Schultz, R. M. Spearrin, J. B. Jefferies, and R. K. Hanson, “Scanned-wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in a hydrocarbon-fueled scramjet combustor,” Appl. Phys. B 116(3), 717–727 (2014).
[Crossref]

Stevens, G. D.

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Strand, C. L.

C. S. Goldenstein, V. A. Miller, R. M. Spearrin, and C. L. Strand, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transfer 200, 249–257 (2017).
[Crossref]

Swann, W.

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

Sylvestre, T.

Thomas, G. O.

A. M. Khokhlov, E. S. Oran, and G. O. Thomas, “Numerical simulation of deflagration-to-detonation transition: the role of shock–flame interactions in turbulent flames,” Combust. Flame 117(1-2), 323–339 (1999).
[Crossref]

Truong, G.

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

Tsia, K.

K. Goda, K. Tsia, and B. Jalali, “Amplified Dispersive Fourier-Transform Imaging for Ultrafast Displacement Sensing and Barcode Reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Turitsyn, S. K.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Turley, W. D.

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Veeser, L. R.

J. G. Mance, B. M. La Lone, D. H. Dolan, S. L. Payne, D. L. Ramsey, and L. R. Veeser, “Time-stretched photonic Doppler velocimetry,” Opt. Express 27(18), 25022–25030 (2019).
[Crossref]

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Viola, D.

Watt, R. S.

Wei, T.

Z. Zhang, H. Xia, S. Yu, L. Zhao, T. Wei, and M. Li, “Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Werblinski, T.

Wetzel, B.

Will, S.

Winey, J. M.

J. M. Winey and Y. M. Gupta, “UV-visible absorption spectroscopy to examine shock-induced decomposition in neat nitromethane,” J. Phys. Chem. A 101(49), 9333–9340 (1997).
[Crossref]

Wright, R. J.

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

Xia, H.

H. Xia and C. Zhang, “Ultrafast and Doppler-free femtosecond optical ranging based on dispersive frequency-modulated interferometry,” Opt. Express 18(5), 4118–4129 (2010).
[Crossref]

Z. Zhang, H. Xia, S. Yu, L. Zhao, T. Wei, and M. Li, “Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Yu, S.

Z. Zhang, H. Xia, S. Yu, L. Zhao, T. Wei, and M. Li, “Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Zghal, M.

Zhang, C.

Zhang, Z.

Z. Zhang, H. Xia, S. Yu, L. Zhao, T. Wei, and M. Li, “Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Zhao, L.

Z. Zhang, H. Xia, S. Yu, L. Zhao, T. Wei, and M. Li, “Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Zigan, L.

Appl. Opt. (2)

Appl. Phys. B (1)

C. S. Goldenstein, I. A. Schultz, R. M. Spearrin, J. B. Jefferies, and R. K. Hanson, “Scanned-wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in a hydrocarbon-fueled scramjet combustor,” Appl. Phys. B 116(3), 717–727 (2014).
[Crossref]

Appl. Phys. Lett. (5)

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[Crossref]

Z. Zhang, H. Xia, S. Yu, L. Zhao, T. Wei, and M. Li, “Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

K. Goda, K. Tsia, and B. Jalali, “Amplified Dispersive Fourier-Transform Imaging for Ultrafast Displacement Sensing and Barcode Reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[Crossref]

Combust. Flame (1)

A. M. Khokhlov, E. S. Oran, and G. O. Thomas, “Numerical simulation of deflagration-to-detonation transition: the role of shock–flame interactions in turbulent flames,” Combust. Flame 117(1-2), 323–339 (1999).
[Crossref]

IEEE Photonics J. (1)

P. T. S. DeVore, B. W. Buckley, M. Asghari, D. R. Solli, and B. Jalali, “Coherent Time-Stretch Transform for Near-Field Spectroscopy,” IEEE Photonics J. 6(2), 1–7 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Chem. A (1)

J. M. Winey and Y. M. Gupta, “UV-visible absorption spectroscopy to examine shock-induced decomposition in neat nitromethane,” J. Phys. Chem. A 101(49), 9333–9340 (1997).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

C. S. Goldenstein, V. A. Miller, R. M. Spearrin, and C. L. Strand, “SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases,” J. Quant. Spectrosc. Radiat. Transfer 200, 249–257 (2017).
[Crossref]

Nat. Photonics (3)

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Prog. Energy Combust. Sci. (1)

G. Ciccarelli and S. Dorofeev, “Flame acceleration and transition to detonation in ducts,” Prog. Energy Combust. Sci. 34(4), 499–550 (2008).
[Crossref]

Rev. Sci. Instrum. (1)

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Other (4)

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time domain optical sensing,” Proc. 1999 IEEE LEOS Annual Meeting (San Francisco)1, 381–382 (1999).
[Crossref]

G. B. Rieker, P. J. Schroeder, S. C. Coburn, C. B. Alden, R. J. Wright, K. C. Cossel, G. Truong, E. Baumann, F. Giorgetta, W. Swann, I. Coddington, and N. R. Newbury, “Combustion Diagnostics and Chemical Sensing with Frequency Comb Lasers,” in Imaging and Applied Optics 2016, OSA technical Digest (online) (Optical Society of America, 2016), paper LW2G.1.

We tested several commercial modulators before finding one with a free spectral range suitable to pulse pick the 100 nm wide laser pulse.

DCM Lite FC200 from Telecom Engineering USA, Inc., 200 km Dispersion Compensation Module using non-channelized dispersion compensating fiber for compensating G652 fiber.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup for time-domain spectroscopic measurements of temperature, pressure, and composition of gases during the combustion of C2H2 in O2. A mode-locked 1550 nm laser is chirped and Raman amplified in highly dispersive fiber before passing through the combustion cell and being recorded by a photodiode. WDM is a wavelength division multiplexer.
Fig. 2.
Fig. 2. Static time-domain spectral measurements in a mixture of CO2 and C2H2 gases. Spectra at wavelengths longer than 1560 nm are from CO2; spectra at wavelengths shorter than 1550 nm are from C2H2. (a) Transmission through the cell shows absorption lines (blue) superimposed on the pulse envelope (red). (b) (1 − transmission) with the pulse envelope subtracted. (c) Spectrum is expanded to show a magnified view of one of the rotational branches in CO2. (d) A further magnified view shows a single rotational line.
Fig. 3.
Fig. 3. Dynamic combustion of 29% C2H2 in O2. Absorption spectrum in the gas cell at four different times: (a) before any reactions have occurred (t < 136 µs), (b) 137 µs after the spark, (c) 138 µs after the spark, and (d) 139 µs after the spark. Beginning at ambient temperature and pressure, the transmission spectrum is largely unchanged for the first 136 µs after the spark. At 137 µs the transmission increases as the C2H2 concentration begins to decrease. Examination of individual peaks shows no broadening or shifts, indicating that the temperature and pressure remain relatively unchanged. At 138 µs the C2H2 concentration is further reduced, and OH lines begin to emerge. Complete reduction of C2H2 near room temperature occurs over a period of 2 µs, and hot, high-pressure OH radical lines appear. By 139 µs all of the C2H2 has disappeared, and only OH lines are present. The OH spectral features remain present and stable for the remaining 1.5 ms of the record.
Fig. 4.
Fig. 4. (a) Full recorded spectrum of C2H2 + O2 detonation products (blue) and theoretical OH radical spectrum (red) at temperature 4000 K, pressure 40 atm, and concentration 3.1%. The off-scale peaks near 1542 and 1551 nm are from notch filters used to help with the wavelength-time calibration, and thus there are no experimental data in these two ranges. (b) Theoretical spectra at 3000 K (green), 4000 K (red), and 5000 K (purple) overlaid on the recorded data (blue) over a region of the spectrum with the highest signal-to-noise ratio, illustrating that the temperature lies within this range. The same approach was used to estimate the pressure to be 40 ± 10 atm.
Fig. 5.
Fig. 5. Spectrograms of C2H2 + O2 mixture showing combustion. The color represents optical transmission through the cell: high transmission is represented by yellow and low transmission by blue. White areas are where spectral notch filters prevented the accumulation of spectral data. Horizontal lines are absorption lines in the spectrum. The short horizontal blue lines at early times between 1520 and 1540 nm are from absorption in C2H2, and they disappear after detonation. The weaker horizontal lines that show up after the C2H2 disappears are predominately from the OH radical. (a) Molar equivalence ratio of 0.625 (lean mixture). OH is present after the C2H2 disappears; however, the combustion process takes the longest to complete compared to the rich and ideal mixtures. (b) Molar equivalence ratio of 2.5 (rich mixture). No detectable OH lines after C2H2 combustion probably indicates a different reaction pathway for this case. (c) Molar equivalence ratio of 1 (ideal mixture). Earlier disappearance of C2H2 lines shows combustion finishes earlier, followed by the appearance of strong OH lines.
Fig. 6.
Fig. 6. Optical absorption of OH (RED) and C2H2 (BLUE) for 3 different equivalence ratios (a) φ = 0.625 (b) φ = 1 (c) φ = 2.5. A thumbnail with an expanded view is shown for the φ = 1 case illustrating how the process of OH forming and C2H2 disappearing was time-resolved over the course of a few microseconds. Each point represents a single spectral measurement. Smoothed curves (bold) are plotted on top of the shot data for clarity.
Fig. 7.
Fig. 7. Temperature-time profile of C2H2 in 3 shots with different equivalence ratios. The plots end when the C2H2 is depleted. Smoothed curves (bold) are plotted on top of the shot data. Temperature is calculated from the ratio of 3 peaks in the C2H2 spectrum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t = A 2 ( λ λ 0 ) + A 3 ( λ λ 0 ) 2