Abstract

Many technologies in quantum photonics require cryogenic conditions to operate. However, the underlying platform behind active components such as switches, modulators and phase shifters must be compatible with these operating conditions. To address this, we demonstrate an electro-optic polarisation converter for 1550 nm light at 0.8 K in titanium in-diffused lithium niobate waveguides. To do so, we exploit the electro-optic properties of lithium niobate to convert between orthogonal polarisation modes with a fiber-to-fiber transmission >43%. We achieve a modulation depth of 23.6±3.3 dB and a conversion voltage-length product of 28.8 V cm. This enables the combination of cryogenic photonics and active components on a single integration platform.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  2. J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
    [Crossref]
  3. B. A. Korzh, Q.-y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, and E. A. Bersin, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” (2018).
  4. N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Express 22(9), 10487 (2014).
    [Crossref]
  5. M. Gehl, C. Long, D. Trotter, A. Starbuck, A. Pomerene, J. B. Wright, S. Melgaard, J. Siirola, A. L. Lentine, and C. DeRose, “Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures,” Optica 4(3), 374 (2017).
    [Crossref]
  6. J. D. Morse, K. G. McCammon, C. F. McConaghy, D. A. Masquelier, H. E. Garrett, and M. E. Lowry, “Characterization of lithium niobate electro-optic modulators at cryogenic temperatures,” Design, Simulation, and Fabrication of Optoelectronic Devices and Circuits, vol. 2150M. N. Armenise, ed., International Society for Optics and Photonics (SPIE, 1994283–291.
  7. C. McConaghy, M. Lowry, R. A. Becker, and B. E. Kincaid, “The performance of pigtailed annealed proton exchange LiNbO3 modulators at cryogenic temperatures,” IEEE Photonics Technol. Lett. 8(11), 1480–1482 (1996).
    [Crossref]
  8. C. Herzog, G. Poberaj, and P. Günter, “Electro-optic behavior of lithium niobate at cryogenic temperatures,” Opt. Commun. 281(4), 793–796 (2008).
    [Crossref]
  9. A. Youssefi, I. Shomroni, Y. J. Joshi, N. Bernier, A. Lukashchuk, P. Uhrich, L. Qiu, and T. J. Kippenberg, “Cryogenic electro-optic interconnect for superconducting devices,” arXiv:2004.04705 (2020).
  10. F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).
  11. R. C. Alferness, “Efficient waveguide electro-optic TE TM mode converter/wavelength filter,” Appl. Phys. Lett. 36(7), 513–515 (1980).
    [Crossref]
  12. S. Thaniyavarn, “Wavelength independent, optical damage immune Z-propagation LiNbO 3 waveguide polarization converter,” Appl. Phys. Lett. 47(7), 674–677 (1985).
    [Crossref]
  13. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
    [Crossref]
  14. C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express 15(5), 2548 (2007).
    [Crossref]
  15. N. Moeini, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Electro-Optic Polarization Controller With Ti : PPLN Channel Waveguides,” In Proc. European Conf. on Integrated Optics ECIO 2010, 3–4 (2010).
  16. S. B. T. Izuhara, R. Roth, R. M. OsgoodJr, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
    [Crossref]
  17. T. Ding, Y. Zheng, and X. Chen, “On-Chip Solc-Type Polarization Control and Wavelength Filtering Utilizing Periodically Poled Lithium Niobate on Insulator Ridge Waveguide,” J. Lightwave Technol. 37(4), 1296–1300 (2019).
    [Crossref]
  18. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14(5), 273–284 (2020).
    [Crossref]
  19. A. Yariv, “Coupled-Mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [Crossref]
  20. Abrahams, Properties of Lithium Niobate (INSPEC The Institution of Electrical Engineering, 1989).
  21. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
    [Crossref]
  22. P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
    [Crossref]
  23. R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Tech. 30(8), 1121–1137 (1982).
    [Crossref]
  24. R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. 36(3), 143–147 (1985).
    [Crossref]
  25. Additional media available at https://physik.uni-paderborn.de/bartley/videos/papervideos/thiele2020 .

2020 (1)

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14(5), 273–284 (2020).
[Crossref]

2019 (2)

T. Ding, Y. Zheng, and X. Chen, “On-Chip Solc-Type Polarization Control and Wavelength Filtering Utilizing Periodically Poled Lithium Niobate on Insulator Ridge Waveguide,” J. Lightwave Technol. 37(4), 1296–1300 (2019).
[Crossref]

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

2017 (2)

M. Gehl, C. Long, D. Trotter, A. Starbuck, A. Pomerene, J. B. Wright, S. Melgaard, J. Siirola, A. L. Lentine, and C. DeRose, “Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures,” Optica 4(3), 374 (2017).
[Crossref]

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

2014 (1)

2013 (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

2008 (2)

C. Herzog, G. Poberaj, and P. Günter, “Electro-optic behavior of lithium niobate at cryogenic temperatures,” Opt. Commun. 281(4), 793–796 (2008).
[Crossref]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

2007 (1)

2003 (1)

S. B. T. Izuhara, R. Roth, R. M. OsgoodJr, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[Crossref]

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

1996 (1)

C. McConaghy, M. Lowry, R. A. Becker, and B. E. Kincaid, “The performance of pigtailed annealed proton exchange LiNbO3 modulators at cryogenic temperatures,” IEEE Photonics Technol. Lett. 8(11), 1480–1482 (1996).
[Crossref]

1985 (2)

S. Thaniyavarn, “Wavelength independent, optical damage immune Z-propagation LiNbO 3 waveguide polarization converter,” Appl. Phys. Lett. 47(7), 674–677 (1985).
[Crossref]

R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. 36(3), 143–147 (1985).
[Crossref]

1982 (1)

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Tech. 30(8), 1121–1137 (1982).
[Crossref]

1980 (1)

R. C. Alferness, “Efficient waveguide electro-optic TE TM mode converter/wavelength filter,” Appl. Phys. Lett. 36(7), 513–515 (1980).
[Crossref]

1973 (1)

A. Yariv, “Coupled-Mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Abel, S.

F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).

Alferness, R. C.

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Tech. 30(8), 1121–1137 (1982).
[Crossref]

R. C. Alferness, “Efficient waveguide electro-optic TE TM mode converter/wavelength filter,” Appl. Phys. Lett. 36(7), 513–515 (1980).
[Crossref]

Allmaras, J. P.

B. A. Korzh, Q.-y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, and E. A. Bersin, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” (2018).

Autry, T. M.

B. A. Korzh, Q.-y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, and E. A. Bersin, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” (2018).

Baehr-Jones, T.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Bakhru, H.

S. B. T. Izuhara, R. Roth, R. M. OsgoodJr, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[Crossref]

Barreto, J.

F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).

Bartley, T. J.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

Becker, R. A.

C. McConaghy, M. Lowry, R. A. Becker, and B. E. Kincaid, “The performance of pigtailed annealed proton exchange LiNbO3 modulators at cryogenic temperatures,” IEEE Photonics Technol. Lett. 8(11), 1480–1482 (1996).
[Crossref]

Bernier, N.

A. Youssefi, I. Shomroni, Y. J. Joshi, N. Bernier, A. Lukashchuk, P. Uhrich, L. Qiu, and T. J. Kippenberg, “Cryogenic electro-optic interconnect for superconducting devices,” arXiv:2004.04705 (2020).

Bersin, E. A.

B. A. Korzh, Q.-y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, and E. A. Bersin, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” (2018).

Büchter, D.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

Caimi, D.

F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).

Chen, X.

Chen, Y. H.

DeRose, C.

Ding, T.

Eltes, F.

F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).

Englund, D.

Fompeyrine, J.

F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).

Frasca, S.

B. A. Korzh, Q.-y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, and E. A. Bersin, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” (2018).

Galland, C.

Garrett, H. E.

J. D. Morse, K. G. McCammon, C. F. McConaghy, D. A. Masquelier, H. E. Garrett, and M. E. Lowry, “Characterization of lithium niobate electro-optic modulators at cryogenic temperatures,” Design, Simulation, and Fabrication of Optoelectronic Devices and Circuits, vol. 2150M. N. Armenise, ed., International Society for Optics and Photonics (SPIE, 1994283–291.

Gehl, M.

Gentile, A. A.

F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).

Gerrits, T.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Grundkötter, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

Günter, P.

C. Herzog, G. Poberaj, and P. Günter, “Electro-optic behavior of lithium niobate at cryogenic temperatures,” Opt. Commun. 281(4), 793–796 (2008).
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Harris, N. C.

Hart, A.

F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).

Herrmann, H.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

N. Moeini, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Electro-Optic Polarization Controller With Ti : PPLN Channel Waveguides,” In Proc. European Conf. on Integrated Optics ECIO 2010, 3–4 (2010).

Herzog, C.

C. Herzog, G. Poberaj, and P. Günter, “Electro-optic behavior of lithium niobate at cryogenic temperatures,” Opt. Commun. 281(4), 793–796 (2008).
[Crossref]

Hochberg, M.

Höpker, J. P.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

Hu, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

Huang, C. Y.

Huang, Y. C.

Izuhara, S. B. T.

S. B. T. Izuhara, R. Roth, R. M. OsgoodJr, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[Crossref]

Joshi, Y. J.

A. Youssefi, I. Shomroni, Y. J. Joshi, N. Bernier, A. Lukashchuk, P. Uhrich, L. Qiu, and T. J. Kippenberg, “Cryogenic electro-optic interconnect for superconducting devices,” arXiv:2004.04705 (2020).

Karg, S.

F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).

Kincaid, B. E.

C. McConaghy, M. Lowry, R. A. Becker, and B. E. Kincaid, “The performance of pigtailed annealed proton exchange LiNbO3 modulators at cryogenic temperatures,” IEEE Photonics Technol. Lett. 8(11), 1480–1482 (1996).
[Crossref]

Kippenberg, T. J.

A. Youssefi, I. Shomroni, Y. J. Joshi, N. Bernier, A. Lukashchuk, P. Uhrich, L. Qiu, and T. J. Kippenberg, “Cryogenic electro-optic interconnect for superconducting devices,” arXiv:2004.04705 (2020).

Korzh, B. A.

B. A. Korzh, Q.-y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, and E. A. Bersin, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” (2018).

Krapick, S.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

Laing, A.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14(5), 273–284 (2020).
[Crossref]

Lentine, A. L.

Lin, C. H.

Lita, A.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Long, C.

Lowry, M.

C. McConaghy, M. Lowry, R. A. Becker, and B. E. Kincaid, “The performance of pigtailed annealed proton exchange LiNbO3 modulators at cryogenic temperatures,” IEEE Photonics Technol. Lett. 8(11), 1480–1482 (1996).
[Crossref]

Lowry, M. E.

J. D. Morse, K. G. McCammon, C. F. McConaghy, D. A. Masquelier, H. E. Garrett, and M. E. Lowry, “Characterization of lithium niobate electro-optic modulators at cryogenic temperatures,” Design, Simulation, and Fabrication of Optoelectronic Devices and Circuits, vol. 2150M. N. Armenise, ed., International Society for Optics and Photonics (SPIE, 1994283–291.

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Lukashchuk, A.

A. Youssefi, I. Shomroni, Y. J. Joshi, N. Bernier, A. Lukashchuk, P. Uhrich, L. Qiu, and T. J. Kippenberg, “Cryogenic electro-optic interconnect for superconducting devices,” arXiv:2004.04705 (2020).

Luo, K. H.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Ma, Y.

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Masquelier, D. A.

J. D. Morse, K. G. McCammon, C. F. McConaghy, D. A. Masquelier, H. E. Garrett, and M. E. Lowry, “Characterization of lithium niobate electro-optic modulators at cryogenic temperatures,” Design, Simulation, and Fabrication of Optoelectronic Devices and Circuits, vol. 2150M. N. Armenise, ed., International Society for Optics and Photonics (SPIE, 1994283–291.

McCammon, K. G.

J. D. Morse, K. G. McCammon, C. F. McConaghy, D. A. Masquelier, H. E. Garrett, and M. E. Lowry, “Characterization of lithium niobate electro-optic modulators at cryogenic temperatures,” Design, Simulation, and Fabrication of Optoelectronic Devices and Circuits, vol. 2150M. N. Armenise, ed., International Society for Optics and Photonics (SPIE, 1994283–291.

McConaghy, C.

C. McConaghy, M. Lowry, R. A. Becker, and B. E. Kincaid, “The performance of pigtailed annealed proton exchange LiNbO3 modulators at cryogenic temperatures,” IEEE Photonics Technol. Lett. 8(11), 1480–1482 (1996).
[Crossref]

McConaghy, C. F.

J. D. Morse, K. G. McCammon, C. F. McConaghy, D. A. Masquelier, H. E. Garrett, and M. E. Lowry, “Characterization of lithium niobate electro-optic modulators at cryogenic temperatures,” Design, Simulation, and Fabrication of Optoelectronic Devices and Circuits, vol. 2150M. N. Armenise, ed., International Society for Optics and Photonics (SPIE, 1994283–291.

Meier, N.

F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).

Meier, T.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Melgaard, S.

Min, Y.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Mirin, R.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Moeini, N.

N. Moeini, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Electro-Optic Polarization Controller With Ti : PPLN Channel Waveguides,” In Proc. European Conf. on Integrated Optics ECIO 2010, 3–4 (2010).

Morse, J. D.

J. D. Morse, K. G. McCammon, C. F. McConaghy, D. A. Masquelier, H. E. Garrett, and M. E. Lowry, “Characterization of lithium niobate electro-optic modulators at cryogenic temperatures,” Design, Simulation, and Fabrication of Optoelectronic Devices and Circuits, vol. 2150M. N. Armenise, ed., International Society for Optics and Photonics (SPIE, 1994283–291.

Mower, J.

Nam, S. W.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Nouroozi, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

Orlov, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

OsgoodJr, R. M.

S. B. T. Izuhara, R. Roth, R. M. OsgoodJr, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[Crossref]

Poberaj, G.

C. Herzog, G. Poberaj, and P. Günter, “Electro-optic behavior of lithium niobate at cryogenic temperatures,” Opt. Commun. 281(4), 793–796 (2008).
[Crossref]

Pomerene, A.

Qiu, L.

A. Youssefi, I. Shomroni, Y. J. Joshi, N. Bernier, A. Lukashchuk, P. Uhrich, L. Qiu, and T. J. Kippenberg, “Cryogenic electro-optic interconnect for superconducting devices,” arXiv:2004.04705 (2020).

Quiring, V.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

N. Moeini, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Electro-Optic Polarization Controller With Ti : PPLN Channel Waveguides,” In Proc. European Conf. on Integrated Optics ECIO 2010, 3–4 (2010).

Regener, R.

R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. 36(3), 143–147 (1985).
[Crossref]

Reichelt, M.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Reza, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

Ricken, R.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

N. Moeini, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Electro-Optic Polarization Controller With Ti : PPLN Channel Waveguides,” In Proc. European Conf. on Integrated Optics ECIO 2010, 3–4 (2010).

Roth, R.

S. B. T. Izuhara, R. Roth, R. M. OsgoodJr, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[Crossref]

Sciarrino, F.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14(5), 273–284 (2020).
[Crossref]

Sharapova, P. R.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Shomroni, I.

A. Youssefi, I. Shomroni, Y. J. Joshi, N. Bernier, A. Lukashchuk, P. Uhrich, L. Qiu, and T. J. Kippenberg, “Cryogenic electro-optic interconnect for superconducting devices,” arXiv:2004.04705 (2020).

Siirola, J.

Silberhorn, C.

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Sohler, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. 36(3), 143–147 (1985).
[Crossref]

N. Moeini, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Electro-Optic Polarization Controller With Ti : PPLN Channel Waveguides,” In Proc. European Conf. on Integrated Optics ECIO 2010, 3–4 (2010).

Starbuck, A.

Stark, P.

F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

Thaniyavarn, S.

S. Thaniyavarn, “Wavelength independent, optical damage immune Z-propagation LiNbO 3 waveguide polarization converter,” Appl. Phys. Lett. 47(7), 674–677 (1985).
[Crossref]

Thompson, M. G.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14(5), 273–284 (2020).
[Crossref]

F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).

Trotter, D.

Uhrich, P.

A. Youssefi, I. Shomroni, Y. J. Joshi, N. Bernier, A. Lukashchuk, P. Uhrich, L. Qiu, and T. J. Kippenberg, “Cryogenic electro-optic interconnect for superconducting devices,” arXiv:2004.04705 (2020).

Vannahme, C.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Wang, J.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14(5), 273–284 (2020).
[Crossref]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Wright, J. B.

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Yariv, A.

A. Yariv, “Coupled-Mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Youssefi, A.

A. Youssefi, I. Shomroni, Y. J. Joshi, N. Bernier, A. Lukashchuk, P. Uhrich, L. Qiu, and T. J. Kippenberg, “Cryogenic electro-optic interconnect for superconducting devices,” arXiv:2004.04705 (2020).

Zhao, Q.-y.

B. A. Korzh, Q.-y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, and E. A. Bersin, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” (2018).

Zheng, Y.

APL Photonics (1)

J. P. Höpker, T. Gerrits, A. Lita, S. Krapick, H. Herrmann, R. Ricken, V. Quiring, R. Mirin, S. W. Nam, C. Silberhorn, and T. J. Bartley, “Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides,” APL Photonics 4(5), 056103 (2019).
[Crossref]

Appl. Phys. (1)

R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (3)

R. C. Alferness, “Efficient waveguide electro-optic TE TM mode converter/wavelength filter,” Appl. Phys. Lett. 36(7), 513–515 (1980).
[Crossref]

S. Thaniyavarn, “Wavelength independent, optical damage immune Z-propagation LiNbO 3 waveguide polarization converter,” Appl. Phys. Lett. 47(7), 674–677 (1985).
[Crossref]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[Crossref]

Electron. Lett. (1)

S. B. T. Izuhara, R. Roth, R. M. OsgoodJr, and H. Bakhru, “Low-voltage tunable TE/TM converter on ion-sliced lithium niobate thin film,” Electron. Lett. 39(15), 1118–1119 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled-Mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. McConaghy, M. Lowry, R. A. Becker, and B. E. Kincaid, “The performance of pigtailed annealed proton exchange LiNbO3 modulators at cryogenic temperatures,” IEEE Photonics Technol. Lett. 8(11), 1480–1482 (1996).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Tech. 30(8), 1121–1137 (1982).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (2)

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14(5), 273–284 (2020).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

New J. Phys. (1)

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Opt. Commun. (1)

C. Herzog, G. Poberaj, and P. Günter, “Electro-optic behavior of lithium niobate at cryogenic temperatures,” Opt. Commun. 281(4), 793–796 (2008).
[Crossref]

Opt. Express (2)

Opt. Photonics News (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photonics News 19(1), 24 (2008).
[Crossref]

Optica (1)

Other (7)

J. D. Morse, K. G. McCammon, C. F. McConaghy, D. A. Masquelier, H. E. Garrett, and M. E. Lowry, “Characterization of lithium niobate electro-optic modulators at cryogenic temperatures,” Design, Simulation, and Fabrication of Optoelectronic Devices and Circuits, vol. 2150M. N. Armenise, ed., International Society for Optics and Photonics (SPIE, 1994283–291.

B. A. Korzh, Q.-y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, and E. A. Bersin, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” (2018).

A. Youssefi, I. Shomroni, Y. J. Joshi, N. Bernier, A. Lukashchuk, P. Uhrich, L. Qiu, and T. J. Kippenberg, “Cryogenic electro-optic interconnect for superconducting devices,” arXiv:2004.04705 (2020).

F. Eltes, J. Barreto, D. Caimi, S. Karg, A. A. Gentile, A. Hart, P. Stark, N. Meier, M. G. Thompson, J. Fompeyrine, and S. Abel, “First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability,” Technical Digest - International Electron Devices Meeting, IEDM2018-Decem, 23.1.1–23.1.4 (2019).

N. Moeini, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Electro-Optic Polarization Controller With Ti : PPLN Channel Waveguides,” In Proc. European Conf. on Integrated Optics ECIO 2010, 3–4 (2010).

Abrahams, Properties of Lithium Niobate (INSPEC The Institution of Electrical Engineering, 1989).

Additional media available at https://physik.uni-paderborn.de/bartley/videos/papervideos/thiele2020 .

Supplementary Material (1)

NameDescription
» Visualization 1       This video shows the response of an electro-optic polarisation converter as a function of operating temperature, when cooled from 300K to 0.8K over a duration of 16h. Linearly polarised light is sent through the sample and changes in the intensity of

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. a), b) The normalised spatial intensity distribution of the supported optical modes, TE and TM, respectively. c) Schematic of the polarisation converter, including poling period $\Lambda$. The linear polarisation mode TE is converted to TM if the voltage of $V_{\pi /2}$ is applied at the electrodes. d) Schematic of the optical characterisation set up. All components other than the waveguide operate at room temperature. The sample is optically accessed via fiber feed-throughs.
Fig. 2.
Fig. 2. Extrapolated poling period from the Sellmeier equations in combination with the titanium in-diffusion profile required to phase-match the conversion process at a given wavelength and temperature.
Fig. 3.
Fig. 3. Conversion maps showing the normalised intensity of the TM polarisation mode by modulating the bias voltage and wavelength given a TE input polarisation. a) Experimental data of conversion at room temperature. b) Theoretical conversion map determined by the transfer matrix in Sec. 2.2. Conversion maps for c) TE and d) TM output polarisation at 0.8 K given a TE input polarisation. The intensities in these graphs are normalised for every data point by the sum of the intensities of both polarisations: $I_{\textrm {TE,TM}}\left (V,T\right )/\left [I_{\textrm {TE}}\left (V,T\right )+I_{\textrm {TM}}\left (V,T\right )\right ]$
Fig. 4.
Fig. 4. a), b): Voltage dependent intensity modulation at 0.8 K for 1578.2 nm and at 296 K for 1472.3 nm, respectively. c): Maximum modulation depth determined across the temperature range. The modulation depth is the ratio of the minimum and maximum intensity in the voltage sweeps, e.g. a) and b). The yellow band indicates a moving average over 15 K. d): Conversion voltage $V_{\pi /2}$ required to convert TE to TM, as a function of temperature. This can be determined by the period of the sine-fit as seen in the voltage sweeps in a), b). The green band is the $V_{\pi /2}$-average in the temperature range of 10 K. e) Phase-matched wavelength as a function of temperature. Blue dots & green region: experimental data and experimental error, respectively. Red line & yellow region: extrapolated wavelength and simulation uncertainty, respectively. f) Time-dependent modulation of the polarisation converter at 0.8 K at 25 MHz. The device is biased by 9 V to be operated at the point of inflection of the voltage sweep.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ β = 2 π ( n TE ( λ , T ) n TM ( λ , T ) λ ) ( 2 π Λ )   .
( A TE ( y ) A TM ( y ) ) = ( cos ( s y ) + i Δ β 2 s sin ( s y ) κ s sin ( s y ) + κ s sin ( s y ) cos ( s y ) i Δ β 2 s sin ( s y ) ) e i Δ β y 2 ( A TE ( 0 ) A TM ( 0 ) )   ,
κ = π n eff 3 η r V λ G   ,
η = G V A E TE ( x , z ) E TM ( x , z ) E DC ( x , z ) d A A E TE ( x , z ) E TM ( x , z ) d A   .