Abstract

A miniature fiber-optic tip Fabry-Perot (FP) pressure sensor with excellent high-temperature survivability, assembled by hydroxide catalysis bonding (HCB) technology, is proposed and experimentally demonstrated. A standard single-mode fiber is fusion spliced to a fused silica hollow tube with an outer diameter (OD) of 125 µm, and a 1-µm-thick circular silicon diaphragm with a diameter slightly larger than the OD is bonded to the other endface of the hollow tube by HCB technology. The ultrathin silicon diaphragm is prepared on a silicon-on-insulator (SOI) wafer produced by microelectromechanical systems (MEMS), providing the capability of large-scale mass production. The HCB technology enables a polymer-free bonding between diaphragm and hollow tube on fiber tip with the obvious advantages of high alignment precision, normal pressure and temperature (NPT) operation, and reliable effectiveness. The static pressure and temperature response of the proposed sensor are discussed. Results show that the sensor has a measurable pressure range of 0∼100 kPa, which is well consistent with the measurement range of biological blood pressure. The pressure sensitivity is up to 2.13 nm/kPa with a resolution of 0.32% (0.32kPa). Besides, the sensor possesses a unique high-temperature resistant capability up to 600 °C, which can easily survive even in high-temperature sterilization processes, and it has a low temperature dependence of 0.09 kPa/°C due to the induced HCB bonding technology and the silicon-based diaphragm. Thus, the proposed fiber tip pressure sensor is desirable for invasive biomedical pressure diagnostics and pressure monitoring in related harsh environments.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm

Wenhui Wang, Nan Wu, Ye Tian, Christopher Niezrecki, and Xingwei Wang
Opt. Express 18(9) 9006-9014 (2010)

Miniature all-silica fiber optic pressure and acoustic sensors

Juncheng Xu, Xingwei Wang, Kristie L. Cooper, and Anbo Wang
Opt. Lett. 30(24) 3269-3271 (2005)

Miniature fiber-optic pressure sensor with a polymer diaphragm

Edvard Cibula and Denis Ðonlagić
Appl. Opt. 44(14) 2736-2744 (2005)

References

  • View by:
  • |
  • |
  • |

  1. T. Bae, R. A. Atkins, H. F. Taylor, and W. N. Gibler, “Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines,” Appl. Opt. 42(6), 1003–1007 (2003).
    [Crossref]
  2. I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors 15(7), 15494–15519 (2015).
    [Crossref]
  3. S. Z. Yan and L. S. Chyan, “Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring,” Opt. Fiber Technol. 16(2), 100–109 (2010).
    [Crossref]
  4. O. H. Murphy, M. R. Bahmanyar, A. Borghi, C. N. McLeod, M. Navaratnarajah, M. H. Yacoub, and C. Toumazou, “Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor,” Biomed. Microdevices 15(5), 737–749 (2013).
    [Crossref]
  5. N. H. J. Pijls, “Fractional flow reserve to guide coronary revascularization,” Circ. J. 77(3), 561–569 (2013).
    [Crossref]
  6. T. Kentaro, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71 (2004).
  7. M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
    [Crossref]
  8. F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett. 37(9), 1505–1507 (2012).
    [Crossref]
  9. H. Bae and M. Yu, “Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express 20(13), 14573–14583 (2012).
    [Crossref]
  10. L. Dai, M. Wang, D. Cai, H. Rong, J. Zhu, S. Jia, and J. You, “Optical fiber Fabry–Perot pressure sensor based on a polymer structure,” IEEE Photonics Technol. Lett. 25(24), 2505–2508 (2013).
    [Crossref]
  11. B. Yu, D. W. Kim, J. Deng, H. Xiao, and A. Wang, “Fiber Fabry-Perot sensors for detection of partial discharges in power transformers,” Appl. Opt. 42(16), 3241–3250 (2003).
    [Crossref]
  12. Y. Wu, C. Yu, F. Wu, C. Li, J. Zhou, Y. Gong, Y. Rao, and Y. Chen, “A highly sensitive fiber-optic microphone based on graphene oxide membrane,” J. Lightwave Technol. 35(19), 4344–4349 (2017).
    [Crossref]
  13. W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express 18(9), 9006–9014 (2010).
    [Crossref]
  14. X. Guo, J. Zhou, C. Du, and X. Wang, “Highly Sensitive Miniature All-Silica Fiber Tip Fabry-Perot Pressure Sensor,” IEEE Photonics Technol. Lett. 31(9), 689–692 (2019).
    [Crossref]
  15. D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
    [Crossref]
  16. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31(7), 885–887 (2006).
    [Crossref]
  17. W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, and J. Huang, “Adhesive-free bonding homogenous fused-silica Fabry-Perot optical fiber low pressure sensor in harsh environments by CO2 laser welding,” Opt. Commun. 435, 97–101 (2019).
    [Crossref]
  18. D. Gwo, “Ultra precision and reliable bonding method,” U.S. Patent 6,284,085 (2001).
  19. D. Gwo, “Hydroxide-catalyzed bonding,” U.S. Patent 6,548,176 (2003).
  20. R. Douglas, A. A. Van Veggel, L. Cunningham, K. Haughian, J. Hough, and S. Rowan, “Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding,” Classical Quantum Gravity 31(4), 045001 (2014).
    [Crossref]
  21. D. Gwo, “Ultraprecision bonding for cryogenic fused-silica optics,” Proc. SPIE 3435, 136–142 (1998).
    [Crossref]
  22. B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
    [Crossref]
  23. S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
    [Crossref]
  24. M. Lorenzini and V. Collaboration, “The monolithic suspension for the virgo interferometer,” Classical Quantum Gravity 27(8), 084021 (2010).
    [Crossref]
  25. E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
    [Crossref]
  26. G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
    [Crossref]
  27. X. Qi, S. Wang, J. Jiang, K. Liu, X. Wang, Y. Yang, and T. Liu, “Fiber Optic Fabry-Perot Pressure Sensor with Embedded MEMS Micro-Cavity for Ultra-High Pressure Detection,” J. Lightwave Technol. 37(11), 2719–2725 (2019).
    [Crossref]
  28. Y. Ge, M. Wang, and H. Yan, “Optical MEMS pressure sensor based on a mesa-diaphragm structure,” Opt. Express 16(26), 21746–21752 (2008).
    [Crossref]
  29. H. E. Bergna, The colloid chemistry of silica (American Chemical Society, 1994).
  30. J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Investigation of the suitability of silicate bonding for facet termination in active fiber devices,” Opt. Express 15(20), 13003–13022 (2007).
    [Crossref]
  31. S. Reid, G. Cagnolia, E. Elliffe, J. Faller, J. Hough, I. Martin, and S. Rowan, “Influence of temperature and hydroxide concentration on the settling time of hydroxy-catalysis bonds,” Phys. Lett. A 363(5-6), 341–345 (2007).
    [Crossref]
  32. S. Sivasankar and S. Chu, “Optical bonding using silica nanoparticle sol-gel chemistry,” Nano Lett. 7(10), 3031–3034 (2007).
    [Crossref]
  33. D. Giovanni, Flat and corrugated diaphragm design handbook (Marcel Dekker, 1982).
  34. Z. Jing, “Study on White Light Extrinsic Fabry-Perot Interferometric Optical Fiber Sensor and its Application,” Doctoral dissertation, Dalian University of Technology (2006).
  35. Z. Jing and Q. Yu, “White light optical fiber EFPI sensor based on cross-correlation signal processing method,” in Proceedings of 6th International Symposium on Test and Measurement. (Academic, 2005), pp. 3509–3511.
  36. X. Zhou, Q. Yu, and W. Peng, “Fiber-optic Fabry-Perot pressure sensor for down-hole application,” Opt. Lasers Eng. 121, 289–299 (2019).
    [Crossref]
  37. Z. Jing, Y. Liu, Y. Zhang, A. Li, P. Song, Z. Wu, Y. Zhang, and W. Peng, “Highly Sensitive FBG-FP sensor for Simultaneous Measurement of Humidity and Temperature,” in 26th International Conference on Optical Fiber Sensors, 2018 OSA Technical Digest Series (Optical Society of America, 2018), paper WF79.
  38. W. Wang, X. Jiang, and Q. Yu, “Temperature self-compensation fiber-optic pressure sensor based on fiber Bragg grating and Fabry-Perot interference multiplexing,” Opt. Commun. 285(16), 3466–3470 (2012).
    [Crossref]

2019 (4)

X. Guo, J. Zhou, C. Du, and X. Wang, “Highly Sensitive Miniature All-Silica Fiber Tip Fabry-Perot Pressure Sensor,” IEEE Photonics Technol. Lett. 31(9), 689–692 (2019).
[Crossref]

W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, and J. Huang, “Adhesive-free bonding homogenous fused-silica Fabry-Perot optical fiber low pressure sensor in harsh environments by CO2 laser welding,” Opt. Commun. 435, 97–101 (2019).
[Crossref]

X. Qi, S. Wang, J. Jiang, K. Liu, X. Wang, Y. Yang, and T. Liu, “Fiber Optic Fabry-Perot Pressure Sensor with Embedded MEMS Micro-Cavity for Ultra-High Pressure Detection,” J. Lightwave Technol. 37(11), 2719–2725 (2019).
[Crossref]

X. Zhou, Q. Yu, and W. Peng, “Fiber-optic Fabry-Perot pressure sensor for down-hole application,” Opt. Lasers Eng. 121, 289–299 (2019).
[Crossref]

2017 (1)

2015 (1)

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors 15(7), 15494–15519 (2015).
[Crossref]

2014 (1)

R. Douglas, A. A. Van Veggel, L. Cunningham, K. Haughian, J. Hough, and S. Rowan, “Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding,” Classical Quantum Gravity 31(4), 045001 (2014).
[Crossref]

2013 (3)

L. Dai, M. Wang, D. Cai, H. Rong, J. Zhu, S. Jia, and J. You, “Optical fiber Fabry–Perot pressure sensor based on a polymer structure,” IEEE Photonics Technol. Lett. 25(24), 2505–2508 (2013).
[Crossref]

O. H. Murphy, M. R. Bahmanyar, A. Borghi, C. N. McLeod, M. Navaratnarajah, M. H. Yacoub, and C. Toumazou, “Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor,” Biomed. Microdevices 15(5), 737–749 (2013).
[Crossref]

N. H. J. Pijls, “Fractional flow reserve to guide coronary revascularization,” Circ. J. 77(3), 561–569 (2013).
[Crossref]

2012 (4)

F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett. 37(9), 1505–1507 (2012).
[Crossref]

H. Bae and M. Yu, “Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express 20(13), 14573–14583 (2012).
[Crossref]

W. Wang, X. Jiang, and Q. Yu, “Temperature self-compensation fiber-optic pressure sensor based on fiber Bragg grating and Fabry-Perot interference multiplexing,” Opt. Commun. 285(16), 3466–3470 (2012).
[Crossref]

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

2010 (3)

M. Lorenzini and V. Collaboration, “The monolithic suspension for the virgo interferometer,” Classical Quantum Gravity 27(8), 084021 (2010).
[Crossref]

S. Z. Yan and L. S. Chyan, “Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring,” Opt. Fiber Technol. 16(2), 100–109 (2010).
[Crossref]

W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express 18(9), 9006–9014 (2010).
[Crossref]

2008 (1)

2007 (4)

J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Investigation of the suitability of silicate bonding for facet termination in active fiber devices,” Opt. Express 15(20), 13003–13022 (2007).
[Crossref]

S. Reid, G. Cagnolia, E. Elliffe, J. Faller, J. Hough, I. Martin, and S. Rowan, “Influence of temperature and hydroxide concentration on the settling time of hydroxy-catalysis bonds,” Phys. Lett. A 363(5-6), 341–345 (2007).
[Crossref]

S. Sivasankar and S. Chu, “Optical bonding using silica nanoparticle sol-gel chemistry,” Nano Lett. 7(10), 3031–3034 (2007).
[Crossref]

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[Crossref]

2006 (1)

2005 (2)

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
[Crossref]

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

2004 (1)

T. Kentaro, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71 (2004).

2003 (2)

2002 (1)

B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
[Crossref]

2001 (1)

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
[Crossref]

1998 (1)

D. Gwo, “Ultraprecision bonding for cryogenic fused-silica optics,” Proc. SPIE 3435, 136–142 (1998).
[Crossref]

Abeysinghe, D. C.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
[Crossref]

Aldabaldetreku, G.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors 15(7), 15494–15519 (2015).
[Crossref]

Applegate, B. E.

Aston, S. M.

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

Atkins, R. A.

Aufmuth, P.

B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
[Crossref]

Aulbert, C.

B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
[Crossref]

Babak, S.

B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
[Crossref]

Bae, H.

Bae, T.

Bahmanyar, M. R.

O. H. Murphy, M. R. Bahmanyar, A. Borghi, C. N. McLeod, M. Navaratnarajah, M. H. Yacoub, and C. Toumazou, “Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor,” Biomed. Microdevices 15(5), 737–749 (2013).
[Crossref]

Balasubramanian, R.

B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
[Crossref]

Barr, B. W.

B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
[Crossref]

Barton, M. A.

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

Bell, A. S.

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

Bergna, H. E.

H. E. Bergna, The colloid chemistry of silica (American Chemical Society, 1994).

Beveridge, N.

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

Bland, B.

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

Bogenstahl, J.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
[Crossref]

Borghi, A.

O. H. Murphy, M. R. Bahmanyar, A. Borghi, C. N. McLeod, M. Navaratnarajah, M. H. Yacoub, and C. Toumazou, “Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor,” Biomed. Microdevices 15(5), 737–749 (2013).
[Crossref]

Bose, S.

B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
[Crossref]

Boyd, J. T.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
[Crossref]

Braxmaier, C.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Brummitt, A. J.

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

Cagnoli, G.

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
[Crossref]

B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
[Crossref]

Cagnolia, G.

S. Reid, G. Cagnolia, E. Elliffe, J. Faller, J. Hough, I. Martin, and S. Rowan, “Influence of temperature and hydroxide concentration on the settling time of hydroxy-catalysis bonds,” Phys. Lett. A 363(5-6), 341–345 (2007).
[Crossref]

Cai, D.

L. Dai, M. Wang, D. Cai, H. Rong, J. Zhu, S. Jia, and J. You, “Optical fiber Fabry–Perot pressure sensor based on a polymer structure,” IEEE Photonics Technol. Lett. 25(24), 2505–2508 (2013).
[Crossref]

Caldwell, M.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Cantley, C. A.

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

Carbajal, E. F.

Carbone, L.

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

Casey, M. M.

B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
[Crossref]

Chavko, M.

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[Crossref]

Chen, X.

Chen, Y.

Chu, S.

S. Sivasankar and S. Chu, “Optical bonding using silica nanoparticle sol-gel chemistry,” Nano Lett. 7(10), 3031–3034 (2007).
[Crossref]

Churches, D.

B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
[Crossref]

Chyan, L. S.

S. Z. Yan and L. S. Chyan, “Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring,” Opt. Fiber Technol. 16(2), 100–109 (2010).
[Crossref]

Collaboration, V.

M. Lorenzini and V. Collaboration, “The monolithic suspension for the virgo interferometer,” Classical Quantum Gravity 27(8), 084021 (2010).
[Crossref]

Cooper, K. L.

Cumming, A. V.

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

Cunningham, L.

R. Douglas, A. A. Van Veggel, L. Cunningham, K. Haughian, J. Hough, and S. Rowan, “Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding,” Classical Quantum Gravity 31(4), 045001 (2014).
[Crossref]

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

Dai, L.

L. Dai, M. Wang, D. Cai, H. Rong, J. Zhu, S. Jia, and J. You, “Optical fiber Fabry–Perot pressure sensor based on a polymer structure,” IEEE Photonics Technol. Lett. 25(24), 2505–2508 (2013).
[Crossref]

Danzmann, K.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Dasgupta, S.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
[Crossref]

Deng, J.

Deshpande, A.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
[Crossref]

Douglas, R.

R. Douglas, A. A. Van Veggel, L. Cunningham, K. Haughian, J. Hough, and S. Rowan, “Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding,” Classical Quantum Gravity 31(4), 045001 (2014).
[Crossref]

Draaisma, F.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Du, C.

X. Guo, J. Zhou, C. Du, and X. Wang, “Highly Sensitive Miniature All-Silica Fiber Tip Fabry-Perot Pressure Sensor,” IEEE Photonics Technol. Lett. 31(9), 689–692 (2019).
[Crossref]

Durana, G.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors 15(7), 15494–15519 (2015).
[Crossref]

Elliffe, E.

S. Reid, G. Cagnolia, E. Elliffe, J. Faller, J. Hough, I. Martin, and S. Rowan, “Influence of temperature and hydroxide concentration on the settling time of hydroxy-catalysis bonds,” Phys. Lett. A 363(5-6), 341–345 (2007).
[Crossref]

Elliffe, E. J.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
[Crossref]

Esashi, M.

T. Kentaro, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71 (2004).

Faller, J.

S. Reid, G. Cagnolia, E. Elliffe, J. Faller, J. Hough, I. Martin, and S. Rowan, “Influence of temperature and hydroxide concentration on the settling time of hydroxy-catalysis bonds,” Phys. Lett. A 363(5-6), 341–345 (2007).
[Crossref]

Fei, X.

W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, and J. Huang, “Adhesive-free bonding homogenous fused-silica Fabry-Perot optical fiber low pressure sensor in harsh environments by CO2 laser welding,” Opt. Commun. 435, 97–101 (2019).
[Crossref]

Fink, T.

García, I.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors 15(7), 15494–15519 (2015).
[Crossref]

Garcíal, A.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Ge, Y.

Gibler, W. N.

Giovanni, D.

D. Giovanni, Flat and corrugated diaphragm design handbook (Marcel Dekker, 1982).

Gong, Y.

Guo, F.

Guo, X.

X. Guo, J. Zhou, C. Du, and X. Wang, “Highly Sensitive Miniature All-Silica Fiber Tip Fabry-Perot Pressure Sensor,” IEEE Photonics Technol. Lett. 31(9), 689–692 (2019).
[Crossref]

Gwo, D.

D. Gwo, “Ultraprecision bonding for cryogenic fused-silica optics,” Proc. SPIE 3435, 136–142 (1998).
[Crossref]

D. Gwo, “Ultra precision and reliable bonding method,” U.S. Patent 6,284,085 (2001).

D. Gwo, “Hydroxide-catalyzed bonding,” U.S. Patent 6,548,176 (2003).

Haga, Y.

T. Kentaro, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71 (2004).

Han, M.

Haughian, K.

R. Douglas, A. A. Van Veggel, L. Cunningham, K. Haughian, J. Hough, and S. Rowan, “Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding,” Classical Quantum Gravity 31(4), 045001 (2014).
[Crossref]

Heinzel, G.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Hough, J.

R. Douglas, A. A. Van Veggel, L. Cunningham, K. Haughian, J. Hough, and S. Rowan, “Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding,” Classical Quantum Gravity 31(4), 045001 (2014).
[Crossref]

S. Reid, G. Cagnolia, E. Elliffe, J. Faller, J. Hough, I. Martin, and S. Rowan, “Influence of temperature and hydroxide concentration on the settling time of hydroxy-catalysis bonds,” Phys. Lett. A 363(5-6), 341–345 (2007).
[Crossref]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
[Crossref]

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Huang, C.

W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, and J. Huang, “Adhesive-free bonding homogenous fused-silica Fabry-Perot optical fiber low pressure sensor in harsh environments by CO2 laser welding,” Opt. Commun. 435, 97–101 (2019).
[Crossref]

Huang, J.

W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, and J. Huang, “Adhesive-free bonding homogenous fused-silica Fabry-Perot optical fiber low pressure sensor in harsh environments by CO2 laser welding,” Opt. Commun. 435, 97–101 (2019).
[Crossref]

F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett. 37(9), 1505–1507 (2012).
[Crossref]

Illarramendi, M. A.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors 15(7), 15494–15519 (2015).
[Crossref]

Jackson, H. E.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
[Crossref]

Jennrich, O.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Jia, S.

L. Dai, M. Wang, D. Cai, H. Rong, J. Zhu, S. Jia, and J. You, “Optical fiber Fabry–Perot pressure sensor based on a polymer structure,” IEEE Photonics Technol. Lett. 25(24), 2505–2508 (2013).
[Crossref]

Jiang, J.

Jiang, X.

W. Wang, X. Jiang, and Q. Yu, “Temperature self-compensation fiber-optic pressure sensor based on fiber Bragg grating and Fabry-Perot interference multiplexing,” Opt. Commun. 285(16), 3466–3470 (2012).
[Crossref]

Jing, Z.

Z. Jing, Y. Liu, Y. Zhang, A. Li, P. Song, Z. Wu, Y. Zhang, and W. Peng, “Highly Sensitive FBG-FP sensor for Simultaneous Measurement of Humidity and Temperature,” in 26th International Conference on Optical Fiber Sensors, 2018 OSA Technical Digest Series (Optical Society of America, 2018), paper WF79.

Z. Jing, “Study on White Light Extrinsic Fabry-Perot Interferometric Optical Fiber Sensor and its Application,” Doctoral dissertation, Dalian University of Technology (2006).

Z. Jing and Q. Yu, “White light optical fiber EFPI sensor based on cross-correlation signal processing method,” in Proceedings of 6th International Symposium on Test and Measurement. (Academic, 2005), pp. 3509–3511.

Johann, U.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Kentaro, T.

T. Kentaro, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71 (2004).

Killow, C.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
[Crossref]

Kim, D. W.

Koester, L.

Koller, W. A.

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[Crossref]

Li, A.

Z. Jing, Y. Liu, Y. Zhang, A. Li, P. Song, Z. Wu, Y. Zhang, and W. Peng, “Highly Sensitive FBG-FP sensor for Simultaneous Measurement of Humidity and Temperature,” in 26th International Conference on Optical Fiber Sensors, 2018 OSA Technical Digest Series (Optical Society of America, 2018), paper WF79.

Li, C.

Li, Y.

W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, and J. Huang, “Adhesive-free bonding homogenous fused-silica Fabry-Perot optical fiber low pressure sensor in harsh environments by CO2 laser welding,” Opt. Commun. 435, 97–101 (2019).
[Crossref]

Liu, K.

Liu, T.

Liu, Y.

Z. Jing, Y. Liu, Y. Zhang, A. Li, P. Song, Z. Wu, Y. Zhang, and W. Peng, “Highly Sensitive FBG-FP sensor for Simultaneous Measurement of Humidity and Temperature,” in 26th International Conference on Optical Fiber Sensors, 2018 OSA Technical Digest Series (Optical Society of America, 2018), paper WF79.

Lorenzini, M.

M. Lorenzini and V. Collaboration, “The monolithic suspension for the virgo interferometer,” Classical Quantum Gravity 27(8), 084021 (2010).
[Crossref]

Martin, I.

S. Reid, G. Cagnolia, E. Elliffe, J. Faller, J. Hough, I. Martin, and S. Rowan, “Influence of temperature and hydroxide concentration on the settling time of hydroxy-catalysis bonds,” Phys. Lett. A 363(5-6), 341–345 (2007).
[Crossref]

McCarron, R. M.

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[Crossref]

McLeod, C. N.

O. H. Murphy, M. R. Bahmanyar, A. Borghi, C. N. McLeod, M. Navaratnarajah, M. H. Yacoub, and C. Toumazou, “Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor,” Biomed. Microdevices 15(5), 737–749 (2013).
[Crossref]

Middleton, K.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Murphy, O. H.

O. H. Murphy, M. R. Bahmanyar, A. Borghi, C. N. McLeod, M. Navaratnarajah, M. H. Yacoub, and C. Toumazou, “Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor,” Biomed. Microdevices 15(5), 737–749 (2013).
[Crossref]

Navaratnarajah, M.

O. H. Murphy, M. R. Bahmanyar, A. Borghi, C. N. McLeod, M. Navaratnarajah, M. H. Yacoub, and C. Toumazou, “Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor,” Biomed. Microdevices 15(5), 737–749 (2013).
[Crossref]

Niezrecki, C.

Oghalai, J. S.

Park, J.

Peng, W.

X. Zhou, Q. Yu, and W. Peng, “Fiber-optic Fabry-Perot pressure sensor for down-hole application,” Opt. Lasers Eng. 121, 289–299 (2019).
[Crossref]

Z. Jing, Y. Liu, Y. Zhang, A. Li, P. Song, Z. Wu, Y. Zhang, and W. Peng, “Highly Sensitive FBG-FP sensor for Simultaneous Measurement of Humidity and Temperature,” in 26th International Conference on Optical Fiber Sensors, 2018 OSA Technical Digest Series (Optical Society of America, 2018), paper WF79.

Pijls, N. H. J.

N. H. J. Pijls, “Fractional flow reserve to guide coronary revascularization,” Circ. J. 77(3), 561–569 (2013).
[Crossref]

Prusaczyk, W. K.

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[Crossref]

Qi, X.

Rao, Y.

Reid, S.

S. Reid, G. Cagnolia, E. Elliffe, J. Faller, J. Hough, I. Martin, and S. Rowan, “Influence of temperature and hydroxide concentration on the settling time of hydroxy-catalysis bonds,” Phys. Lett. A 363(5-6), 341–345 (2007).
[Crossref]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
[Crossref]

Robertson, D.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
[Crossref]

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Rong, H.

L. Dai, M. Wang, D. Cai, H. Rong, J. Zhu, S. Jia, and J. You, “Optical fiber Fabry–Perot pressure sensor based on a polymer structure,” IEEE Photonics Technol. Lett. 25(24), 2505–2508 (2013).
[Crossref]

Rowan, S.

R. Douglas, A. A. Van Veggel, L. Cunningham, K. Haughian, J. Hough, and S. Rowan, “Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding,” Classical Quantum Gravity 31(4), 045001 (2014).
[Crossref]

S. Reid, G. Cagnolia, E. Elliffe, J. Faller, J. Hough, I. Martin, and S. Rowan, “Influence of temperature and hydroxide concentration on the settling time of hydroxy-catalysis bonds,” Phys. Lett. A 363(5-6), 341–345 (2007).
[Crossref]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
[Crossref]

Rüdiger, A.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Schilling, R.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Sivasankar, S.

S. Sivasankar and S. Chu, “Optical bonding using silica nanoparticle sol-gel chemistry,” Nano Lett. 7(10), 3031–3034 (2007).
[Crossref]

Song, P.

Z. Jing, Y. Liu, Y. Zhang, A. Li, P. Song, Z. Wu, Y. Zhang, and W. Peng, “Highly Sensitive FBG-FP sensor for Simultaneous Measurement of Humidity and Temperature,” in 26th International Conference on Optical Fiber Sensors, 2018 OSA Technical Digest Series (Optical Society of America, 2018), paper WF79.

Steier, F.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Taylor, H. F.

te Plate, M.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Tian, X.

W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, and J. Huang, “Adhesive-free bonding homogenous fused-silica Fabry-Perot optical fiber low pressure sensor in harsh environments by CO2 laser welding,” Opt. Commun. 435, 97–101 (2019).
[Crossref]

Tian, Y.

Toumazou, C.

O. H. Murphy, M. R. Bahmanyar, A. Borghi, C. N. McLeod, M. Navaratnarajah, M. H. Yacoub, and C. Toumazou, “Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor,” Biomed. Microdevices 15(5), 737–749 (2013).
[Crossref]

Turner, J.

Van Veggel, A. A.

R. Douglas, A. A. Van Veggel, L. Cunningham, K. Haughian, J. Hough, and S. Rowan, “Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding,” Classical Quantum Gravity 31(4), 045001 (2014).
[Crossref]

Villatoro, J.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors 15(7), 15494–15519 (2015).
[Crossref]

Wand, V.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

Wang, A.

Wang, M.

L. Dai, M. Wang, D. Cai, H. Rong, J. Zhu, S. Jia, and J. You, “Optical fiber Fabry–Perot pressure sensor based on a polymer structure,” IEEE Photonics Technol. Lett. 25(24), 2505–2508 (2013).
[Crossref]

Y. Ge, M. Wang, and H. Yan, “Optical MEMS pressure sensor based on a mesa-diaphragm structure,” Opt. Express 16(26), 21746–21752 (2008).
[Crossref]

Wang, S.

Wang, W.

W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, and J. Huang, “Adhesive-free bonding homogenous fused-silica Fabry-Perot optical fiber low pressure sensor in harsh environments by CO2 laser welding,” Opt. Commun. 435, 97–101 (2019).
[Crossref]

W. Wang, X. Jiang, and Q. Yu, “Temperature self-compensation fiber-optic pressure sensor based on fiber Bragg grating and Fabry-Perot interference multiplexing,” Opt. Commun. 285(16), 3466–3470 (2012).
[Crossref]

W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express 18(9), 9006–9014 (2010).
[Crossref]

Wang, X.

Ward, H.

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
[Crossref]

Willke, B.

B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
[Crossref]

Wu, F.

Wu, N.

Wu, S.

W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, and J. Huang, “Adhesive-free bonding homogenous fused-silica Fabry-Perot optical fiber low pressure sensor in harsh environments by CO2 laser welding,” Opt. Commun. 435, 97–101 (2019).
[Crossref]

Wu, W.

W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, and J. Huang, “Adhesive-free bonding homogenous fused-silica Fabry-Perot optical fiber low pressure sensor in harsh environments by CO2 laser welding,” Opt. Commun. 435, 97–101 (2019).
[Crossref]

Wu, Y.

Wu, Z.

Z. Jing, Y. Liu, Y. Zhang, A. Li, P. Song, Z. Wu, Y. Zhang, and W. Peng, “Highly Sensitive FBG-FP sensor for Simultaneous Measurement of Humidity and Temperature,” in 26th International Conference on Optical Fiber Sensors, 2018 OSA Technical Digest Series (Optical Society of America, 2018), paper WF79.

Xiao, H.

Xu, J.

Yacoub, M. H.

O. H. Murphy, M. R. Bahmanyar, A. Borghi, C. N. McLeod, M. Navaratnarajah, M. H. Yacoub, and C. Toumazou, “Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor,” Biomed. Microdevices 15(5), 737–749 (2013).
[Crossref]

Yan, H.

Yan, S. Z.

S. Z. Yan and L. S. Chyan, “Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring,” Opt. Fiber Technol. 16(2), 100–109 (2010).
[Crossref]

Yang, Y.

You, J.

L. Dai, M. Wang, D. Cai, H. Rong, J. Zhu, S. Jia, and J. You, “Optical fiber Fabry–Perot pressure sensor based on a polymer structure,” IEEE Photonics Technol. Lett. 25(24), 2505–2508 (2013).
[Crossref]

Yu, B.

Yu, C.

Yu, M.

Yu, Q.

X. Zhou, Q. Yu, and W. Peng, “Fiber-optic Fabry-Perot pressure sensor for down-hole application,” Opt. Lasers Eng. 121, 289–299 (2019).
[Crossref]

W. Wang, X. Jiang, and Q. Yu, “Temperature self-compensation fiber-optic pressure sensor based on fiber Bragg grating and Fabry-Perot interference multiplexing,” Opt. Commun. 285(16), 3466–3470 (2012).
[Crossref]

Z. Jing and Q. Yu, “White light optical fiber EFPI sensor based on cross-correlation signal processing method,” in Proceedings of 6th International Symposium on Test and Measurement. (Academic, 2005), pp. 3509–3511.

Zhang, Y.

Z. Jing, Y. Liu, Y. Zhang, A. Li, P. Song, Z. Wu, Y. Zhang, and W. Peng, “Highly Sensitive FBG-FP sensor for Simultaneous Measurement of Humidity and Temperature,” in 26th International Conference on Optical Fiber Sensors, 2018 OSA Technical Digest Series (Optical Society of America, 2018), paper WF79.

Z. Jing, Y. Liu, Y. Zhang, A. Li, P. Song, Z. Wu, Y. Zhang, and W. Peng, “Highly Sensitive FBG-FP sensor for Simultaneous Measurement of Humidity and Temperature,” in 26th International Conference on Optical Fiber Sensors, 2018 OSA Technical Digest Series (Optical Society of America, 2018), paper WF79.

Zhou, J.

X. Guo, J. Zhou, C. Du, and X. Wang, “Highly Sensitive Miniature All-Silica Fiber Tip Fabry-Perot Pressure Sensor,” IEEE Photonics Technol. Lett. 31(9), 689–692 (2019).
[Crossref]

Y. Wu, C. Yu, F. Wu, C. Li, J. Zhou, Y. Gong, Y. Rao, and Y. Chen, “A highly sensitive fiber-optic microphone based on graphene oxide membrane,” J. Lightwave Technol. 35(19), 4344–4349 (2017).
[Crossref]

Zhou, X.

X. Zhou, Q. Yu, and W. Peng, “Fiber-optic Fabry-Perot pressure sensor for down-hole application,” Opt. Lasers Eng. 121, 289–299 (2019).
[Crossref]

Zhu, J.

L. Dai, M. Wang, D. Cai, H. Rong, J. Zhu, S. Jia, and J. You, “Optical fiber Fabry–Perot pressure sensor based on a polymer structure,” IEEE Photonics Technol. Lett. 25(24), 2505–2508 (2013).
[Crossref]

Zhu, Y.

Zubia, J.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors 15(7), 15494–15519 (2015).
[Crossref]

Appl. Opt. (2)

Biomed. Microdevices (1)

O. H. Murphy, M. R. Bahmanyar, A. Borghi, C. N. McLeod, M. Navaratnarajah, M. H. Yacoub, and C. Toumazou, “Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor,” Biomed. Microdevices 15(5), 737–749 (2013).
[Crossref]

Circ. J. (1)

N. H. J. Pijls, “Fractional flow reserve to guide coronary revascularization,” Circ. J. 77(3), 561–569 (2013).
[Crossref]

Classical Quantum Gravity (6)

R. Douglas, A. A. Van Veggel, L. Cunningham, K. Haughian, J. Hough, and S. Rowan, “Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding,” Classical Quantum Gravity 31(4), 045001 (2014).
[Crossref]

B. Willke, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. W. Barr, S. Bose, G. Cagnoli, M. M. Casey, and D. Churches, “The GEO 600 gravitational wave detector,” Classical Quantum Gravity 19(7), 1377–1387 (2002).
[Crossref]

S. M. Aston, M. A. Barton, A. S. Bell, N. Beveridge, B. Bland, A. J. Brummitt, G. Cagnoli, C. A. Cantley, L. Carbone, A. V. Cumming, and L. Cunningham, “Update on quadruple suspension design for Advanced LIGO,” Classical Quantum Gravity 29(23), 235004 (2012).
[Crossref]

M. Lorenzini and V. Collaboration, “The monolithic suspension for the virgo interferometer,” Classical Quantum Gravity 27(8), 084021 (2010).
[Crossref]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Classical Quantum Gravity 22(10), S257–S267 (2005).
[Crossref]

G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garcíal, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Classical Quantum Gravity 22(10), S149–S154 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Dai, M. Wang, D. Cai, H. Rong, J. Zhu, S. Jia, and J. You, “Optical fiber Fabry–Perot pressure sensor based on a polymer structure,” IEEE Photonics Technol. Lett. 25(24), 2505–2508 (2013).
[Crossref]

X. Guo, J. Zhou, C. Du, and X. Wang, “Highly Sensitive Miniature All-Silica Fiber Tip Fabry-Perot Pressure Sensor,” IEEE Photonics Technol. Lett. 31(9), 689–692 (2019).
[Crossref]

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
[Crossref]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

T. Kentaro, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71 (2004).

J. Neurosci. Methods (1)

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[Crossref]

Nano Lett. (1)

S. Sivasankar and S. Chu, “Optical bonding using silica nanoparticle sol-gel chemistry,” Nano Lett. 7(10), 3031–3034 (2007).
[Crossref]

Opt. Commun. (2)

W. Wang, X. Jiang, and Q. Yu, “Temperature self-compensation fiber-optic pressure sensor based on fiber Bragg grating and Fabry-Perot interference multiplexing,” Opt. Commun. 285(16), 3466–3470 (2012).
[Crossref]

W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, and J. Huang, “Adhesive-free bonding homogenous fused-silica Fabry-Perot optical fiber low pressure sensor in harsh environments by CO2 laser welding,” Opt. Commun. 435, 97–101 (2019).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

S. Z. Yan and L. S. Chyan, “Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring,” Opt. Fiber Technol. 16(2), 100–109 (2010).
[Crossref]

Opt. Lasers Eng. (1)

X. Zhou, Q. Yu, and W. Peng, “Fiber-optic Fabry-Perot pressure sensor for down-hole application,” Opt. Lasers Eng. 121, 289–299 (2019).
[Crossref]

Opt. Lett. (2)

Phys. Lett. A (1)

S. Reid, G. Cagnolia, E. Elliffe, J. Faller, J. Hough, I. Martin, and S. Rowan, “Influence of temperature and hydroxide concentration on the settling time of hydroxy-catalysis bonds,” Phys. Lett. A 363(5-6), 341–345 (2007).
[Crossref]

Proc. SPIE (1)

D. Gwo, “Ultraprecision bonding for cryogenic fused-silica optics,” Proc. SPIE 3435, 136–142 (1998).
[Crossref]

Sensors (1)

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors 15(7), 15494–15519 (2015).
[Crossref]

Other (7)

D. Gwo, “Ultra precision and reliable bonding method,” U.S. Patent 6,284,085 (2001).

D. Gwo, “Hydroxide-catalyzed bonding,” U.S. Patent 6,548,176 (2003).

H. E. Bergna, The colloid chemistry of silica (American Chemical Society, 1994).

Z. Jing, Y. Liu, Y. Zhang, A. Li, P. Song, Z. Wu, Y. Zhang, and W. Peng, “Highly Sensitive FBG-FP sensor for Simultaneous Measurement of Humidity and Temperature,” in 26th International Conference on Optical Fiber Sensors, 2018 OSA Technical Digest Series (Optical Society of America, 2018), paper WF79.

D. Giovanni, Flat and corrugated diaphragm design handbook (Marcel Dekker, 1982).

Z. Jing, “Study on White Light Extrinsic Fabry-Perot Interferometric Optical Fiber Sensor and its Application,” Doctoral dissertation, Dalian University of Technology (2006).

Z. Jing and Q. Yu, “White light optical fiber EFPI sensor based on cross-correlation signal processing method,” in Proceedings of 6th International Symposium on Test and Measurement. (Academic, 2005), pp. 3509–3511.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Configuration of the proposed fiber-optic tip pressure sensor, (a) structure of the sensor probe, (b) the top view of a well-bonded sensor probe, and (c) the side view of the sensor probe.
Fig. 2.
Fig. 2. Theoretically calculated pressure sensitivity and pressure limit of the silicon diaphragm with an effective diameter of 80 µm under different diaphragm thickness, (a) the relationship between the theoretical sensitivity and diaphragm thickness, and (b) the relationship between the theoretical pressure limit and the diaphragm thickness.
Fig. 3.
Fig. 3. Fabrication procedure of silicon diaphragms by MEMS technology.
Fig. 4.
Fig. 4. Fabrication of the fiber-optic tip pressure sensor, (a) fusion splice fiber endface to a hollow tube, (b) cut the other endface of hollow tube, (c) dip bonding solution, (d) align and slightly compress the silicon diaphragm, (e) lift the silicon diaphragm, and (f) the picture of a typical sensor after HCB process under a microscope.
Fig. 5.
Fig. 5. The schematic diagram of the experimental setup for a static pressure test.
Fig. 6.
Fig. 6. The static pressure response of the proposed sensor from 0 to 100kPa, (a) the shift in the reflection spectrum with pressure, and (b) the pressure response of the sensor for three cycles.
Fig. 7.
Fig. 7. Variations of the FP cavity length with time at room temperature, (a) experiment results of the standard deviation of the proposed sensor (about 10 mins of time span), and (b) changes of initial cavity length within 10 hours.
Fig. 8.
Fig. 8. High-temperature response characteristics of the proposed sensor, (a) temperature response from room temperature (24 °C) to 600 °C, and (b) comparison of reflection spectrum before/after a cycle of temperature warming and cooling to room temperature.

Tables (1)

Tables Icon

Table 1. Different methods for polymer-free assemblies.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Si O 2  + O H  + 2 H 2 O Si ( OH ) 5
Si ( OH ) 5 Si ( OH ) 4  + O H
2Si ( OH ) 4 ( HO ) 3 SiOSi ( OH ) 3  +  H 2 O
I = I 1 + I 2 + 2 I 1 I 2 cos δ
Δ y = 3 ( 1 v 2 ) a 4 16 E h 3 Δ P
P l i m i t = 8 E h 4 5 ( 1 v 2 ) a 4

Metrics