Abstract

The premise that long afterglow can be applied is its duration, and the persistent duration is closely related to the depth of the traps. Therefore, the stable deep traps are the key to obtain long persistent luminescence. Based on this, a strategy that X-ray excites high-gap phosphors to achieve long persistent luminescence is firstly proposed. Herein, rare earth (RE) ions doped YPO4 phosphor is adopted as the research object as RE ions can form stable and deeper defect centers or luminescent centers in high bandgap materials. Furthermore, the efficient method of enhancing persistent luminescence is designed so that introducing Tb3+ ions into YPO4:Sm3+ crystals forms tightly bound excitons, which modulates the depth of defect centers (Sm3+ ions), improving the afterglow behavior from Sm3+ ions for more than two days, which is approximately 14 times stronger than the afterglow of YPO4:Sm3+ phosphors itself. Finally, highly efficient in vivo deep tissue bioimaging was successfully achieved through mouse tail intravenous injection. The results indicate that the YPO4:Sm3+,Tb3+ phosphor possesses great promise in the field of in vivo imaging.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
La3GaGe5O16:Cr3+ phosphor: the near-infrared persistent luminescence

Shaoan Zhang, Yihua Hu, Li Chen, Yinrong Fu, and Guifang Ju
Opt. Mater. Express 6(4) 1247-1255 (2016)

Persistent luminescence properties of Cr3+-Sm3+ activated LaAlO3 perovskite

Yumiko Katayama, Hiroaki Kobayashi, Jumpei Ueda, Bruno Viana, and Setsuhisa Tanabe
Opt. Mater. Express 6(5) 1500-1505 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Pan, Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
    [Crossref]
  2. R. Kabe and C. Adachi, “Organic long persistent luminescence,” Nature 550(7676), 384–387 (2017).
    [Crossref]
  3. Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. Zhou, T. Takeda, N. Hirosaki, and R. Xie, “Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+= Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
    [Crossref]
  4. Y. Zhuang, L. Wang, Y. Lv, T. Zhou, and R. Xie, “Optical Data Storage and Multicolor Emission Readout on Flexible Films Using Deep-Trap Persistent Luminescence Materials,” Adv. Funct. Mater. 28(8), 1705769 (2017).
    [Crossref]
  5. Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
    [Crossref]
  6. X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
    [Crossref]
  7. T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
    [Crossref]
  8. F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
    [Crossref]
  9. Z. Yi, X. Li, Z. Xue, X. Liang, W. Lu, H. Peng, H. Liu, S. Zeng, and J. Hao, “Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T-2-weighted MRI-guided small tumor diagnosis,” Adv. Funct. Mater. 25(46), 7119–7129 (2015).
    [Crossref]
  10. W. Yan, F. Liu, Y.-Y. Lu, X.-J. Wang, M. Yin, and Z. Pan, “Near infrared long-persistent phosphorescence in La3Ga5GeO14:Cr3+ phosphor,” Opt. Express 18(19), 20215–20221 (2010).
    [Crossref]
  11. L. Song, X. Lin, X. Song, S. Chen, X. Chen, J. Li, and H. Yang, “Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging,” Nanoscale 9(8), 2718–2722 (2017).
    [Crossref]
  12. Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors-from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
    [Crossref]
  13. G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
    [Crossref]
  14. D. J. Naczynski, C. Sun, S. Türkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes,” Nano Lett. 15(1), 96–102 (2015).
    [Crossref]
  15. Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, and J. Hao, “X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging,” ACS Appl. Mater. Interfaces 9(27), 22132–22142 (2017).
    [Crossref]
  16. M. Thoms, S. H. Von, and A. Winnacker, “Spatial correlation and photostimulability of defect centers in the x-ray-storage phosphor BaFBr: Eu2+,” Phys. Rev. B 44(17), 9240–9247 (1991).
    [Crossref]
  17. H. Seggern, “Photostimulable x-ray storage phosphors: a review of present understanding,” Braz. J. Phys. 29(2), 254–268 (1999).
    [Crossref]
  18. E. Loh, “Lowest 4f → 5d Transition of Trivalent Rare-Earth Ions in CaF2 Crystals,” Phys. Rev. 147(1), 332–335 (1966).
    [Crossref]
  19. C. M. Combes, P. Dorenbos, C. W. E. V. Eijk, C. Pedrini, H. W. Den Hartog, J. Y. Gesland, and P. A. Rodnyi, “Optical and scintillation properties of Ce3+ doped LiYF4 and LiLuF4 crystals,” J. Lumin. 71(1), 65–70 (1997).
    [Crossref]
  20. P. Dorenbos, A. H. Krumpel, E. V. D. Kolk, P. Boutinaud, M. Bettinelli, and E. Cavalli, “Lanthanide level location in transition metal complex compounds,” Opt. Mater. 32(12), 1681–1685 (2010).
    [Crossref]
  21. A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
    [Crossref]
  22. T. Lyu and P. Dorenbos, “Charge carrier trapping processes in lanthanide doped LaPO4, GdPO4, YPO4, and LuPO4,” J. Phys. Chem. C 6(2), 369–379 (2018).
    [Crossref]
  23. K. Swiatek, M. Godlewski, and D. Hommel, “Deep europium-bound exciton in a ZnS lattice,” Phys. Rev. B 42(6), 3628–3633 (1990).
    [Crossref]
  24. H. J. Lozykowski, “Kinetics of luminescence of isoelectronic rare-earth ions in III-V semiconductors,” Phys. Rev. B 48(24), 17758–17769 (1993).
    [Crossref]
  25. A. J. J. Bos, P. Dorenbos, A. Bessière, and B. Vianab, “Lanthanide energy levels in YPO4,” Radiat. Meas. 43(2-6), 222–226 (2008).
    [Crossref]
  26. E. Cavalli, F. Angiuli, F. Mezzadri, M. Trevisani, M. Bettinelli, P. Boutinaud, and M. G. Brik, “Tunable luminescence of Bi3+-doped YPxV1−xO4 (0 ≤ x ≤ 1),” J. Phys.: Condens. Matter 26(38), 385503 (2014).
    [Crossref]
  27. A. M. Srivastava and S. J. Camardello, “Concentration dependence of the Bi3+ luminescence in LnPO4 (Ln = Y3+, Lu3+),” Opt. Mater. 39, 130–133 (2015).
    [Crossref]
  28. H. Luo and P. Dorenbos, “The dual role of Cr3+ in trapping holes and electrons in lanthanide co-doped GdAlO3 and LaAlO3,” J. Mater. Chem. C 6(18), 4977–4984 (2018).
    [Crossref]
  29. P. Dorenbos, A. J. J. Bos, and N. R. J. Poolton, “Electron transfer processes in double lanthanide activated YPO4,” Opt. Mater. 33(7), 1019–1023 (2011).
    [Crossref]
  30. N. V. Kuleshev, V. G. Shcherbitskii, V. P. Mikhailov, S. A. Guretskii, A. M. Luginets, A. S. Milovanov, E. B. Dunina, S. Hartung, and G. Huber, “Spectroscopic properties of LiGa5O8 single crystals doped with chromium,” Opt. Spectrosc. 84(6), 865–869 (1998).
  31. M. Sabitha, N. S. Rejinold, A. Nair, V. K. Lakshmanan, S. V. Nair, and R. Jayakumar, “Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer,” Carbohydr. Polym. 91(1), 48–57 (2013).
    [Crossref]
  32. Q. L. M. D. Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. 104(22), 9266–9271 (2007).
    [Crossref]

2018 (4)

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. Zhou, T. Takeda, N. Hirosaki, and R. Xie, “Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+= Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref]

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

T. Lyu and P. Dorenbos, “Charge carrier trapping processes in lanthanide doped LaPO4, GdPO4, YPO4, and LuPO4,” J. Phys. Chem. C 6(2), 369–379 (2018).
[Crossref]

H. Luo and P. Dorenbos, “The dual role of Cr3+ in trapping holes and electrons in lanthanide co-doped GdAlO3 and LaAlO3,” J. Mater. Chem. C 6(18), 4977–4984 (2018).
[Crossref]

2017 (4)

Y. Zhuang, L. Wang, Y. Lv, T. Zhou, and R. Xie, “Optical Data Storage and Multicolor Emission Readout on Flexible Films Using Deep-Trap Persistent Luminescence Materials,” Adv. Funct. Mater. 28(8), 1705769 (2017).
[Crossref]

R. Kabe and C. Adachi, “Organic long persistent luminescence,” Nature 550(7676), 384–387 (2017).
[Crossref]

L. Song, X. Lin, X. Song, S. Chen, X. Chen, J. Li, and H. Yang, “Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging,” Nanoscale 9(8), 2718–2722 (2017).
[Crossref]

Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, and J. Hao, “X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging,” ACS Appl. Mater. Interfaces 9(27), 22132–22142 (2017).
[Crossref]

2016 (1)

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors-from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]

2015 (4)

D. J. Naczynski, C. Sun, S. Türkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes,” Nano Lett. 15(1), 96–102 (2015).
[Crossref]

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref]

Z. Yi, X. Li, Z. Xue, X. Liang, W. Lu, H. Peng, H. Liu, S. Zeng, and J. Hao, “Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T-2-weighted MRI-guided small tumor diagnosis,” Adv. Funct. Mater. 25(46), 7119–7129 (2015).
[Crossref]

A. M. Srivastava and S. J. Camardello, “Concentration dependence of the Bi3+ luminescence in LnPO4 (Ln = Y3+, Lu3+),” Opt. Mater. 39, 130–133 (2015).
[Crossref]

2014 (3)

E. Cavalli, F. Angiuli, F. Mezzadri, M. Trevisani, M. Bettinelli, P. Boutinaud, and M. G. Brik, “Tunable luminescence of Bi3+-doped YPxV1−xO4 (0 ≤ x ≤ 1),” J. Phys.: Condens. Matter 26(38), 385503 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref]

2013 (1)

M. Sabitha, N. S. Rejinold, A. Nair, V. K. Lakshmanan, S. V. Nair, and R. Jayakumar, “Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer,” Carbohydr. Polym. 91(1), 48–57 (2013).
[Crossref]

2012 (1)

Z. Pan, Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[Crossref]

2011 (2)

P. Dorenbos, A. J. J. Bos, and N. R. J. Poolton, “Electron transfer processes in double lanthanide activated YPO4,” Opt. Mater. 33(7), 1019–1023 (2011).
[Crossref]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

2010 (3)

2008 (1)

A. J. J. Bos, P. Dorenbos, A. Bessière, and B. Vianab, “Lanthanide energy levels in YPO4,” Radiat. Meas. 43(2-6), 222–226 (2008).
[Crossref]

2007 (1)

Q. L. M. D. Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. 104(22), 9266–9271 (2007).
[Crossref]

1999 (1)

H. Seggern, “Photostimulable x-ray storage phosphors: a review of present understanding,” Braz. J. Phys. 29(2), 254–268 (1999).
[Crossref]

1998 (1)

N. V. Kuleshev, V. G. Shcherbitskii, V. P. Mikhailov, S. A. Guretskii, A. M. Luginets, A. S. Milovanov, E. B. Dunina, S. Hartung, and G. Huber, “Spectroscopic properties of LiGa5O8 single crystals doped with chromium,” Opt. Spectrosc. 84(6), 865–869 (1998).

1997 (1)

C. M. Combes, P. Dorenbos, C. W. E. V. Eijk, C. Pedrini, H. W. Den Hartog, J. Y. Gesland, and P. A. Rodnyi, “Optical and scintillation properties of Ce3+ doped LiYF4 and LiLuF4 crystals,” J. Lumin. 71(1), 65–70 (1997).
[Crossref]

1993 (1)

H. J. Lozykowski, “Kinetics of luminescence of isoelectronic rare-earth ions in III-V semiconductors,” Phys. Rev. B 48(24), 17758–17769 (1993).
[Crossref]

1991 (1)

M. Thoms, S. H. Von, and A. Winnacker, “Spatial correlation and photostimulability of defect centers in the x-ray-storage phosphor BaFBr: Eu2+,” Phys. Rev. B 44(17), 9240–9247 (1991).
[Crossref]

1990 (1)

K. Swiatek, M. Godlewski, and D. Hommel, “Deep europium-bound exciton in a ZnS lattice,” Phys. Rev. B 42(6), 3628–3633 (1990).
[Crossref]

1966 (1)

E. Loh, “Lowest 4f → 5d Transition of Trivalent Rare-Earth Ions in CaF2 Crystals,” Phys. Rev. 147(1), 332–335 (1966).
[Crossref]

Adachi, C.

R. Kabe and C. Adachi, “Organic long persistent luminescence,” Nature 550(7676), 384–387 (2017).
[Crossref]

Angiuli, F.

E. Cavalli, F. Angiuli, F. Mezzadri, M. Trevisani, M. Bettinelli, P. Boutinaud, and M. G. Brik, “Tunable luminescence of Bi3+-doped YPxV1−xO4 (0 ≤ x ≤ 1),” J. Phys.: Condens. Matter 26(38), 385503 (2014).
[Crossref]

Bessière, A.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

A. J. J. Bos, P. Dorenbos, A. Bessière, and B. Vianab, “Lanthanide energy levels in YPO4,” Radiat. Meas. 43(2-6), 222–226 (2008).
[Crossref]

Bessodes, M.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

Q. L. M. D. Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. 104(22), 9266–9271 (2007).
[Crossref]

Bettinelli, M.

E. Cavalli, F. Angiuli, F. Mezzadri, M. Trevisani, M. Bettinelli, P. Boutinaud, and M. G. Brik, “Tunable luminescence of Bi3+-doped YPxV1−xO4 (0 ≤ x ≤ 1),” J. Phys.: Condens. Matter 26(38), 385503 (2014).
[Crossref]

P. Dorenbos, A. H. Krumpel, E. V. D. Kolk, P. Boutinaud, M. Bettinelli, and E. Cavalli, “Lanthanide level location in transition metal complex compounds,” Opt. Mater. 32(12), 1681–1685 (2010).
[Crossref]

Bos, A. J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

Bos, A. J. J.

P. Dorenbos, A. J. J. Bos, and N. R. J. Poolton, “Electron transfer processes in double lanthanide activated YPO4,” Opt. Mater. 33(7), 1019–1023 (2011).
[Crossref]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

A. J. J. Bos, P. Dorenbos, A. Bessière, and B. Vianab, “Lanthanide energy levels in YPO4,” Radiat. Meas. 43(2-6), 222–226 (2008).
[Crossref]

Boutinaud, P.

E. Cavalli, F. Angiuli, F. Mezzadri, M. Trevisani, M. Bettinelli, P. Boutinaud, and M. G. Brik, “Tunable luminescence of Bi3+-doped YPxV1−xO4 (0 ≤ x ≤ 1),” J. Phys.: Condens. Matter 26(38), 385503 (2014).
[Crossref]

P. Dorenbos, A. H. Krumpel, E. V. D. Kolk, P. Boutinaud, M. Bettinelli, and E. Cavalli, “Lanthanide level location in transition metal complex compounds,” Opt. Mater. 32(12), 1681–1685 (2010).
[Crossref]

Brik, M. G.

E. Cavalli, F. Angiuli, F. Mezzadri, M. Trevisani, M. Bettinelli, P. Boutinaud, and M. G. Brik, “Tunable luminescence of Bi3+-doped YPxV1−xO4 (0 ≤ x ≤ 1),” J. Phys.: Condens. Matter 26(38), 385503 (2014).
[Crossref]

Camardello, S. J.

A. M. Srivastava and S. J. Camardello, “Concentration dependence of the Bi3+ luminescence in LnPO4 (Ln = Y3+, Lu3+),” Opt. Mater. 39, 130–133 (2015).
[Crossref]

Carpenter, C. M.

Cavalli, E.

E. Cavalli, F. Angiuli, F. Mezzadri, M. Trevisani, M. Bettinelli, P. Boutinaud, and M. G. Brik, “Tunable luminescence of Bi3+-doped YPxV1−xO4 (0 ≤ x ≤ 1),” J. Phys.: Condens. Matter 26(38), 385503 (2014).
[Crossref]

P. Dorenbos, A. H. Krumpel, E. V. D. Kolk, P. Boutinaud, M. Bettinelli, and E. Cavalli, “Lanthanide level location in transition metal complex compounds,” Opt. Mater. 32(12), 1681–1685 (2010).
[Crossref]

Chanéac, C.

Q. L. M. D. Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. 104(22), 9266–9271 (2007).
[Crossref]

Chen, L.

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

Chen, S.

L. Song, X. Lin, X. Song, S. Chen, X. Chen, J. Li, and H. Yang, “Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging,” Nanoscale 9(8), 2718–2722 (2017).
[Crossref]

Chen, W.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. Zhou, T. Takeda, N. Hirosaki, and R. Xie, “Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+= Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref]

Chen, X.

L. Song, X. Lin, X. Song, S. Chen, X. Chen, J. Li, and H. Yang, “Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging,” Nanoscale 9(8), 2718–2722 (2017).
[Crossref]

Chermont, Q. L. M. D.

Q. L. M. D. Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. 104(22), 9266–9271 (2007).
[Crossref]

Combes, C. M.

C. M. Combes, P. Dorenbos, C. W. E. V. Eijk, C. Pedrini, H. W. Den Hartog, J. Y. Gesland, and P. A. Rodnyi, “Optical and scintillation properties of Ce3+ doped LiYF4 and LiLuF4 crystals,” J. Lumin. 71(1), 65–70 (1997).
[Crossref]

Den Hartog, H. W.

C. M. Combes, P. Dorenbos, C. W. E. V. Eijk, C. Pedrini, H. W. Den Hartog, J. Y. Gesland, and P. A. Rodnyi, “Optical and scintillation properties of Ce3+ doped LiYF4 and LiLuF4 crystals,” J. Lumin. 71(1), 65–70 (1997).
[Crossref]

Dorenbos, P.

T. Lyu and P. Dorenbos, “Charge carrier trapping processes in lanthanide doped LaPO4, GdPO4, YPO4, and LuPO4,” J. Phys. Chem. C 6(2), 369–379 (2018).
[Crossref]

H. Luo and P. Dorenbos, “The dual role of Cr3+ in trapping holes and electrons in lanthanide co-doped GdAlO3 and LaAlO3,” J. Mater. Chem. C 6(18), 4977–4984 (2018).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

P. Dorenbos, A. J. J. Bos, and N. R. J. Poolton, “Electron transfer processes in double lanthanide activated YPO4,” Opt. Mater. 33(7), 1019–1023 (2011).
[Crossref]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

P. Dorenbos, A. H. Krumpel, E. V. D. Kolk, P. Boutinaud, M. Bettinelli, and E. Cavalli, “Lanthanide level location in transition metal complex compounds,” Opt. Mater. 32(12), 1681–1685 (2010).
[Crossref]

A. J. J. Bos, P. Dorenbos, A. Bessière, and B. Vianab, “Lanthanide energy levels in YPO4,” Radiat. Meas. 43(2-6), 222–226 (2008).
[Crossref]

C. M. Combes, P. Dorenbos, C. W. E. V. Eijk, C. Pedrini, H. W. Den Hartog, J. Y. Gesland, and P. A. Rodnyi, “Optical and scintillation properties of Ce3+ doped LiYF4 and LiLuF4 crystals,” J. Lumin. 71(1), 65–70 (1997).
[Crossref]

Du, B.

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

Dunina, E. B.

N. V. Kuleshev, V. G. Shcherbitskii, V. P. Mikhailov, S. A. Guretskii, A. M. Luginets, A. S. Milovanov, E. B. Dunina, S. Hartung, and G. Huber, “Spectroscopic properties of LiGa5O8 single crystals doped with chromium,” Opt. Spectrosc. 84(6), 865–869 (1998).

Eijk, C. W. E. V.

C. M. Combes, P. Dorenbos, C. W. E. V. Eijk, C. Pedrini, H. W. Den Hartog, J. Y. Gesland, and P. A. Rodnyi, “Optical and scintillation properties of Ce3+ doped LiYF4 and LiLuF4 crystals,” J. Lumin. 71(1), 65–70 (1997).
[Crossref]

Fan, W.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref]

Gecevicius, M.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors-from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]

Gesland, J. Y.

C. M. Combes, P. Dorenbos, C. W. E. V. Eijk, C. Pedrini, H. W. Den Hartog, J. Y. Gesland, and P. A. Rodnyi, “Optical and scintillation properties of Ce3+ doped LiYF4 and LiLuF4 crystals,” J. Lumin. 71(1), 65–70 (1997).
[Crossref]

Godlewski, M.

K. Swiatek, M. Godlewski, and D. Hommel, “Deep europium-bound exciton in a ZnS lattice,” Phys. Rev. B 42(6), 3628–3633 (1990).
[Crossref]

Gourier, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

Q. L. M. D. Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. 104(22), 9266–9271 (2007).
[Crossref]

Guretskii, S. A.

N. V. Kuleshev, V. G. Shcherbitskii, V. P. Mikhailov, S. A. Guretskii, A. M. Luginets, A. S. Milovanov, E. B. Dunina, S. Hartung, and G. Huber, “Spectroscopic properties of LiGa5O8 single crystals doped with chromium,” Opt. Spectrosc. 84(6), 865–869 (1998).

Han, G.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref]

Hao, J.

Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, and J. Hao, “X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging,” ACS Appl. Mater. Interfaces 9(27), 22132–22142 (2017).
[Crossref]

Z. Yi, X. Li, Z. Xue, X. Liang, W. Lu, H. Peng, H. Liu, S. Zeng, and J. Hao, “Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T-2-weighted MRI-guided small tumor diagnosis,” Adv. Funct. Mater. 25(46), 7119–7129 (2015).
[Crossref]

Hartung, S.

N. V. Kuleshev, V. G. Shcherbitskii, V. P. Mikhailov, S. A. Guretskii, A. M. Luginets, A. S. Milovanov, E. B. Dunina, S. Hartung, and G. Huber, “Spectroscopic properties of LiGa5O8 single crystals doped with chromium,” Opt. Spectrosc. 84(6), 865–869 (1998).

Hirosaki, N.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. Zhou, T. Takeda, N. Hirosaki, and R. Xie, “Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+= Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref]

Hommel, D.

K. Swiatek, M. Godlewski, and D. Hommel, “Deep europium-bound exciton in a ZnS lattice,” Phys. Rev. B 42(6), 3628–3633 (1990).
[Crossref]

Hu, Y.

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

Huang, L.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref]

Huber, G.

N. V. Kuleshev, V. G. Shcherbitskii, V. P. Mikhailov, S. A. Guretskii, A. M. Luginets, A. S. Milovanov, E. B. Dunina, S. Hartung, and G. Huber, “Spectroscopic properties of LiGa5O8 single crystals doped with chromium,” Opt. Spectrosc. 84(6), 865–869 (1998).

Ikeda, D.

D. J. Naczynski, C. Sun, S. Türkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes,” Nano Lett. 15(1), 96–102 (2015).
[Crossref]

Jacquart, S.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

Jayakumar, R.

M. Sabitha, N. S. Rejinold, A. Nair, V. K. Lakshmanan, S. V. Nair, and R. Jayakumar, “Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer,” Carbohydr. Polym. 91(1), 48–57 (2013).
[Crossref]

Jenkins, C.

D. J. Naczynski, C. Sun, S. Türkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes,” Nano Lett. 15(1), 96–102 (2015).
[Crossref]

Jiang, M.

Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, and J. Hao, “X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging,” ACS Appl. Mater. Interfaces 9(27), 22132–22142 (2017).
[Crossref]

Jolivet, J. P.

Q. L. M. D. Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. 104(22), 9266–9271 (2007).
[Crossref]

Kabe, R.

R. Kabe and C. Adachi, “Organic long persistent luminescence,” Nature 550(7676), 384–387 (2017).
[Crossref]

Koh, A. L.

D. J. Naczynski, C. Sun, S. Türkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes,” Nano Lett. 15(1), 96–102 (2015).
[Crossref]

Kolk, E. V. D.

P. Dorenbos, A. H. Krumpel, E. V. D. Kolk, P. Boutinaud, M. Bettinelli, and E. Cavalli, “Lanthanide level location in transition metal complex compounds,” Opt. Mater. 32(12), 1681–1685 (2010).
[Crossref]

Krumpel, A. H.

P. Dorenbos, A. H. Krumpel, E. V. D. Kolk, P. Boutinaud, M. Bettinelli, and E. Cavalli, “Lanthanide level location in transition metal complex compounds,” Opt. Mater. 32(12), 1681–1685 (2010).
[Crossref]

Kuleshev, N. V.

N. V. Kuleshev, V. G. Shcherbitskii, V. P. Mikhailov, S. A. Guretskii, A. M. Luginets, A. S. Milovanov, E. B. Dunina, S. Hartung, and G. Huber, “Spectroscopic properties of LiGa5O8 single crystals doped with chromium,” Opt. Spectrosc. 84(6), 865–869 (1998).

Lakshmanan, V. K.

M. Sabitha, N. S. Rejinold, A. Nair, V. K. Lakshmanan, S. V. Nair, and R. Jayakumar, “Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer,” Carbohydr. Polym. 91(1), 48–57 (2013).
[Crossref]

Lecointre, A.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

Li, D.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref]

Li, J.

L. Song, X. Lin, X. Song, S. Chen, X. Chen, J. Li, and H. Yang, “Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging,” Nanoscale 9(8), 2718–2722 (2017).
[Crossref]

Li, X.

Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, and J. Hao, “X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging,” ACS Appl. Mater. Interfaces 9(27), 22132–22142 (2017).
[Crossref]

Z. Yi, X. Li, Z. Xue, X. Liang, W. Lu, H. Peng, H. Liu, S. Zeng, and J. Hao, “Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T-2-weighted MRI-guided small tumor diagnosis,” Adv. Funct. Mater. 25(46), 7119–7129 (2015).
[Crossref]

Li, Y.

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, and J. Hao, “X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging,” ACS Appl. Mater. Interfaces 9(27), 22132–22142 (2017).
[Crossref]

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors-from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]

Li, Z.

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref]

Liang, X.

Z. Yi, X. Li, Z. Xue, X. Liang, W. Lu, H. Peng, H. Liu, S. Zeng, and J. Hao, “Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T-2-weighted MRI-guided small tumor diagnosis,” Adv. Funct. Mater. 25(46), 7119–7129 (2015).
[Crossref]

Liang, Y.

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref]

Lin, X.

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

L. Song, X. Lin, X. Song, S. Chen, X. Chen, J. Li, and H. Yang, “Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging,” Nanoscale 9(8), 2718–2722 (2017).
[Crossref]

Liu, F.

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref]

Z. Pan, Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[Crossref]

W. Yan, F. Liu, Y.-Y. Lu, X.-J. Wang, M. Yin, and Z. Pan, “Near infrared long-persistent phosphorescence in La3Ga5GeO14:Cr3+ phosphor,” Opt. Express 18(19), 20215–20221 (2010).
[Crossref]

Liu, H.

Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, and J. Hao, “X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging,” ACS Appl. Mater. Interfaces 9(27), 22132–22142 (2017).
[Crossref]

Z. Yi, X. Li, Z. Xue, X. Liang, W. Lu, H. Peng, H. Liu, S. Zeng, and J. Hao, “Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T-2-weighted MRI-guided small tumor diagnosis,” Adv. Funct. Mater. 25(46), 7119–7129 (2015).
[Crossref]

Loh, E.

E. Loh, “Lowest 4f → 5d Transition of Trivalent Rare-Earth Ions in CaF2 Crystals,” Phys. Rev. 147(1), 332–335 (1966).
[Crossref]

Lozykowski, H. J.

H. J. Lozykowski, “Kinetics of luminescence of isoelectronic rare-earth ions in III-V semiconductors,” Phys. Rev. B 48(24), 17758–17769 (1993).
[Crossref]

Lu, W.

Z. Yi, X. Li, Z. Xue, X. Liang, W. Lu, H. Peng, H. Liu, S. Zeng, and J. Hao, “Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T-2-weighted MRI-guided small tumor diagnosis,” Adv. Funct. Mater. 25(46), 7119–7129 (2015).
[Crossref]

Lu, Y.

Z. Pan, Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[Crossref]

Lu, Y.-Y.

Luginets, A. M.

N. V. Kuleshev, V. G. Shcherbitskii, V. P. Mikhailov, S. A. Guretskii, A. M. Luginets, A. S. Milovanov, E. B. Dunina, S. Hartung, and G. Huber, “Spectroscopic properties of LiGa5O8 single crystals doped with chromium,” Opt. Spectrosc. 84(6), 865–869 (1998).

Luo, H.

H. Luo and P. Dorenbos, “The dual role of Cr3+ in trapping holes and electrons in lanthanide co-doped GdAlO3 and LaAlO3,” J. Mater. Chem. C 6(18), 4977–4984 (2018).
[Crossref]

Lv, Y.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. Zhou, T. Takeda, N. Hirosaki, and R. Xie, “Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+= Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref]

Y. Zhuang, L. Wang, Y. Lv, T. Zhou, and R. Xie, “Optical Data Storage and Multicolor Emission Readout on Flexible Films Using Deep-Trap Persistent Luminescence Materials,” Adv. Funct. Mater. 28(8), 1705769 (2017).
[Crossref]

Lyu, T.

T. Lyu and P. Dorenbos, “Charge carrier trapping processes in lanthanide doped LaPO4, GdPO4, YPO4, and LuPO4,” J. Phys. Chem. C 6(2), 369–379 (2018).
[Crossref]

Maîtrejean, S.

Q. L. M. D. Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. 104(22), 9266–9271 (2007).
[Crossref]

Maldiney, T.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

Mezzadri, F.

E. Cavalli, F. Angiuli, F. Mezzadri, M. Trevisani, M. Bettinelli, P. Boutinaud, and M. G. Brik, “Tunable luminescence of Bi3+-doped YPxV1−xO4 (0 ≤ x ≤ 1),” J. Phys.: Condens. Matter 26(38), 385503 (2014).
[Crossref]

Mikhailov, V. P.

N. V. Kuleshev, V. G. Shcherbitskii, V. P. Mikhailov, S. A. Guretskii, A. M. Luginets, A. S. Milovanov, E. B. Dunina, S. Hartung, and G. Huber, “Spectroscopic properties of LiGa5O8 single crystals doped with chromium,” Opt. Spectrosc. 84(6), 865–869 (1998).

Milovanov, A. S.

N. V. Kuleshev, V. G. Shcherbitskii, V. P. Mikhailov, S. A. Guretskii, A. M. Luginets, A. S. Milovanov, E. B. Dunina, S. Hartung, and G. Huber, “Spectroscopic properties of LiGa5O8 single crystals doped with chromium,” Opt. Spectrosc. 84(6), 865–869 (1998).

Naczynski, D. J.

D. J. Naczynski, C. Sun, S. Türkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes,” Nano Lett. 15(1), 96–102 (2015).
[Crossref]

Nair, A.

M. Sabitha, N. S. Rejinold, A. Nair, V. K. Lakshmanan, S. V. Nair, and R. Jayakumar, “Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer,” Carbohydr. Polym. 91(1), 48–57 (2013).
[Crossref]

Nair, S. V.

M. Sabitha, N. S. Rejinold, A. Nair, V. K. Lakshmanan, S. V. Nair, and R. Jayakumar, “Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer,” Carbohydr. Polym. 91(1), 48–57 (2013).
[Crossref]

Nie, J.

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

Pan, Z.

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref]

Z. Pan, Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[Crossref]

W. Yan, F. Liu, Y.-Y. Lu, X.-J. Wang, M. Yin, and Z. Pan, “Near infrared long-persistent phosphorescence in La3Ga5GeO14:Cr3+ phosphor,” Opt. Express 18(19), 20215–20221 (2010).
[Crossref]

Pedrini, C.

C. M. Combes, P. Dorenbos, C. W. E. V. Eijk, C. Pedrini, H. W. Den Hartog, J. Y. Gesland, and P. A. Rodnyi, “Optical and scintillation properties of Ce3+ doped LiYF4 and LiLuF4 crystals,” J. Lumin. 71(1), 65–70 (1997).
[Crossref]

Pellé, F.

Q. L. M. D. Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. 104(22), 9266–9271 (2007).
[Crossref]

Peng, H.

Z. Yi, X. Li, Z. Xue, X. Liang, W. Lu, H. Peng, H. Liu, S. Zeng, and J. Hao, “Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T-2-weighted MRI-guided small tumor diagnosis,” Adv. Funct. Mater. 25(46), 7119–7129 (2015).
[Crossref]

Poolton, N. R. J.

P. Dorenbos, A. J. J. Bos, and N. R. J. Poolton, “Electron transfer processes in double lanthanide activated YPO4,” Opt. Mater. 33(7), 1019–1023 (2011).
[Crossref]

Pratx, G.

D. J. Naczynski, C. Sun, S. Türkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes,” Nano Lett. 15(1), 96–102 (2015).
[Crossref]

G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
[Crossref]

Qiu, J.

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors-from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]

Rao, R. P.

Rejinold, N. S.

M. Sabitha, N. S. Rejinold, A. Nair, V. K. Lakshmanan, S. V. Nair, and R. Jayakumar, “Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer,” Carbohydr. Polym. 91(1), 48–57 (2013).
[Crossref]

Ren, J.

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

Richard, C.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

Rodnyi, P. A.

C. M. Combes, P. Dorenbos, C. W. E. V. Eijk, C. Pedrini, H. W. Den Hartog, J. Y. Gesland, and P. A. Rodnyi, “Optical and scintillation properties of Ce3+ doped LiYF4 and LiLuF4 crystals,” J. Lumin. 71(1), 65–70 (1997).
[Crossref]

Sabitha, M.

M. Sabitha, N. S. Rejinold, A. Nair, V. K. Lakshmanan, S. V. Nair, and R. Jayakumar, “Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer,” Carbohydr. Polym. 91(1), 48–57 (2013).
[Crossref]

Scherman, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

Q. L. M. D. Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. 104(22), 9266–9271 (2007).
[Crossref]

Seggern, H.

H. Seggern, “Photostimulable x-ray storage phosphors: a review of present understanding,” Braz. J. Phys. 29(2), 254–268 (1999).
[Crossref]

Seguin, J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

Q. L. M. D. Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. 104(22), 9266–9271 (2007).
[Crossref]

Sharma, S. K.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

Shcherbitskii, V. G.

N. V. Kuleshev, V. G. Shcherbitskii, V. P. Mikhailov, S. A. Guretskii, A. M. Luginets, A. S. Milovanov, E. B. Dunina, S. Hartung, and G. Huber, “Spectroscopic properties of LiGa5O8 single crystals doped with chromium,” Opt. Spectrosc. 84(6), 865–869 (1998).

Song, L.

L. Song, X. Lin, X. Song, S. Chen, X. Chen, J. Li, and H. Yang, “Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging,” Nanoscale 9(8), 2718–2722 (2017).
[Crossref]

Song, X.

L. Song, X. Lin, X. Song, S. Chen, X. Chen, J. Li, and H. Yang, “Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging,” Nanoscale 9(8), 2718–2722 (2017).
[Crossref]

Srivastava, A. M.

A. M. Srivastava and S. J. Camardello, “Concentration dependence of the Bi3+ luminescence in LnPO4 (Ln = Y3+, Lu3+),” Opt. Mater. 39, 130–133 (2015).
[Crossref]

Sun, C.

D. J. Naczynski, C. Sun, S. Türkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes,” Nano Lett. 15(1), 96–102 (2015).
[Crossref]

G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
[Crossref]

Swiatek, K.

K. Swiatek, M. Godlewski, and D. Hommel, “Deep europium-bound exciton in a ZnS lattice,” Phys. Rev. B 42(6), 3628–3633 (1990).
[Crossref]

Takeda, T.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. Zhou, T. Takeda, N. Hirosaki, and R. Xie, “Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+= Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref]

Teston, E.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

Thoms, M.

M. Thoms, S. H. Von, and A. Winnacker, “Spatial correlation and photostimulability of defect centers in the x-ray-storage phosphor BaFBr: Eu2+,” Phys. Rev. B 44(17), 9240–9247 (1991).
[Crossref]

Tian, X.

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

Trevisani, M.

E. Cavalli, F. Angiuli, F. Mezzadri, M. Trevisani, M. Bettinelli, P. Boutinaud, and M. G. Brik, “Tunable luminescence of Bi3+-doped YPxV1−xO4 (0 ≤ x ≤ 1),” J. Phys.: Condens. Matter 26(38), 385503 (2014).
[Crossref]

Türkcan, S.

D. J. Naczynski, C. Sun, S. Türkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes,” Nano Lett. 15(1), 96–102 (2015).
[Crossref]

Viana, B.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

Vianab, B.

A. J. J. Bos, P. Dorenbos, A. Bessière, and B. Vianab, “Lanthanide energy levels in YPO4,” Radiat. Meas. 43(2-6), 222–226 (2008).
[Crossref]

Von, S. H.

M. Thoms, S. H. Von, and A. Winnacker, “Spatial correlation and photostimulability of defect centers in the x-ray-storage phosphor BaFBr: Eu2+,” Phys. Rev. B 44(17), 9240–9247 (1991).
[Crossref]

Wang, L.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. Zhou, T. Takeda, N. Hirosaki, and R. Xie, “Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+= Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref]

Y. Zhuang, L. Wang, Y. Lv, T. Zhou, and R. Xie, “Optical Data Storage and Multicolor Emission Readout on Flexible Films Using Deep-Trap Persistent Luminescence Materials,” Adv. Funct. Mater. 28(8), 1705769 (2017).
[Crossref]

Wang, X.-J.

Winnacker, A.

M. Thoms, S. H. Von, and A. Winnacker, “Spatial correlation and photostimulability of defect centers in the x-ray-storage phosphor BaFBr: Eu2+,” Phys. Rev. B 44(17), 9240–9247 (1991).
[Crossref]

Wu, X.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref]

Xie, R.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. Zhou, T. Takeda, N. Hirosaki, and R. Xie, “Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+= Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref]

Y. Zhuang, L. Wang, Y. Lv, T. Zhou, and R. Xie, “Optical Data Storage and Multicolor Emission Readout on Flexible Films Using Deep-Trap Persistent Luminescence Materials,” Adv. Funct. Mater. 28(8), 1705769 (2017).
[Crossref]

Xing, L.

D. J. Naczynski, C. Sun, S. Türkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes,” Nano Lett. 15(1), 96–102 (2015).
[Crossref]

G. Pratx, C. M. Carpenter, C. Sun, R. P. Rao, and L. Xing, “Tomographic molecular imaging of x-ray-excitable nanoparticles,” Opt. Lett. 35(20), 3345–3347 (2010).
[Crossref]

Xue, Z.

Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, and J. Hao, “X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging,” ACS Appl. Mater. Interfaces 9(27), 22132–22142 (2017).
[Crossref]

Z. Yi, X. Li, Z. Xue, X. Liang, W. Lu, H. Peng, H. Liu, S. Zeng, and J. Hao, “Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T-2-weighted MRI-guided small tumor diagnosis,” Adv. Funct. Mater. 25(46), 7119–7129 (2015).
[Crossref]

Yan, W.

Yang, H.

L. Song, X. Lin, X. Song, S. Chen, X. Chen, J. Li, and H. Yang, “Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging,” Nanoscale 9(8), 2718–2722 (2017).
[Crossref]

Yi, Z.

Z. Yi, X. Li, Z. Xue, X. Liang, W. Lu, H. Peng, H. Liu, S. Zeng, and J. Hao, “Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T-2-weighted MRI-guided small tumor diagnosis,” Adv. Funct. Mater. 25(46), 7119–7129 (2015).
[Crossref]

Yin, M.

Zeng, S.

Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, and J. Hao, “X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging,” ACS Appl. Mater. Interfaces 9(27), 22132–22142 (2017).
[Crossref]

Z. Yi, X. Li, Z. Xue, X. Liang, W. Lu, H. Peng, H. Liu, S. Zeng, and J. Hao, “Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T-2-weighted MRI-guided small tumor diagnosis,” Adv. Funct. Mater. 25(46), 7119–7129 (2015).
[Crossref]

Zhang, R.

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

Zhang, Y.

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref]

Zhou, T.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. Zhou, T. Takeda, N. Hirosaki, and R. Xie, “Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+= Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref]

Y. Zhuang, L. Wang, Y. Lv, T. Zhou, and R. Xie, “Optical Data Storage and Multicolor Emission Readout on Flexible Films Using Deep-Trap Persistent Luminescence Materials,” Adv. Funct. Mater. 28(8), 1705769 (2017).
[Crossref]

Zhuang, Y.

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. Zhou, T. Takeda, N. Hirosaki, and R. Xie, “Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+= Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref]

Y. Zhuang, L. Wang, Y. Lv, T. Zhou, and R. Xie, “Optical Data Storage and Multicolor Emission Readout on Flexible Films Using Deep-Trap Persistent Luminescence Materials,” Adv. Funct. Mater. 28(8), 1705769 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (2)

Y. Zhuang, Y. Lv, L. Wang, W. Chen, T. Zhou, T. Takeda, N. Hirosaki, and R. Xie, “Trap depth engineering of SrSi2O2N2: Ln2+, Ln3+ (Ln2+= Yb, Eu; Ln3+= Dy, Ho, Er) persistent luminescence materials for information storage applications,” ACS Appl. Mater. Interfaces 10(2), 1854–1864 (2018).
[Crossref]

Z. Xue, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, and J. Hao, “X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging,” ACS Appl. Mater. Interfaces 9(27), 22132–22142 (2017).
[Crossref]

Adv. Funct. Mater. (2)

Y. Zhuang, L. Wang, Y. Lv, T. Zhou, and R. Xie, “Optical Data Storage and Multicolor Emission Readout on Flexible Films Using Deep-Trap Persistent Luminescence Materials,” Adv. Funct. Mater. 28(8), 1705769 (2017).
[Crossref]

Z. Yi, X. Li, Z. Xue, X. Liang, W. Lu, H. Peng, H. Liu, S. Zeng, and J. Hao, “Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T-2-weighted MRI-guided small tumor diagnosis,” Adv. Funct. Mater. 25(46), 7119–7129 (2015).
[Crossref]

Adv. Opt. Mater. (1)

X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu, and Y. Hu, “Coordination Geometry-Dependent Multi-Band Emission and Atypically Deep-Trap-Dominated NIR Persistent Luminescence from Chromium-Doped Aluminates,” Adv. Opt. Mater. 6(7), 1701161 (2018).
[Crossref]

Braz. J. Phys. (1)

H. Seggern, “Photostimulable x-ray storage phosphors: a review of present understanding,” Braz. J. Phys. 29(2), 254–268 (1999).
[Crossref]

Carbohydr. Polym. (1)

M. Sabitha, N. S. Rejinold, A. Nair, V. K. Lakshmanan, S. V. Nair, and R. Jayakumar, “Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer,” Carbohydr. Polym. 91(1), 48–57 (2013).
[Crossref]

Chem. Soc. Rev. (1)

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors-from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

Z. Li, Y. Zhang, X. Wu, L. Huang, D. Li, W. Fan, and G. Han, “Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence,” J. Am. Chem. Soc. 137(16), 5304–5307 (2015).
[Crossref]

J. Lumin. (1)

C. M. Combes, P. Dorenbos, C. W. E. V. Eijk, C. Pedrini, H. W. Den Hartog, J. Y. Gesland, and P. A. Rodnyi, “Optical and scintillation properties of Ce3+ doped LiYF4 and LiLuF4 crystals,” J. Lumin. 71(1), 65–70 (1997).
[Crossref]

J. Mater. Chem. C (1)

H. Luo and P. Dorenbos, “The dual role of Cr3+ in trapping holes and electrons in lanthanide co-doped GdAlO3 and LaAlO3,” J. Mater. Chem. C 6(18), 4977–4984 (2018).
[Crossref]

J. Phys. Chem. C (2)

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

T. Lyu and P. Dorenbos, “Charge carrier trapping processes in lanthanide doped LaPO4, GdPO4, YPO4, and LuPO4,” J. Phys. Chem. C 6(2), 369–379 (2018).
[Crossref]

J. Phys.: Condens. Matter (1)

E. Cavalli, F. Angiuli, F. Mezzadri, M. Trevisani, M. Bettinelli, P. Boutinaud, and M. G. Brik, “Tunable luminescence of Bi3+-doped YPxV1−xO4 (0 ≤ x ≤ 1),” J. Phys.: Condens. Matter 26(38), 385503 (2014).
[Crossref]

Nano Lett. (1)

D. J. Naczynski, C. Sun, S. Türkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes,” Nano Lett. 15(1), 96–102 (2015).
[Crossref]

Nanoscale (1)

L. Song, X. Lin, X. Song, S. Chen, X. Chen, J. Li, and H. Yang, “Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging,” Nanoscale 9(8), 2718–2722 (2017).
[Crossref]

Nat. Mater. (2)

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref]

Z. Pan, Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[Crossref]

Nature (1)

R. Kabe and C. Adachi, “Organic long persistent luminescence,” Nature 550(7676), 384–387 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (3)

P. Dorenbos, A. H. Krumpel, E. V. D. Kolk, P. Boutinaud, M. Bettinelli, and E. Cavalli, “Lanthanide level location in transition metal complex compounds,” Opt. Mater. 32(12), 1681–1685 (2010).
[Crossref]

A. M. Srivastava and S. J. Camardello, “Concentration dependence of the Bi3+ luminescence in LnPO4 (Ln = Y3+, Lu3+),” Opt. Mater. 39, 130–133 (2015).
[Crossref]

P. Dorenbos, A. J. J. Bos, and N. R. J. Poolton, “Electron transfer processes in double lanthanide activated YPO4,” Opt. Mater. 33(7), 1019–1023 (2011).
[Crossref]

Opt. Spectrosc. (1)

N. V. Kuleshev, V. G. Shcherbitskii, V. P. Mikhailov, S. A. Guretskii, A. M. Luginets, A. S. Milovanov, E. B. Dunina, S. Hartung, and G. Huber, “Spectroscopic properties of LiGa5O8 single crystals doped with chromium,” Opt. Spectrosc. 84(6), 865–869 (1998).

Phys. Rev. (1)

E. Loh, “Lowest 4f → 5d Transition of Trivalent Rare-Earth Ions in CaF2 Crystals,” Phys. Rev. 147(1), 332–335 (1966).
[Crossref]

Phys. Rev. B (3)

M. Thoms, S. H. Von, and A. Winnacker, “Spatial correlation and photostimulability of defect centers in the x-ray-storage phosphor BaFBr: Eu2+,” Phys. Rev. B 44(17), 9240–9247 (1991).
[Crossref]

K. Swiatek, M. Godlewski, and D. Hommel, “Deep europium-bound exciton in a ZnS lattice,” Phys. Rev. B 42(6), 3628–3633 (1990).
[Crossref]

H. J. Lozykowski, “Kinetics of luminescence of isoelectronic rare-earth ions in III-V semiconductors,” Phys. Rev. B 48(24), 17758–17769 (1993).
[Crossref]

Phys. Rev. Lett. (1)

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8: Cr3+, Yb3+, Er3+ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref]

Proc. Natl. Acad. Sci. (1)

Q. L. M. D. Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. 104(22), 9266–9271 (2007).
[Crossref]

Radiat. Meas. (1)

A. J. J. Bos, P. Dorenbos, A. Bessière, and B. Vianab, “Lanthanide energy levels in YPO4,” Radiat. Meas. 43(2-6), 222–226 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Afterglow emission spectra of single-doped YPO4 with different RE ions (including Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Er3+ and Tm3+), recorded after 5 min X-ray irradiation. (b) Afterglow intensity from the single-doped YPO4 with different RE ions (including Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Er3+ and Tm3+) monitored at 488 nm, 354 nm, 601 nm, 593 nm, 381 nm, 483 nm, 379 nm and 346 nm as a function of time, respectively, recorded after 5 min X-ray irradiation. (c) Afterglow spectra of Ce3+/Sm3+ co-doped YPO4, Pr3+/Sm3+ co-doped YPO4, Nd3+/Sm3+ co-doped YPO4, Eu3+/Sm3+ co-doped YPO4, Tb3+/Sm3+ co-doped YPO4, Dy3+/Sm3+ co-doped YPO4, Tm3+/Sm3+ co-doped YPO4, Er3+/Sm3+ co-doped YPO4, Ho3+/Sm3+ co-doped YPO4 and pure Sm3+ doped YPO4, recorded after 5 min X-ray irradiation. (d) Afterglow intensity from the above as-synthesized materials all monitored at 601 nm as a function of time, respectively, recorded after 5 min X-ray irradiation. (e) TSL glow curves of co-doped materials all monitored at 601 nm, respectively, the heating rate is set as 3 K/min for all the measurements.
Fig. 2.
Fig. 2. (a) Afterglow spectra from Tb3+ doped YPO4, Sm3+ doped YPO4, Tb3+/Sm3+ co-doped YPO4 obtained after 5 min X-ray irradiation, respectively. (b) Afterglow intensity from the as-synthesized YPO4: Tb3+ (red line), YPO4:Sm3+ (blue line) and YPO4:Tb3+,Sm3+ (black line) monitored at 381 nm, 601 nm and 601 nm respectively as a function of time, recorded after 10 min X-ray irradiation. The upper inset shows two afterglow spectra of the YPO4: Tb3+, Sm3+ phosphors recorded at 20 h and 50 h after the stoppage of the irradiation. (c) Images of the three kinds of sample discs taken at different afterglow times after irradiation by X-rays for 10 min. The discs were placed on a black plate surface for imaging in a dark room. Imaging parameters: YPO4: Tb3+: manual/ISO 200/10 s, manual/ISO 400/20 s, manual/ISO 400/40 s, respectively. YPO4:Sm3+: manual/ISO 200/10 s, manual/ISO 400/20 s, manual/ISO 400/40 s, manual/ISO 400/1 min, respectively. YPO4: Tb3+, Sm3+: manual /ISO 200/10 s, manual/ISO 200/30 s, manual/ISO 400/30 s, manual/ISO 400/1 min, manual/ISO 400/3 min, manual/ISO 400/5 min, respectively.
Fig. 3.
Fig. 3. (a) TSL curves of YPO4: Tb3+ (red), YPO4:Sm3+ (green), YPO4:Sm3+,Tb3+ (blue) monitored from RT to 600 K, and YPO4:Sm3+,Tb3+ (black) monitored from 83.15 K to 600 K, respectively. (b) Contrast images of X-ray excited sample discs again partially stimulated by 450 nm, 488 nm, 532 nm and 808 nm fiber laser, respectively. Power: 0.081 W, 0.033 W, 0.025 W, 1 W, respectively.
Fig. 4.
Fig. 4. (a) Valence change ability of lanthanides, Ce3+, Pr3+, Tb3+ ions are prone to lose the outer one electron to turn into + 4 valence state with stable shell structures, on the other hand, Sm3+, Eu3+, Ho3+, Tm3+ and Yb3+ ions tend to accept one electron to turn into + 2 valence state with stable shell structures. Nd3+ and Dy3+ have equal ability to gain and lose the outer one electron. (b) Electron migration and interaction system between O and its coordinated elements (Y, Sm, Tb) in YPO4:Sm3+,Tb3+. (c) Afterglow mechanism proposed of YPO4 : Tb3+ (green part), the main hole traps are Tb3+ ions, YPO4 :Sm3+ (blue part), the main electronic traps are Sm3+ ions, and YPO4 :Sm3+,Tb3+ (yellow part), the main hole traps are Tb3+ ions, while electrons are mainly trapped by Sm3+ ions.
Fig. 5.
Fig. 5. (a) XRD pattern of YPNPs, the positions of the corresponding XRD peaks are as follows. (b) Energy Dispersion Spectrum (EDS) of YPNPs. (c) Afterglow intensity from the as-modified YPNPs monitored at 601 nm as a function of time. (d) TEM images of YPNPs recorded at high magnification corresponding to its phases. Scale bar, 50 nm. (e) High-resolution TEM image of YPNPs. (f) FTIR spectra of the unmodified and the PEG modified YPNPs.
Fig. 6.
Fig. 6. (a) Schematic illustration of the process of YPO4-NH2 PLNPs and in vivo persistent bio-imaging. Illustration shows a linear relationship between the absorbed X-ray dose and its incident power. (b) Optical imaging of mouse with 1 mg tail vein injection of modified YPNPs. YPNPs were first irradiated with X-rays for 15 min before intravenous injection. Signals were acquired every 3 min with an exposure time of 60 seconds.

Metrics