Abstract

As a promising platform for multi-functional terahertz devices, metasurface absorbers have received widespread attention in recent years. However, due to the existence of manufacturing difficulties, high cost, fragility, single or narrow absorption and other disadvantages, their application ranges are severely limited. Therefore, to effectively solve these problems, we have designed a flexible and high-precision terahertz metasurface absorber based on the micro-template assisted self-assembly method. Free from high cost, complicated process and time-consumption, the sandwich structure terahertz metasurface absorber consisting of a ceramic microspheres layer, a dielectric spacer layer, and a metal copper film is fabricated economically. On the one hand, through assembling the microspheres on the dielectric spacer in a periodic pattern arrangement, multiple resonances can be observed with a maximum absorption rate of up to 92.5% at 0.745 THz and are insensitive to the polarization of incident light. On the other hand, by attaching the microspheres to the dielectric layer in a compact configuration, 90% absorption bandwidth beyond 1.2 THz can be observed with a central frequency of 1.8 THz. The theoretical model of multiple reflection and interference is employed to explain these absorption characteristics. Considering the flexible design and high-throughput manufacturing processes, this work provides a promising platform for the development of high-efficiency and multi-functional terahertz devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental realization of Mie-resonance terahertz absorber by self-assembly method

Jiannan Gao, Chuwen Lan, Qian Zhao, Bo Li, and Ji Zhou
Opt. Express 26(10) 13001-13011 (2018)

Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials

Ke Bi, Daquan Yang, Jia Chen, Qingmin Wang, Hongya Wu, Chuwen Lan, and Yuping Yang
Photon. Res. 7(4) 457-463 (2019)

Wide-angle wideband polarization-insensitive perfect absorber based on uniaxial anisotropic metasurfaces

Shi-Kang Tseng, Hui-Hsin Hsiao, and Yih-Peng Chiou
Opt. Mater. Express 10(5) 1193-1203 (2020)

References

  • View by:
  • |
  • |
  • |

  1. Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg 7(3), 345–355 (2017).
    [Crossref]
  2. K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B 16(2), 267–269 (1999).
    [Crossref]
  3. D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
    [Crossref]
  4. S. Gui, J. Li, and Y. Pi, “Security Imaging for Multi-Target Screening Based on Adaptive Scene Segmentation With Terahertz Radar,” IEEE Sens. J. 19(7), 2675–2684 (2019).
    [Crossref]
  5. X. Yang, Y. Pi, T. Liu, and H. Wang, “Three-Dimensional Imaging of Space Debris with Space-Based Terahertz Radar,” IEEE Sens. J. 18(3), 1063–1072 (2018).
    [Crossref]
  6. Q. Xia and J. M. Jornet, “Expedited Neighbor Discovery in Directional Terahertz Communication Networks Enhanced by Antenna Side-lobe Information,” IEEE Trans. Veh. Technol. 68(8), 7804–7814 (2019).
    [Crossref]
  7. L. Chen, S.-W. Qu, B.-J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Terahertz Metasurfaces for Absorber or Reflectarray Applications,” IEEE Trans. Antennas Propag. 65(1), 234–241 (2017).
    [Crossref]
  8. G.-B. Wu, Y.-S. Zeng, K. F. Chan, S.-W. Qu, and C. H. Chan, “3-D Printed Circularly Polarized Modified Fresnel Lens Operating at Terahertz Frequencies,” IEEE Trans. Antennas Propag. 67(7), 4429–4437 (2019).
    [Crossref]
  9. B. Li, Y.-S. Zeng, B.-J. Chen, and C. H. Chan, “Terahertz Frequency Selective Surface with Polarization Selection and Conversion Characteristics,” IEEE Trans. THz Sci. Technol. 9(5), 510–519 (2019).
    [Crossref]
  10. S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
    [Crossref]
  11. W. Wang, F. Yan, S. Tan, H. Zhou, and Y. Hou, “Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators,” Photonics Res. 5(6), 571–577 (2017).
    [Crossref]
  12. H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
    [Crossref]
  13. G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
    [Crossref]
  14. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  15. X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and Z. Zhang, “Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
    [Crossref]
  16. Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett., 13(137) (2018).
  17. K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
    [Crossref]
  18. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
    [Crossref]
  19. H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
    [Crossref]
  20. J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
    [Crossref]
  21. M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
    [Crossref]
  22. B.-X. Wang, C. Tang, Q. Niu, Y. He, and T. Chen, “Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers,” Nanoscale Res. Lett. 14(1), 64 (2019).
    [Crossref]
  23. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
    [Crossref]
  24. W. Meng, J. Lv, L. Que, Y. Zhou, and Y. Jiang, “A multi-band terahertz metamaterial absorber with novel structure,” 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, (China, 2018).
  25. Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express 8(10), 3104–3114 (2018).
    [Crossref]
  26. H. Xiong, Y.-B. Wu, J. Dong, M.-C. Tang, Y.-N. Jiang, and X.-P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
    [Crossref]
  27. B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(1), 4600108 (2015).
    [Crossref]
  28. W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
    [Crossref]
  29. K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, and Y. Yang, “Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials,” Photonics Res. 7(4), 457–463 (2019).
    [Crossref]
  30. M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Technol. 205(19), 4620–4626 (2011).
    [Crossref]
  31. D. Zhang, Y. Yang, Z. Geng, B. Cui, and R. Zhao, “A High-Selectivity THz Filter Based on a Flexible Polyimide Film,” IEEE Trans. THz Sci. Technol. 8(6), 719–724 (2018).
    [Crossref]
  32. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref]
  33. T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
    [Crossref]
  34. Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express. 8(10), 3104–3114 (2018).
    [Crossref]

2019 (7)

S. Gui, J. Li, and Y. Pi, “Security Imaging for Multi-Target Screening Based on Adaptive Scene Segmentation With Terahertz Radar,” IEEE Sens. J. 19(7), 2675–2684 (2019).
[Crossref]

G.-B. Wu, Y.-S. Zeng, K. F. Chan, S.-W. Qu, and C. H. Chan, “3-D Printed Circularly Polarized Modified Fresnel Lens Operating at Terahertz Frequencies,” IEEE Trans. Antennas Propag. 67(7), 4429–4437 (2019).
[Crossref]

B. Li, Y.-S. Zeng, B.-J. Chen, and C. H. Chan, “Terahertz Frequency Selective Surface with Polarization Selection and Conversion Characteristics,” IEEE Trans. THz Sci. Technol. 9(5), 510–519 (2019).
[Crossref]

Q. Xia and J. M. Jornet, “Expedited Neighbor Discovery in Directional Terahertz Communication Networks Enhanced by Antenna Side-lobe Information,” IEEE Trans. Veh. Technol. 68(8), 7804–7814 (2019).
[Crossref]

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and Z. Zhang, “Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

B.-X. Wang, C. Tang, Q. Niu, Y. He, and T. Chen, “Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers,” Nanoscale Res. Lett. 14(1), 64 (2019).
[Crossref]

K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, and Y. Yang, “Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials,” Photonics Res. 7(4), 457–463 (2019).
[Crossref]

2018 (12)

D. Zhang, Y. Yang, Z. Geng, B. Cui, and R. Zhao, “A High-Selectivity THz Filter Based on a Flexible Polyimide Film,” IEEE Trans. THz Sci. Technol. 8(6), 719–724 (2018).
[Crossref]

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express. 8(10), 3104–3114 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref]

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express 8(10), 3104–3114 (2018).
[Crossref]

H. Xiong, Y.-B. Wu, J. Dong, M.-C. Tang, Y.-N. Jiang, and X.-P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref]

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

X. Yang, Y. Pi, T. Liu, and H. Wang, “Three-Dimensional Imaging of Space Debris with Space-Based Terahertz Radar,” IEEE Sens. J. 18(3), 1063–1072 (2018).
[Crossref]

2017 (4)

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg 7(3), 345–355 (2017).
[Crossref]

W. Wang, F. Yan, S. Tan, H. Zhou, and Y. Hou, “Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators,” Photonics Res. 5(6), 571–577 (2017).
[Crossref]

L. Chen, S.-W. Qu, B.-J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Terahertz Metasurfaces for Absorber or Reflectarray Applications,” IEEE Trans. Antennas Propag. 65(1), 234–241 (2017).
[Crossref]

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

2016 (1)

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

2015 (2)

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(1), 4600108 (2015).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

2014 (1)

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

2013 (1)

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
[Crossref]

2012 (1)

2011 (1)

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Technol. 205(19), 4620–4626 (2011).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

1999 (1)

Assanto, G.

Averitt, R. D.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and Z. Zhang, “Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Bai, X.

L. Chen, S.-W. Qu, B.-J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Terahertz Metasurfaces for Absorber or Reflectarray Applications,” IEEE Trans. Antennas Propag. 65(1), 234–241 (2017).
[Crossref]

Bandurin, D. A.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Bi, K.

K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, and Y. Yang, “Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials,” Photonics Res. 7(4), 457–463 (2019).
[Crossref]

Cai, H.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Cao, L.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Chan, C. H.

G.-B. Wu, Y.-S. Zeng, K. F. Chan, S.-W. Qu, and C. H. Chan, “3-D Printed Circularly Polarized Modified Fresnel Lens Operating at Terahertz Frequencies,” IEEE Trans. Antennas Propag. 67(7), 4429–4437 (2019).
[Crossref]

B. Li, Y.-S. Zeng, B.-J. Chen, and C. H. Chan, “Terahertz Frequency Selective Surface with Polarization Selection and Conversion Characteristics,” IEEE Trans. THz Sci. Technol. 9(5), 510–519 (2019).
[Crossref]

L. Chen, S.-W. Qu, B.-J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Terahertz Metasurfaces for Absorber or Reflectarray Applications,” IEEE Trans. Antennas Propag. 65(1), 234–241 (2017).
[Crossref]

Chan, K. F.

G.-B. Wu, Y.-S. Zeng, K. F. Chan, S.-W. Qu, and C. H. Chan, “3-D Printed Circularly Polarized Modified Fresnel Lens Operating at Terahertz Frequencies,” IEEE Trans. Antennas Propag. 67(7), 4429–4437 (2019).
[Crossref]

Chen, B.-J.

B. Li, Y.-S. Zeng, B.-J. Chen, and C. H. Chan, “Terahertz Frequency Selective Surface with Polarization Selection and Conversion Characteristics,” IEEE Trans. THz Sci. Technol. 9(5), 510–519 (2019).
[Crossref]

L. Chen, S.-W. Qu, B.-J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Terahertz Metasurfaces for Absorber or Reflectarray Applications,” IEEE Trans. Antennas Propag. 65(1), 234–241 (2017).
[Crossref]

Chen, C.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and Z. Zhang, “Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Chen, H. R.

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

Chen, H. T.

Chen, J.

K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, and Y. Yang, “Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials,” Photonics Res. 7(4), 457–463 (2019).
[Crossref]

Chen, L.

L. Chen, S.-W. Qu, B.-J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Terahertz Metasurfaces for Absorber or Reflectarray Applications,” IEEE Trans. Antennas Propag. 65(1), 234–241 (2017).
[Crossref]

Chen, S.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Chen, T.

B.-X. Wang, C. Tang, Q. Niu, Y. He, and T. Chen, “Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers,” Nanoscale Res. Lett. 14(1), 64 (2019).
[Crossref]

Chen, W.

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
[Crossref]

Cheng, Y.

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express. 8(10), 3104–3114 (2018).
[Crossref]

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express 8(10), 3104–3114 (2018).
[Crossref]

Cheng, Y. Z.

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

Cheng, Z. Z.

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

Cong, L.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Cremin, K.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and Z. Zhang, “Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Cui, B.

D. Zhang, Y. Yang, Z. Geng, B. Cui, and R. Zhao, “A High-Selectivity THz Filter Based on a Flexible Polyimide Film,” IEEE Trans. THz Sci. Technol. 8(6), 719–724 (2018).
[Crossref]

Dong, G.

Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett., 13(137) (2018).

Dong, J.

Duan, G.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and Z. Zhang, “Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref]

Fan, K.

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Fan, S.

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg 7(3), 345–355 (2017).
[Crossref]

Fedorov, G.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Fu, Z.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Gallo, K.

Gayduchenko, I.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Geim, A. K.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Geng, Z.

D. Zhang, Y. Yang, Z. Geng, B. Cui, and R. Zhao, “A High-Selectivity THz Filter Based on a Flexible Polyimide Film,” IEEE Trans. THz Sci. Technol. 8(6), 719–724 (2018).
[Crossref]

Goltsman, G. N.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Gong, R.

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express. 8(10), 3104–3114 (2018).
[Crossref]

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express 8(10), 3104–3114 (2018).
[Crossref]

Gong, R. Z.

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

Grigorieva, I. V.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Gui, S.

S. Gui, J. Li, and Y. Pi, “Security Imaging for Multi-Target Screening Based on Adaptive Scene Segmentation With Terahertz Radar,” IEEE Sens. J. 19(7), 2675–2684 (2019).
[Crossref]

He, H.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

He, Y.

B.-X. Wang, C. Tang, Q. Niu, Y. He, and T. Chen, “Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers,” Nanoscale Res. Lett. 14(1), 64 (2019).
[Crossref]

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg 7(3), 345–355 (2017).
[Crossref]

Hou, Y.

W. Wang, F. Yan, S. Tan, H. Zhou, and Y. Hou, “Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators,” Photonics Res. 5(6), 571–577 (2017).
[Crossref]

Hu, X.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Huang, M. L.

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

Huang, Q.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Huang, W. Q.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(1), 4600108 (2015).
[Crossref]

Huang, W.-Q.

Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett., 13(137) (2018).

Huang, Y.

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
[Crossref]

Jiang, Y.

W. Meng, J. Lv, L. Que, Y. Zhou, and Y. Jiang, “A multi-band terahertz metamaterial absorber with novel structure,” 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, (China, 2018).

Jiang, Y.-N.

Jornet, J. M.

Q. Xia and J. M. Jornet, “Expedited Neighbor Discovery in Directional Terahertz Communication Networks Enhanced by Antenna Side-lobe Information,” IEEE Trans. Veh. Technol. 68(8), 7804–7814 (2019).
[Crossref]

Keiser, G. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Kuroda, S.

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Technol. 205(19), 4620–4626 (2011).
[Crossref]

Lan, C.

K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, and Y. Yang, “Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials,” Photonics Res. 7(4), 457–463 (2019).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Li, B.

B. Li, Y.-S. Zeng, B.-J. Chen, and C. H. Chan, “Terahertz Frequency Selective Surface with Polarization Selection and Conversion Characteristics,” IEEE Trans. THz Sci. Technol. 9(5), 510–519 (2019).
[Crossref]

Li, J.

S. Gui, J. Li, and Y. Pi, “Security Imaging for Multi-Target Screening Based on Adaptive Scene Segmentation With Terahertz Radar,” IEEE Sens. J. 19(7), 2675–2684 (2019).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref]

Liu, K.

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg 7(3), 345–355 (2017).
[Crossref]

Liu, Q. H.

Liu, T.

X. Yang, Y. Pi, T. Liu, and H. Wang, “Three-Dimensional Imaging of Space Debris with Space-Based Terahertz Radar,” IEEE Sens. J. 18(3), 1063–1072 (2018).
[Crossref]

Liu, X.

Liu, Y.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Lu, Y.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Lv, J.

W. Meng, J. Lv, L. Que, Y. Zhou, and Y. Jiang, “A multi-band terahertz metamaterial absorber with novel structure,” 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, (China, 2018).

Mao, X.

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express 8(10), 3104–3114 (2018).
[Crossref]

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express. 8(10), 3104–3114 (2018).
[Crossref]

Mao, X. S.

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

Meng, W.

W. Meng, J. Lv, L. Que, Y. Zhou, and Y. Jiang, “A multi-band terahertz metamaterial absorber with novel structure,” 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, (China, 2018).

Metcalfe, G. D.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Moskotin, M.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Ng, K. B.

L. Chen, S.-W. Qu, B.-J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Terahertz Metasurfaces for Absorber or Reflectarray Applications,” IEEE Trans. Antennas Propag. 65(1), 234–241 (2017).
[Crossref]

Niu, Q.

B.-X. Wang, C. Tang, Q. Niu, Y. He, and T. Chen, “Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers,” Nanoscale Res. Lett. 14(1), 64 (2019).
[Crossref]

Padilla, W. J.

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Pan, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Parrott, E. P. J.

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg 7(3), 345–355 (2017).
[Crossref]

Pi, Y.

S. Gui, J. Li, and Y. Pi, “Security Imaging for Multi-Target Screening Based on Adaptive Scene Segmentation With Terahertz Radar,” IEEE Sens. J. 19(7), 2675–2684 (2019).
[Crossref]

X. Yang, Y. Pi, T. Liu, and H. Wang, “Three-Dimensional Imaging of Space Debris with Space-Based Terahertz Radar,” IEEE Sens. J. 18(3), 1063–1072 (2018).
[Crossref]

Pickwell-MacPherson, E.

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg 7(3), 345–355 (2017).
[Crossref]

Polini, M.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Principi, A.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Qu, S.-W.

G.-B. Wu, Y.-S. Zeng, K. F. Chan, S.-W. Qu, and C. H. Chan, “3-D Printed Circularly Polarized Modified Fresnel Lens Operating at Terahertz Frequencies,” IEEE Trans. Antennas Propag. 67(7), 4429–4437 (2019).
[Crossref]

L. Chen, S.-W. Qu, B.-J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Terahertz Metasurfaces for Absorber or Reflectarray Applications,” IEEE Trans. Antennas Propag. 65(1), 234–241 (2017).
[Crossref]

Que, L.

W. Meng, J. Lv, L. Que, Y. Zhou, and Y. Jiang, “A multi-band terahertz metamaterial absorber with novel structure,” 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, (China, 2018).

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Schalch, J.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and Z. Zhang, “Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref]

Seren, H. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Shiwa, M.

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Technol. 205(19), 4620–4626 (2011).
[Crossref]

Singh, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Song, Z.

Strikwerda, A. C.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Suen, J. Y.

Sun, Q.

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg 7(3), 345–355 (2017).
[Crossref]

Svintsov, D.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Tan, S.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

W. Wang, F. Yan, S. Tan, H. Zhou, and Y. Hou, “Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators,” Photonics Res. 5(6), 571–577 (2017).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Tang, C.

B.-X. Wang, C. Tang, Q. Niu, Y. He, and T. Chen, “Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers,” Nanoscale Res. Lett. 14(1), 64 (2019).
[Crossref]

Tang, M.-C.

Taniguchi, T.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Tretyakov, I.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Wang, B. X.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(1), 4600108 (2015).
[Crossref]

Wang, B.-X.

B.-X. Wang, C. Tang, Q. Niu, Y. He, and T. Chen, “Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers,” Nanoscale Res. Lett. 14(1), 64 (2019).
[Crossref]

Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett., 13(137) (2018).

Wang, G. Z.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(1), 4600108 (2015).
[Crossref]

Wang, H.

X. Yang, Y. Pi, T. Liu, and H. Wang, “Three-Dimensional Imaging of Space Debris with Space-Based Terahertz Radar,” IEEE Sens. J. 18(3), 1063–1072 (2018).
[Crossref]

Wang, K.

Wang, L. L.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(1), 4600108 (2015).
[Crossref]

Wang, Q.

K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, and Y. Yang, “Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials,” Photonics Res. 7(4), 457–463 (2019).
[Crossref]

Wang, W.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

W. Wang, F. Yan, S. Tan, H. Zhou, and Y. Hou, “Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators,” Photonics Res. 5(6), 571–577 (2017).
[Crossref]

Wang, Y.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and Z. Zhang, “Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Wanghuang, T.

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
[Crossref]

Watanabe, K.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Watanabe, M.

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Technol. 205(19), 4620–4626 (2011).
[Crossref]

Wen, G.

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
[Crossref]

Wraback, M.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Wu, G.-B.

G.-B. Wu, Y.-S. Zeng, K. F. Chan, S.-W. Qu, and C. H. Chan, “3-D Printed Circularly Polarized Modified Fresnel Lens Operating at Terahertz Frequencies,” IEEE Trans. Antennas Propag. 67(7), 4429–4437 (2019).
[Crossref]

Wu, H.

K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, and Y. Yang, “Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials,” Photonics Res. 7(4), 457–463 (2019).
[Crossref]

Wu, Y.-B.

Xia, Q.

Q. Xia and J. M. Jornet, “Expedited Neighbor Discovery in Directional Terahertz Communication Networks Enhanced by Antenna Side-lobe Information,” IEEE Trans. Veh. Technol. 68(8), 7804–7814 (2019).
[Crossref]

Xie, Q.

Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett., 13(137) (2018).

Xiong, H.

Xu, N.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

Xu, S. G.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Yagodkin, D.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Yahiaoui, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yamawaki, H.

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Technol. 205(19), 4620–4626 (2011).
[Crossref]

Yan, F.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

W. Wang, F. Yan, S. Tan, H. Zhou, and Y. Hou, “Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators,” Photonics Res. 5(6), 571–577 (2017).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yang, D.

K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, and Y. Yang, “Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials,” Photonics Res. 7(4), 457–463 (2019).
[Crossref]

Yang, J.

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express. 8(10), 3104–3114 (2018).
[Crossref]

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express 8(10), 3104–3114 (2018).
[Crossref]

Yang, X.

X. Yang, Y. Pi, T. Liu, and H. Wang, “Three-Dimensional Imaging of Space Debris with Space-Based Terahertz Radar,” IEEE Sens. J. 18(3), 1063–1072 (2018).
[Crossref]

Yang, Y.

K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, and Y. Yang, “Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials,” Photonics Res. 7(4), 457–463 (2019).
[Crossref]

D. Zhang, Y. Yang, Z. Geng, B. Cui, and R. Zhao, “A High-Selectivity THz Filter Based on a Flexible Polyimide Film,” IEEE Trans. THz Sci. Technol. 8(6), 719–724 (2018).
[Crossref]

Yu, X.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Zeng, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Zeng, X.-P.

Zeng, Y.-S.

G.-B. Wu, Y.-S. Zeng, K. F. Chan, S.-W. Qu, and C. H. Chan, “3-D Printed Circularly Polarized Modified Fresnel Lens Operating at Terahertz Frequencies,” IEEE Trans. Antennas Propag. 67(7), 4429–4437 (2019).
[Crossref]

B. Li, Y.-S. Zeng, B.-J. Chen, and C. H. Chan, “Terahertz Frequency Selective Surface with Polarization Selection and Conversion Characteristics,” IEEE Trans. THz Sci. Technol. 9(5), 510–519 (2019).
[Crossref]

Zhai, X.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(1), 4600108 (2015).
[Crossref]

Zhang, D.

D. Zhang, Y. Yang, Z. Geng, B. Cui, and R. Zhao, “A High-Selectivity THz Filter Based on a Flexible Polyimide Film,” IEEE Trans. THz Sci. Technol. 8(6), 719–724 (2018).
[Crossref]

Zhang, J.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and Z. Zhang, “Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref]

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Zhang, W.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Zhang, X.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Zhang, Z.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and Z. Zhang, “Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Zhao, R.

D. Zhang, Y. Yang, Z. Geng, B. Cui, and R. Zhao, “A High-Selectivity THz Filter Based on a Flexible Polyimide Film,” IEEE Trans. THz Sci. Technol. 8(6), 719–724 (2018).
[Crossref]

Zhao, X.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and Z. Zhang, “Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref]

Zhao, Y.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Zheng, J.

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

Zhou, H.

W. Wang, F. Yan, S. Tan, H. Zhou, and Y. Hou, “Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators,” Photonics Res. 5(6), 571–577 (2017).
[Crossref]

Zhou, Y.

W. Meng, J. Lv, L. Que, Y. Zhou, and Y. Jiang, “A multi-band terahertz metamaterial absorber with novel structure,” 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, (China, 2018).

Zhukov, S.

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Zou, C.

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

Zou, H.

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express 8(10), 3104–3114 (2018).
[Crossref]

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express. 8(10), 3104–3114 (2018).
[Crossref]

ACS Photonics (1)

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and Z. Zhang, “Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Adv. Opt. Mater. (2)

H. Cai, S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu, “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves,” Adv. Opt. Mater. 6(14), 1800257 (2018).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically Modulated Multiband Terahertz Perfect Absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

AIP Adv. (2)

S. Tan, F. Yan, N. Xu, J. Zheng, W. Wang, and W. Zhang, “Broadband terahertz metamaterial absorber with two interlaced fishnet layers,” AIP Adv. 8(2), 025020 (2018).
[Crossref]

T. Wanghuang, W. Chen, Y. Huang, and G. Wen, “Analysis of metamaterial absorber in normal and oblique incidence by using interference theory,” AIP Adv. 3(10), 102118 (2013).
[Crossref]

Appl. Phys. Lett. (2)

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

IEEE Photonics J. (1)

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a Four-Band and Polarization-Insensitive Terahertz Metamaterial Absorber,” IEEE Photonics J. 7(1), 4600108 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A novel design of broadband terahertz metamaterial absorber based on nested circle rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

IEEE Sens. J. (2)

S. Gui, J. Li, and Y. Pi, “Security Imaging for Multi-Target Screening Based on Adaptive Scene Segmentation With Terahertz Radar,” IEEE Sens. J. 19(7), 2675–2684 (2019).
[Crossref]

X. Yang, Y. Pi, T. Liu, and H. Wang, “Three-Dimensional Imaging of Space Debris with Space-Based Terahertz Radar,” IEEE Sens. J. 18(3), 1063–1072 (2018).
[Crossref]

IEEE Trans. Antennas Propag. (2)

L. Chen, S.-W. Qu, B.-J. Chen, X. Bai, K. B. Ng, and C. H. Chan, “Terahertz Metasurfaces for Absorber or Reflectarray Applications,” IEEE Trans. Antennas Propag. 65(1), 234–241 (2017).
[Crossref]

G.-B. Wu, Y.-S. Zeng, K. F. Chan, S.-W. Qu, and C. H. Chan, “3-D Printed Circularly Polarized Modified Fresnel Lens Operating at Terahertz Frequencies,” IEEE Trans. Antennas Propag. 67(7), 4429–4437 (2019).
[Crossref]

IEEE Trans. THz Sci. Technol. (2)

B. Li, Y.-S. Zeng, B.-J. Chen, and C. H. Chan, “Terahertz Frequency Selective Surface with Polarization Selection and Conversion Characteristics,” IEEE Trans. THz Sci. Technol. 9(5), 510–519 (2019).
[Crossref]

D. Zhang, Y. Yang, Z. Geng, B. Cui, and R. Zhao, “A High-Selectivity THz Filter Based on a Flexible Polyimide Film,” IEEE Trans. THz Sci. Technol. 8(6), 719–724 (2018).
[Crossref]

IEEE Trans. Veh. Technol. (1)

Q. Xia and J. M. Jornet, “Expedited Neighbor Discovery in Directional Terahertz Communication Networks Enhanced by Antenna Side-lobe Information,” IEEE Trans. Veh. Technol. 68(8), 7804–7814 (2019).
[Crossref]

J. Opt. Soc. Am. B (1)

Materials (1)

M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene,” Materials 11(4), 540 (2018).
[Crossref]

Nanoscale Res. Lett. (1)

B.-X. Wang, C. Tang, Q. Niu, Y. He, and T. Chen, “Design of Narrow Discrete Distances of Dual-/Triple-Band Terahertz Metamaterial Absorbers,” Nanoscale Res. Lett. 14(1), 64 (2019).
[Crossref]

Nat. Commun. (1)

D. A. Bandurin, D. Svintsov, I. Gayduchenko, S. G. Xu, A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin, S. Zhukov, T. Taniguchi, K. Watanabe, I. V. Grigorieva, M. Polini, G. N. Goltsman, A. K. Geim, and G. Fedorov, “Resonant terahertz detection using graphene plasmons,” Nat. Commun. 9(1), 5392 (2018).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (1)

Opt. Mater. Express. (1)

Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Opt. Mater. Express. 8(10), 3104–3114 (2018).
[Crossref]

Optica (1)

Photonics Res. (2)

K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, and Y. Yang, “Experimental demonstration of ultra-large-scale terahertz all-dielectric metamaterials,” Photonics Res. 7(4), 457–463 (2019).
[Crossref]

W. Wang, F. Yan, S. Tan, H. Zhou, and Y. Hou, “Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators,” Photonics Res. 5(6), 571–577 (2017).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Quant. Imaging Med. Surg (1)

Q. Sun, Y. He, K. Liu, S. Fan, E. P. J. Parrott, and E. Pickwell-MacPherson, “Recent advances in terahertz technology for biomedical applications,” Quant. Imaging Med. Surg 7(3), 345–355 (2017).
[Crossref]

Surf. Coat. Technol. (1)

M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, “Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings,” Surf. Coat. Technol. 205(19), 4620–4626 (2011).
[Crossref]

Other (2)

Q. Xie, G. Dong, B.-X. Wang, and W.-Q. Huang, “Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications,” Nanoscale Res. Lett., 13(137) (2018).

W. Meng, J. Lv, L. Que, Y. Zhou, and Y. Jiang, “A multi-band terahertz metamaterial absorber with novel structure,” 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, (China, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Illustrations of the micro-template-assisted self-assembly method. (b) Physical image and (c) microscopic image of the metal template. (d) Physical image of the microspheres periodically arranged on the dielectric spacer. (e) Physical and (f) microscopic images of the fabricated sample.
Fig. 2.
Fig. 2. (a) Schematic of the terahertz time-domain spectroscopy system used in experiments, where M1-M7 represent optical mirrors, BS represents the beam splitter and PM represents the parabolic mirror. The angle θ is equal to 90°. (b) Measured equipment for the terahertz metasurface absorbers.
Fig. 3.
Fig. 3. (a) Measured, simulated and calculated absorption spectrum of the metasurface absorber, and the contrast simulated absorption spectrum of a metasurface without the copper film. (b) The theoretical model of multiple reflections and interferences at oblique incidence, where the microspheres are represented by the gray line at the air-dielectric interface.
Fig. 4.
Fig. 4. (a) Simulated absorption spectrum of the metasurface with different dielectric spacer thicknesses. (b) Simulated absorption spectrum of the microspheres with different sizes or periods.
Fig. 5.
Fig. 5. (a) The measured absorption spectrum at different polarization angles of the fabricated sample. (b) The simulated absorption spectrum of the sample with different incident angles.
Fig. 6.
Fig. 6. (a) Microscope image of a fabricated sample from the unit cell arranged in a non-periodic pattern. (b) Measured and simulated absorption spectra of the microspheres with different diameters.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r = r 12 e j θ 12 + t 12 t 21 e j ( φ 12 + φ 21 2 β π ) 1 r 21 e j ( θ 21 2 β π )

Metrics