Abstract

We report, what is to our knowledge, the highest average power obtained directly from a Yb:YLF regenerative amplifier to date. A fiber front-end provided seed pulses with an energy of 10 nJ and stretched pulsewidth of around 1 ns. The bow-tie type Yb:YLF ring amplifier was pulse pumped by a kW power 960 nm fiber coupled diode-module. By employing a pump spot diameter of 2.1 mm, we could generate 20-mJ pulses at repetition rates between 1 Hz and 3.5 kHz, 10 mJ pulses at 5 kHz, 6.5 mJ pulses at 7.5 kHz and 5 mJ pulses at 10 kHz. The highest average power (70 W) was obtained at 3.5 kHz operation, at an absorbed pump power level of 460 W, corresponding to a conversion efficiency of 15.2%. Despite operating in the unsaturated regime, usage of a very stable seed source limited the power fluctuations below 2% rms in a 5 minute time interval. The output pulses were centered around 1018.6 nm with a FWHM bandwidth of 2.1 nm, and could be compressed to below 1-ps pulse duration. The output beam maintained a TEM00 beam profile at all power levels, and possesses a beam quality factor better than 1.05 in both axis. The relatively narrow bandwidth of the current seed source and the moderate gain available from the single Yb:YLF crystal was the main limiting factor in this initial study.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient, diode-pumped, high-power (>300W) cryogenic Yb:YLF laser with broad-tunability (995-1020.5 nm): investigation of E//a-axis for lasing

Umit Demirbas, Huseyin Cankaya, Jelto Thesinga, Franz X. Kärtner, and Mikhail Pergament
Opt. Express 27(25) 36562-36579 (2019)

30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier

Junji Kawanaka, Koichi Yamakawa, Hajime Nishioka, and Ken-ichi Ueda
Opt. Lett. 28(21) 2121-2123 (2003)

Multi-millijoule, diode-pumped, cryogenically-cooled Yb:KY(WO4)2 chirped-pulse regenerative amplifier

K. Ogawa, Y. Akahane, M. Aoyama, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa
Opt. Express 15(14) 8598-8602 (2007)

References

  • View by:
  • |
  • |
  • |

  1. U. Demirbas, H. Cankaya, J. Thesinga, F. X. Kartner, and M. Pergament, “Efficient, diode-pumped, high-power (>300W) cryogenic Yb:YLF laser with broad-tunability (995-1020.5 nm): investigation of E//a-axis for lasing,” Opt. Express 27(25), 36562–36579 (2019).
    [Crossref]
  2. X. Delen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Honninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013).
    [Crossref]
  3. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [Crossref]
  4. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  5. C. J. Saraceno, “Mode-locked thin-disk lasers and their potential application for high-power terahertz generation,” J. Opt. 20(4), 044010 (2018).
    [Crossref]
  6. J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41(15), 3567–3570 (2016).
    [Crossref]
  7. T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
    [Crossref]
  8. L. E. Zapata, H. Lin, A. L. Calendron, H. Cankaya, M. Hemmer, F. Reichert, W. R. Huang, E. Granados, K. H. Hong, and F. X. Kartner, “Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers,” Opt. Lett. 40(11), 2610–2613 (2015).
    [Crossref]
  9. L. E. Zapata, F. Reichert, M. Hemmer, and F. X. Kartner, “250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping,” Opt. Lett. 41(3), 492–495 (2016).
    [Crossref]
  10. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  11. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  12. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [Crossref]
  13. J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, “Improved high-field laser characteristics of a diode-pumped Yb : LiYF4 crystal at low temperature,” Opt. Express 10(10), 455–460 (2002).
    [Crossref]
  14. D. E. Miller, J. R. Ochoa, and T. Y. Fan, “Cryogenically cooled, 149 W, Q-switched, Yb:LiYF4 laser,” Opt. Lett. 38(20), 4260–4261 (2013).
    [Crossref]
  15. A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
    [Crossref]
  16. A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
    [Crossref]
  17. D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Sci. Eng. 4, e15 (2016).
    [Crossref]
  18. J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb : YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003).
    [Crossref]
  19. D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited],” Opt. Mater. Express 1(3), 434–450 (2011).
    [Crossref]
  20. D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
    [Crossref]
  21. J. Manni, D. Harris, and T. Y. Fan, “High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4,” Opt. Commun. 417, 54–56 (2018).
    [Crossref]
  22. H. Cankaya, U. Demirbas, Y. Hua, M. Hemmer, L. E. Zapata, M. Pergament, and F. X. Kärtner, “190-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019.7 nm,” OSA Continuum 2(12), 3547–3553 (2019).
    [Crossref]
  23. Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
    [Crossref]
  24. J. Kawanaka, H. Nishioka, N. Inoue, and K. Ueda, “Tunable continuous-wave Yb : YLF laser operation with a diode-pumped chirped-pulse amplification system,” Appl. Opt. 40(21), 3542–3546 (2001).
    [Crossref]
  25. L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
    [Crossref]
  26. K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.
  27. N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B 92(4), 519–523 (2008).
    [Crossref]
  28. W. Bolanos, F. Starecki, A. Braud, J. L. Doualan, R. Moncorge, and P. Camy, “2.8 W end-pumped Yb3+:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013).
    [Crossref]
  29. N. Ter-Gabrielan, V. Fromzel, T. Sanamyan, and M. Dubinskii, “Highly-efficient Q-switched Yb: YLF laser at 995 nm with a second harmonic conversion,” Opt. Mater. Express 7(7), 2396–2403 (2017).
    [Crossref]
  30. M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb : YLF,” Opt. Express 15(13), 7994–8002 (2007).
    [Crossref]
  31. D. Alderighi, A. Pirri, G. Toci, and M. Vannini, “Tunability enhancement of Yb:YLF based laser,” Opt. Express 18(3), 2236–2241 (2010).
    [Crossref]
  32. A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, and H. Sato, “Direct Comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
    [Crossref]
  33. F. D. Lelii, S. Jun, F. Pirzio, G. Piccinno, M. Tonelli, and A. Agnesi, “Laser investigation of Yb:YLF crystals fabricated with the micro-pulling-down technique,” Appl. Opt. 57(9), 2223–2226 (2018).
    [Crossref]
  34. J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
    [Crossref]
  35. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
    [Crossref]
  36. F. Pirzio, L. Fregnani, A. Volpi, A. Di Lieto, M. Tonelli, and A. Agnesi, “87 fs pulse generation in a diode-pumped semiconductor saturable absorber mirror mode-locked Yb:YLF laser,” Appl. Opt. 55(16), 4414–4417 (2016).
    [Crossref]
  37. H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).
  38. A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
    [Crossref]
  39. H. Vanherzeele, “Continuous Wave Dual Rod Nd-Ylf Laser with Dynamic Lensing Compensation,” Appl. Opt. 28(19), 4042–4044 (1989).
    [Crossref]
  40. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb : YAG laser,” Opt. Lett. 25(11), 805–807 (2000).
    [Crossref]
  41. A. L. Calendron, H. Cankaya, and F. X. Kartner, “High-energy kHz Yb:KYW dual-crystal regenerative amplifier,” Opt. Express 22(20), 24752–24762 (2014).
    [Crossref]
  42. H. Cankaya, A. L. Calendron, C. Zhou, S. H. Chia, O. D. Mucke, G. Cirmi, and F. X. Kartner, “40-(J passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers,” Opt. Express 24(22), 25169–25180 (2016).
    [Crossref]
  43. D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
    [Crossref]
  44. D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
    [Crossref]

2019 (3)

2018 (6)

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

J. Manni, D. Harris, and T. Y. Fan, “High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4,” Opt. Commun. 417, 54–56 (2018).
[Crossref]

F. D. Lelii, S. Jun, F. Pirzio, G. Piccinno, M. Tonelli, and A. Agnesi, “Laser investigation of Yb:YLF crystals fabricated with the micro-pulling-down technique,” Appl. Opt. 57(9), 2223–2226 (2018).
[Crossref]

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

C. J. Saraceno, “Mode-locked thin-disk lasers and their potential application for high-power terahertz generation,” J. Opt. 20(4), 044010 (2018).
[Crossref]

2017 (2)

2016 (5)

2015 (1)

2014 (1)

2013 (3)

2012 (2)

D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
[Crossref]

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (1)

2008 (2)

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B 92(4), 519–523 (2008).
[Crossref]

2007 (3)

M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb : YLF,” Opt. Express 15(13), 7994–8002 (2007).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

2006 (1)

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
[Crossref]

2005 (2)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

2004 (1)

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

2003 (1)

2002 (1)

2001 (1)

2000 (1)

1994 (1)

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

1989 (1)

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Agnesi, A.

Alderighi, D.

Alismail, A.

Anzai, Y.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
[Crossref]

Aubry, N.

Avizonis, P. V.

Balembois, F.

Barros, H. G.

Bauer, D.

Beach, R. J.

Beil, K.

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

Bensalah, A.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Bolanos, W.

Bonelli, L.

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B 92(4), 519–523 (2008).
[Crossref]

Boulon, G.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Brauch, U.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Braud, A.

Brenier, A.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Brons, J.

Brown, D. C.

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Sci. Eng. 4, e15 (2016).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

Calendron, A. L.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

H. Cankaya, A. L. Calendron, C. Zhou, S. H. Chia, O. D. Mucke, G. Cirmi, and F. X. Kartner, “40-(J passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers,” Opt. Express 24(22), 25169–25180 (2016).
[Crossref]

L. E. Zapata, H. Lin, A. L. Calendron, H. Cankaya, M. Hemmer, F. Reichert, W. R. Huang, E. Granados, K. H. Hong, and F. X. Kartner, “Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers,” Opt. Lett. 40(11), 2610–2613 (2015).
[Crossref]

A. L. Calendron, H. Cankaya, and F. X. Kartner, “High-energy kHz Yb:KYW dual-crystal regenerative amplifier,” Opt. Express 22(20), 24752–24762 (2014).
[Crossref]

Camy, P.

Cankaya, H.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

U. Demirbas, H. Cankaya, J. Thesinga, F. X. Kartner, and M. Pergament, “Efficient, diode-pumped, high-power (>300W) cryogenic Yb:YLF laser with broad-tunability (995-1020.5 nm): investigation of E//a-axis for lasing,” Opt. Express 27(25), 36562–36579 (2019).
[Crossref]

H. Cankaya, U. Demirbas, Y. Hua, M. Hemmer, L. E. Zapata, M. Pergament, and F. X. Kärtner, “190-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019.7 nm,” OSA Continuum 2(12), 3547–3553 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

H. Cankaya, A. L. Calendron, C. Zhou, S. H. Chia, O. D. Mucke, G. Cirmi, and F. X. Kartner, “40-(J passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers,” Opt. Express 24(22), 25169–25180 (2016).
[Crossref]

L. E. Zapata, H. Lin, A. L. Calendron, H. Cankaya, M. Hemmer, F. Reichert, W. R. Huang, E. Granados, K. H. Hong, and F. X. Kartner, “Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers,” Opt. Lett. 40(11), 2610–2613 (2015).
[Crossref]

A. L. Calendron, H. Cankaya, and F. X. Kartner, “High-energy kHz Yb:KYW dual-crystal regenerative amplifier,” Opt. Express 22(20), 24752–24762 (2014).
[Crossref]

H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).

Chang, G. Q.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Chia, S. H.

Cirmi, G.

Coluccelli, N.

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B 92(4), 519–523 (2008).
[Crossref]

Cornacchia, F.

Delen, X.

Demirbas, U.

Di Lieto, A.

Didierjean, J.

Doualan, J. L.

Dubinskii, M.

Eidam, T.

Emanuel, M. A.

Fakhari, M.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Fallahi, A.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

Fan, T. Y.

J. Manni, D. Harris, and T. Y. Fan, “High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4,” Opt. Commun. 417, 54–56 (2018).
[Crossref]

D. E. Miller, J. R. Ochoa, and T. Y. Fan, “Cryogenically cooled, 149 W, Q-switched, Yb:LiYF4 laser,” Opt. Lett. 38(20), 4260–4261 (2013).
[Crossref]

D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
[Crossref]

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited],” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Fattahi, H.

Fredrich-Thornton, S. T.

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

Fregnani, L.

Fromzel, V.

Fukuda, T.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Galzerano, G.

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B 92(4), 519–523 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[Crossref]

Georges, P.

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Gong, J.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Gorjan, M.

Granados, E.

Guyot, Y.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Hang, Y.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Harris, D.

J. Manni, D. Harris, and T. Y. Fan, “High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4,” Opt. Commun. 417, 54–56 (2018).
[Crossref]

Harris, D. G.

He, X. M.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Hemmer, M.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

H. Cankaya, U. Demirbas, Y. Hua, M. Hemmer, L. E. Zapata, M. Pergament, and F. X. Kärtner, “190-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019.7 nm,” OSA Continuum 2(12), 3547–3553 (2019).
[Crossref]

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

L. E. Zapata, F. Reichert, M. Hemmer, and F. X. Kartner, “250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping,” Opt. Lett. 41(3), 492–495 (2016).
[Crossref]

L. E. Zapata, H. Lin, A. L. Calendron, H. Cankaya, M. Hemmer, F. Reichert, W. R. Huang, E. Granados, K. H. Hong, and F. X. Kartner, “Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers,” Opt. Lett. 40(11), 2610–2613 (2015).
[Crossref]

H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).

Honea, E. C.

Hong, K. H.

Honninger, C.

Hua, Y.

H. Cankaya, U. Demirbas, Y. Hua, M. Hemmer, L. E. Zapata, M. Pergament, and F. X. Kärtner, “190-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019.7 nm,” OSA Continuum 2(12), 3547–3553 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).

Huang, W. R.

Huber, G.

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

Hugel, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Inoue, N.

Ito, M.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Jun, S.

Kalaydzhyan, A.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

Kartner, F. X.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

U. Demirbas, H. Cankaya, J. Thesinga, F. X. Kartner, and M. Pergament, “Efficient, diode-pumped, high-power (>300W) cryogenic Yb:YLF laser with broad-tunability (995-1020.5 nm): investigation of E//a-axis for lasing,” Opt. Express 27(25), 36562–36579 (2019).
[Crossref]

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

H. Cankaya, A. L. Calendron, C. Zhou, S. H. Chia, O. D. Mucke, G. Cirmi, and F. X. Kartner, “40-(J passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers,” Opt. Express 24(22), 25169–25180 (2016).
[Crossref]

L. E. Zapata, F. Reichert, M. Hemmer, and F. X. Kartner, “250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping,” Opt. Lett. 41(3), 492–495 (2016).
[Crossref]

L. E. Zapata, H. Lin, A. L. Calendron, H. Cankaya, M. Hemmer, F. Reichert, W. R. Huang, E. Granados, K. H. Hong, and F. X. Kartner, “Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers,” Opt. Lett. 40(11), 2610–2613 (2015).
[Crossref]

A. L. Calendron, H. Cankaya, and F. X. Kartner, “High-energy kHz Yb:KYW dual-crystal regenerative amplifier,” Opt. Express 22(20), 24752–24762 (2014).
[Crossref]

Kärtner, F. X.

H. Cankaya, U. Demirbas, Y. Hua, M. Hemmer, L. E. Zapata, M. Pergament, and F. X. Kärtner, “190-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019.7 nm,” OSA Continuum 2(12), 3547–3553 (2019).
[Crossref]

H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).

Katsurayama, M.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
[Crossref]

Kaumanns, M.

Kawanaka, J.

Kolis, J.

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Sci. Eng. 4, e15 (2016).
[Crossref]

Kränkel, C.

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

Krausz, F.

Laporta, P.

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B 92(4), 519–523 (2008).
[Crossref]

Lelii, F. D.

Limpert, J.

Lin, H.

Liu, W.

Major, Z.

Manni, J.

J. Manni, D. Harris, and T. Y. Fan, “High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4,” Opt. Commun. 417, 54–56 (2018).
[Crossref]

Martial, I.

Matlis, N. H.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

Meier, J.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

Metzger, T.

Miller, D.

Miller, D. E.

Mitchell, S. C.

Moncorge, R.

Monroe, R. S.

Mottay, E.

Mucke, O. D.

Nikl, M.

Nishioka, H.

Nubbemeyer, T.

Ochoa, J. R.

D. E. Miller, J. R. Ochoa, and T. Y. Fan, “Cryogenically cooled, 149 W, Q-switched, Yb:LiYF4 laser,” Opt. Lett. 38(20), 4260–4261 (2013).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Opower, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Parisi, D.

M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb : YLF,” Opt. Express 15(13), 7994–8002 (2007).
[Crossref]

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

Payne, S. A.

Pergament, M.

Pervak, V.

Petermann, K.

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

Piccinno, G.

Pirri, A.

Pirzio, F.

Pronin, O.

Rand, D.

Reichert, F.

Ripin, D. J.

D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
[Crossref]

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited],” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

Sanamyan, T.

Saraceno, C. J.

C. J. Saraceno, “Mode-locked thin-disk lasers and their potential application for high-power terahertz generation,” J. Opt. 20(4), 044010 (2018).
[Crossref]

Sato, H.

A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, and H. Sato, “Direct Comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
[Crossref]

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Schimpf, D. N.

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

Skidmore, J. A.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Starecki, F.

Sugiyama, A.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
[Crossref]

Sutter, D.

Sutton, S. B.

Ter-Gabrielan, N.

Thesinga, J.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Toci, G.

Toncelli, A.

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B 92(4), 519–523 (2008).
[Crossref]

Tonelli, M.

Tornegard, S.

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Sci. Eng. 4, e15 (2016).
[Crossref]

Tsuboi, T.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
[Crossref]

Tunnermann, A.

Ueda, K.

Ueffing, M.

Vanherzeele, H.

Vannini, M.

Volpi, A.

Voss, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Wittig, K.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Wu, X. J.

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Yamakawa, K.

Ye, H.

Yin, J. G.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Zaouter, Y.

Zapata, L. E.

H. Cankaya, U. Demirbas, Y. Hua, M. Hemmer, L. E. Zapata, M. Pergament, and F. X. Kärtner, “190-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019.7 nm,” OSA Continuum 2(12), 3547–3553 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

L. E. Zapata, F. Reichert, M. Hemmer, and F. X. Kartner, “250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping,” Opt. Lett. 41(3), 492–495 (2016).
[Crossref]

L. E. Zapata, H. Lin, A. L. Calendron, H. Cankaya, M. Hemmer, F. Reichert, W. R. Huang, E. Granados, K. H. Hong, and F. X. Kartner, “Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers,” Opt. Lett. 40(11), 2610–2613 (2015).
[Crossref]

D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).

Zhang, D. F.

D. F. Zhang, A. Fallahi, M. Hemmer, H. Ye, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Femtosecond phase control in high-field terahertz-driven ultrafast electron sources,” Optica 6(7), 872–877 (2019).
[Crossref]

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Zhang, L. H.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Zhang, P. X.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Zhao, C. C.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Zhou, C.

Zhou, G. J.

Appl. Opt. (4)

Appl. Phys. B (2)

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Room-temperature diode-pumped Yb3+-doped LiYF4 and KYF4 lasers,” Appl. Phys. B 92(4), 519–523 (2008).
[Crossref]

High Power Laser Sci. Eng. (2)

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Q. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kartner, “Laser system design for table-top X-ray light source,” High Power Laser Sci. Eng. 6, e12 (2018).
[Crossref]

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Power Laser Sci. Eng. 4, e15 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

J. Alloys Compd. (1)

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloys Compd. 408-412, 780–783 (2006).
[Crossref]

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[Crossref]

J. Opt. (1)

C. J. Saraceno, “Mode-locked thin-disk lasers and their potential application for high-power terahertz generation,” J. Opt. 20(4), 044010 (2018).
[Crossref]

Laser Phys. Lett. (1)

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9(2), 126–130 (2012).
[Crossref]

Nat. Photonics (1)

D. F. Zhang, A. Fallahi, M. Hemmer, X. J. Wu, M. Fakhari, Y. Hua, H. Cankaya, A. L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kartner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref]

Opt. Commun. (1)

J. Manni, D. Harris, and T. Y. Fan, “High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4,” Opt. Commun. 417, 54–56 (2018).
[Crossref]

Opt. Express (8)

A. L. Calendron, H. Cankaya, and F. X. Kartner, “High-energy kHz Yb:KYW dual-crystal regenerative amplifier,” Opt. Express 22(20), 24752–24762 (2014).
[Crossref]

M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb : YLF,” Opt. Express 15(13), 7994–8002 (2007).
[Crossref]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb : YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[Crossref]

A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, and H. Sato, “Direct Comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
[Crossref]

D. Alderighi, A. Pirri, G. Toci, and M. Vannini, “Tunability enhancement of Yb:YLF based laser,” Opt. Express 18(3), 2236–2241 (2010).
[Crossref]

U. Demirbas, H. Cankaya, J. Thesinga, F. X. Kartner, and M. Pergament, “Efficient, diode-pumped, high-power (>300W) cryogenic Yb:YLF laser with broad-tunability (995-1020.5 nm): investigation of E//a-axis for lasing,” Opt. Express 27(25), 36562–36579 (2019).
[Crossref]

J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, “Improved high-field laser characteristics of a diode-pumped Yb : LiYF4 crystal at low temperature,” Opt. Express 10(10), 455–460 (2002).
[Crossref]

H. Cankaya, A. L. Calendron, C. Zhou, S. H. Chia, O. D. Mucke, G. Cirmi, and F. X. Kartner, “40-(J passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers,” Opt. Express 24(22), 25169–25180 (2016).
[Crossref]

Opt. Lett. (12)

T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1 kW, 200 mJ picosecond thin-disk laser system,” Opt. Lett. 42(7), 1381–1384 (2017).
[Crossref]

J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41(15), 3567–3570 (2016).
[Crossref]

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb : YAG laser,” Opt. Lett. 25(11), 805–807 (2000).
[Crossref]

J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb : YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003).
[Crossref]

D. E. Miller, J. R. Ochoa, and T. Y. Fan, “Cryogenically cooled, 149 W, Q-switched, Yb:LiYF4 laser,” Opt. Lett. 38(20), 4260–4261 (2013).
[Crossref]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref]

D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system,” Opt. Lett. 37(13), 2700–2702 (2012).
[Crossref]

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. J. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tunnermann, F. X. Kartner, and G. Q. Chang, “87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier,” Opt. Lett. 43(8), 1686–1689 (2018).
[Crossref]

L. E. Zapata, H. Lin, A. L. Calendron, H. Cankaya, M. Hemmer, F. Reichert, W. R. Huang, E. Granados, K. H. Hong, and F. X. Kartner, “Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers,” Opt. Lett. 40(11), 2610–2613 (2015).
[Crossref]

L. E. Zapata, F. Reichert, M. Hemmer, and F. X. Kartner, “250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping,” Opt. Lett. 41(3), 492–495 (2016).
[Crossref]

X. Delen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Honninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013).
[Crossref]

W. Bolanos, F. Starecki, A. Braud, J. L. Doualan, R. Moncorge, and P. Camy, “2.8 W end-pumped Yb3+:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013).
[Crossref]

Opt. Mater. (1)

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Opt. Mater. Express (2)

Optica (1)

OSA Continuum (1)

Other (2)

K. Beil, S. T. Fredrich-Thornton, C. Kränkel, K. Petermann, D. Parisi, M. Tonelli, and G. Huber, “New thin disk laser materials: Yb:ScYLO and Yb:YLF,” in CLEO/Europe and EQEC (2011), p. CA11_16.

H. Cankaya, U. Demirbas, M. Pergament, M. Hemmer, Y. Hua, L. E. Zapata, and F. X. Kärtner, “160-mJ Cryogenically-Cooled Yb:YLF Amplifier System at 1019 nm,” in CLEO Europe (Munich, 2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic of diode pumped cryogenically cooled Yb:YLF regenerative amplifier. DM: Dichroic mirror, HR: High reflector mirror, f1-f3: pump beam optics/lenses, PC: Pockell cell, TFP: Thin-film polarizer, HWP: Half-wave plate.
Fig. 2.
Fig. 2. Measured cw (a) and quasi-cw (b) laser performance of the cryogenic Yb:YLF laser at an output coupling value of 20%. Short cavity corresponds to a simple 20 cm long flat-flat cavity, containing a flat dichroic mirror and a flat output coupler [1]. Regenerative amplifier (regen) cavity is described in detail in Fig. 1. Regen cavity laser performance data with and without the pockell cell (PC) is shown in (b). Results of the short-cavity are reproduced with permission from [1].
Fig. 3.
Fig. 3. (a) Variation of regenerative amplifier average output power with absorbed pump power at a repetition rate of 2.5 kHz. The data is taken at a round-trip number n = 70. (b) Variation of regenerative amplifier average output power as a function of number of round-trips in the amplifier (n), at a fixed absorbed pump power of 240 W. Variation of single pass gain is also shown for this case.
Fig. 4.
Fig. 4. Measured time dynamics of the Yb:YLF amplifier using two fast photodiodes. The data is taken at an output pulse energy of 20 mJ, at a pulse repetition rate of 2.5 kHz and at an absorbed pump power level of 320 W. Dynamics of the intracavity circulating pulse (green) as well as the amplified output pulse (yellow) are shown.
Fig. 5.
Fig. 5. Optical spectrum of seed pulse and amplified pulse at an output pulse energy of 4 mJ and 20 mJ. The amplified pulses have a FWHM of 2.1 nm centered around 1018.6 nm, that ideally supports 700-fs level pulses. The data is taken at a pulse repetition rate of 2.5 kHz. The measured emission cross section for the E//a axis is also shown in arbitrary units at 80 K.
Fig. 6.
Fig. 6. Measured near field (NF) and far field (FF) beam profiles of the regenerative amplifier at several different output power levels. The data is taken at a pulse repetition rate of 2.5 kHz.
Fig. 7.
Fig. 7. Measured caustic of the regenerative amplifier at 40 W average power (16 mJ pulses at 2.5 kHz). Beam quality factor (M2) was estimated to be below 1.05 in both axis.
Fig. 8.
Fig. 8. Measured variation of (a) seed laser power, (b) incident pump power, (c) transmitted pump power and (d) Yb:YLF regenerative amplifier power. The regenerative amplifier data is taken at an output pulse energy of 16 mJ and at a pulse repetition rate of 2.5 kHz.
Fig. 9.
Fig. 9. Measured power performance of the Yb:YLF regenerative amplifier at 3.5 kHz repetition rate. The data is taken for cavity round-trips (n) of 71, 82 and 93.
Fig. 10.
Fig. 10. Variation of regenerative amplifier output energy with absorbed pump power at a repetition rate of 10 kHz. The data is taken at a round-trip number (n) of 150.

Metrics