Abstract

Strong scattering medium brings great difficulties to image objects. Optical memory effect makes it possible to image through strong random scattering medium in a limited angle field-of-view (FOV). The limitation of FOV results in a limited optical memory effect range, which prevents the optical memory effect to be applied to real imaging applications. In this paper, a kind of practical convolutional neural network called PDSNet (Pragmatic De-scatter ConvNet) is constructed to image objects hidden behind different scattering media. The proposed method can expand at least 40 times of the optical memory effect range with a average PSNR above 24dB, and enable to image complex objects in real time, even for objects with untrained scales. The provided experiments can verify its accurateness and efficiency.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photon-limited imaging through scattering medium based on deep learning

Lei Sun, Jianhong Shi, Xiaoyan Wu, Yiwei Sun, and Guihua Zeng
Opt. Express 27(23) 33120-33134 (2019)

Image reconstruction through dynamic scattering media based on deep learning

Yiwei Sun, Jianhong Shi, Lei Sun, Jianping Fan, and Guihua Zeng
Opt. Express 27(11) 16032-16046 (2019)

Object classification through scattering media with deep learning on time resolved measurement

Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Heshmat, and Ramesh Raskar
Opt. Express 25(15) 17466-17479 (2017)

References

  • View by:
  • |
  • |
  • |

  1. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  2. Y. Mao, C. Flueraru, S. Chang, D. P. Popescu, and M. G. Sowa, “High-quality tissue imaging using a catheter-based swept-source optical coherence tomography systems with an integrated semiconductor optical amplifier,” IEEE Trans. Instrum. Meas. 60(10), 3376–3383 (2011).
    [Crossref]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  4. K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
    [Crossref]
  5. M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
    [Crossref]
  6. M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23(10), 12648–12668 (2015).
    [Crossref]
  7. A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques,” Opt. Express 23(9), 11898–11911 (2015).
    [Crossref]
  8. D. Lu, M. Liao, W. He, Z. Cai, and X. Peng, “Imaging dynamic objects hidden behind scattering medium by retrieving the point spread function,” in Speckle 2018: VII International Conference on Speckle Metrology, vol. 10834 (International Society for Optics and Photonics, 2018), pp. 578–581.
  9. H. He, X. Xie, Y. Liu, H. Liang, and J. Zhou, “Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method,” J. Innovative Opt. Health Sci. 12(04), 1930005 (2019).
    [Crossref]
  10. X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
    [Crossref]
  11. J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref]
  12. H. Li, T. Wu, J. Liu, C. Gong, and X. Shao, “Simulation and experimental verification for imaging of gray-scale objects through scattering layers,” Appl. Opt. 55(34), 9731–9737 (2016).
    [Crossref]
  13. J. Xie, X. Xie, Y. Gao, X. Xu, Y. Liu, and X. Yu, “Depth detection capability and ultra-large depth of field in imaging through a thin scattering layer,” J. Opt. 21(8), 085606 (2019).
    [Crossref]
  14. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
    [Crossref]
  15. J. Chang and G. Wetzstein, “Single-shot speckle correlation fluorescence microscopy in thick scattering tissue with image reconstruction priors,” J. Biophotonics 11(3), e201700224 (2018).
    [Crossref]
  16. P. Schniter and S. Rangan, “Compressive phase retrieval via generalized approximate message passing,” IEEE Trans. Signal Process. 63(4), 1043–1055 (2015).
    [Crossref]
  17. C. A. Metzler, A. Maleki, and R. G. Baraniuk, “Bm3d-prgamp: Compressive phase retrieval based on bm3d denoising,” in 2016 IEEE International Conference on Image Processing (ICIP), (IEEE, 2016), pp. 2504–2508.
  18. L. Li, Q. Li, S. Sun, H.-Z. Lin, W.-T. Liu, and P.-X. Chen, “Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function,” Opt. Lett. 43(8), 1670–1673 (2018).
    [Crossref]
  19. C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
    [Crossref]
  20. D. Tang, S. K. Sahoo, V. Tran, and C. Dang, “Single-shot large field of view imaging with scattering media by spatial demultiplexing,” Appl. Opt. 57(26), 7533–7538 (2018).
    [Crossref]
  21. D. F. Gardner, S. Divitt, and A. T. Watnik, “Ptychographic imaging of incoherently illuminated extended objects using speckle correlations,” Appl. Opt. 58(13), 3564–3569 (2019).
    [Crossref]
  22. X. Wang, X. Jin, J. Li, X. Lian, X. Ji, and Q. Dai, “Prior-information-free single-shot scattering imaging beyond the memory effect,” Opt. Lett. 44(6), 1423–1426 (2019).
    [Crossref]
  23. S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5(7), 803–813 (2018).
    [Crossref]
  24. Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” Optica 5(10), 1181–1190 (2018).
    [Crossref]
  25. M. Yang, Z.-H. Liu, Z.-D. Cheng, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Deep hybrid scattering image learning,” J. Phys. D: Appl. Phys. 52(11), 115105 (2019).
    [Crossref]
  26. Y. Sun, J. Shi, L. Sun, J. Fan, and G. Zeng, “Image reconstruction through dynamic scattering media based on deep learning,” Opt. Express 27(11), 16032–16046 (2019).
    [Crossref]
  27. M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(03), 1 (2019).
    [Crossref]
  28. N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5(8), 960–966 (2018).
    [Crossref]
  29. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, (Springer, 2015), pp. 234–241.
  30. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company Publishers, 2007).
  31. Y. LeCun, C. Cortes, and C. J. C. Burges, “THE MNIST DATABASE of handwritten digits,” http://yann.lecun.com/exdb/mnist/ .
  32. C. E. Thomaz, “FEI Face Database,” https://fei.edu.br/~cet/facedatabase.html .

2019 (8)

H. He, X. Xie, Y. Liu, H. Liang, and J. Zhou, “Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method,” J. Innovative Opt. Health Sci. 12(04), 1930005 (2019).
[Crossref]

J. Xie, X. Xie, Y. Gao, X. Xu, Y. Liu, and X. Yu, “Depth detection capability and ultra-large depth of field in imaging through a thin scattering layer,” J. Opt. 21(8), 085606 (2019).
[Crossref]

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

D. F. Gardner, S. Divitt, and A. T. Watnik, “Ptychographic imaging of incoherently illuminated extended objects using speckle correlations,” Appl. Opt. 58(13), 3564–3569 (2019).
[Crossref]

X. Wang, X. Jin, J. Li, X. Lian, X. Ji, and Q. Dai, “Prior-information-free single-shot scattering imaging beyond the memory effect,” Opt. Lett. 44(6), 1423–1426 (2019).
[Crossref]

M. Yang, Z.-H. Liu, Z.-D. Cheng, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Deep hybrid scattering image learning,” J. Phys. D: Appl. Phys. 52(11), 115105 (2019).
[Crossref]

Y. Sun, J. Shi, L. Sun, J. Fan, and G. Zeng, “Image reconstruction through dynamic scattering media based on deep learning,” Opt. Express 27(11), 16032–16046 (2019).
[Crossref]

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(03), 1 (2019).
[Crossref]

2018 (7)

2016 (1)

2015 (4)

P. Schniter and S. Rangan, “Compressive phase retrieval via generalized approximate message passing,” IEEE Trans. Signal Process. 63(4), 1043–1055 (2015).
[Crossref]

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23(10), 12648–12668 (2015).
[Crossref]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques,” Opt. Express 23(9), 11898–11911 (2015).
[Crossref]

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

2014 (1)

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

2013 (1)

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

2012 (1)

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

2011 (1)

Y. Mao, C. Flueraru, S. Chang, D. P. Popescu, and M. G. Sowa, “High-quality tissue imaging using a catheter-based swept-source optical coherence tomography systems with an integrated semiconductor optical amplifier,” IEEE Trans. Instrum. Meas. 60(10), 3376–3383 (2011).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

1982 (1)

Baraniuk, R. G.

C. A. Metzler, A. Maleki, and R. G. Baraniuk, “Bm3d-prgamp: Compressive phase retrieval based on bm3d denoising,” in 2016 IEEE International Conference on Image Processing (ICIP), (IEEE, 2016), pp. 2504–2508.

Barbastathis, G.

Bertolotti, J.

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Betzig, E.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Blum, C.

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Borhani, N.

Bromberg, Y.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Brox, T.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, (Springer, 2015), pp. 234–241.

Burges, C. J. C.

Y. LeCun, C. Cortes, and C. J. C. Burges, “THE MNIST DATABASE of handwritten digits,” http://yann.lecun.com/exdb/mnist/ .

Cai, Z.

D. Lu, M. Liao, W. He, Z. Cai, and X. Peng, “Imaging dynamic objects hidden behind scattering medium by retrieving the point spread function,” in Speckle 2018: VII International Conference on Speckle Metrology, vol. 10834 (International Society for Optics and Photonics, 2018), pp. 578–581.

Chang, J.

J. Chang and G. Wetzstein, “Single-shot speckle correlation fluorescence microscopy in thick scattering tissue with image reconstruction priors,” J. Biophotonics 11(3), e201700224 (2018).
[Crossref]

Chang, S.

Y. Mao, C. Flueraru, S. Chang, D. P. Popescu, and M. G. Sowa, “High-quality tissue imaging using a catheter-based swept-source optical coherence tomography systems with an integrated semiconductor optical amplifier,” IEEE Trans. Instrum. Meas. 60(10), 3376–3383 (2011).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chen, P.-X.

Cheng, Z.-D.

M. Yang, Z.-H. Liu, Z.-D. Cheng, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Deep hybrid scattering image learning,” J. Phys. D: Appl. Phys. 52(11), 115105 (2019).
[Crossref]

Choi, W.

Choi, Y.

Cortes, C.

Y. LeCun, C. Cortes, and C. J. C. Burges, “THE MNIST DATABASE of handwritten digits,” http://yann.lecun.com/exdb/mnist/ .

Dai, Q.

Dang, C.

Daudet, L.

Davidson, N.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Deng, M.

Divitt, S.

Drémeau, A.

Fan, J.

Fienup, J. R.

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Fischer, P.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, (Springer, 2015), pp. 234–241.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Flueraru, C.

Y. Mao, C. Flueraru, S. Chang, D. P. Popescu, and M. G. Sowa, “High-quality tissue imaging using a catheter-based swept-source optical coherence tomography systems with an integrated semiconductor optical amplifier,” IEEE Trans. Instrum. Meas. 60(10), 3376–3383 (2011).
[Crossref]

Friesem, A. A.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Gao, Y.

J. Xie, X. Xie, Y. Gao, X. Xu, Y. Liu, and X. Yu, “Depth detection capability and ultra-large depth of field in imaging through a thin scattering layer,” J. Opt. 21(8), 085606 (2019).
[Crossref]

Gardner, D. F.

Gigan, S.

Gong, C.

Goodman, J. W.

J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company Publishers, 2007).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Guo, C.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Guo, G.-C.

M. Yang, Z.-H. Liu, Z.-D. Cheng, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Deep hybrid scattering image learning,” J. Phys. D: Appl. Phys. 52(11), 115105 (2019).
[Crossref]

Harvey, B. K.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

He, H.

H. He, X. Xie, Y. Liu, H. Liang, and J. Zhou, “Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method,” J. Innovative Opt. Health Sci. 12(04), 1930005 (2019).
[Crossref]

He, W.

D. Lu, M. Liao, W. He, Z. Cai, and X. Peng, “Imaging dynamic objects hidden behind scattering medium by retrieving the point spread function,” in Speckle 2018: VII International Conference on Speckle Metrology, vol. 10834 (International Society for Optics and Photonics, 2018), pp. 578–581.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Ji, N.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Ji, X.

Jin, X.

Kakkava, E.

Katz, O.

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques,” Opt. Express 23(9), 11898–11911 (2015).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Kim, M.

Krzakala, F.

Lagendijk, A.

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

LeCun, Y.

Y. LeCun, C. Cortes, and C. J. C. Burges, “THE MNIST DATABASE of handwritten digits,” http://yann.lecun.com/exdb/mnist/ .

Lee, J.

Li, C.-F.

M. Yang, Z.-H. Liu, Z.-D. Cheng, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Deep hybrid scattering image learning,” J. Phys. D: Appl. Phys. 52(11), 115105 (2019).
[Crossref]

Li, G.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(03), 1 (2019).
[Crossref]

Li, H.

Li, J.

Li, L.

Li, Q.

Li, S.

Li, W.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Li, Y.

Lian, X.

Liang, H.

H. He, X. Xie, Y. Liu, H. Liang, and J. Zhou, “Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method,” J. Innovative Opt. Health Sci. 12(04), 1930005 (2019).
[Crossref]

Liao, M.

D. Lu, M. Liao, W. He, Z. Cai, and X. Peng, “Imaging dynamic objects hidden behind scattering medium by retrieving the point spread function,” in Speckle 2018: VII International Conference on Speckle Metrology, vol. 10834 (International Society for Optics and Photonics, 2018), pp. 578–581.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Lin, H.-Z.

Liu, J.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

H. Li, T. Wu, J. Liu, C. Gong, and X. Shao, “Simulation and experimental verification for imaging of gray-scale objects through scattering layers,” Appl. Opt. 55(34), 9731–9737 (2016).
[Crossref]

Liu, W.-T.

Liu, Y.

J. Xie, X. Xie, Y. Gao, X. Xu, Y. Liu, and X. Yu, “Depth detection capability and ultra-large depth of field in imaging through a thin scattering layer,” J. Opt. 21(8), 085606 (2019).
[Crossref]

H. He, X. Xie, Y. Liu, H. Liang, and J. Zhou, “Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method,” J. Innovative Opt. Health Sci. 12(04), 1930005 (2019).
[Crossref]

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
[Crossref]

Liu, Z.-H.

M. Yang, Z.-H. Liu, Z.-D. Cheng, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Deep hybrid scattering image learning,” J. Phys. D: Appl. Phys. 52(11), 115105 (2019).
[Crossref]

Liutkus, A.

Lu, D.

D. Lu, M. Liao, W. He, Z. Cai, and X. Peng, “Imaging dynamic objects hidden behind scattering medium by retrieving the point spread function,” in Speckle 2018: VII International Conference on Speckle Metrology, vol. 10834 (International Society for Optics and Photonics, 2018), pp. 578–581.

Lyu, M.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(03), 1 (2019).
[Crossref]

Maleki, A.

C. A. Metzler, A. Maleki, and R. G. Baraniuk, “Bm3d-prgamp: Compressive phase retrieval based on bm3d denoising,” in 2016 IEEE International Conference on Image Processing (ICIP), (IEEE, 2016), pp. 2504–2508.

Mao, Y.

Y. Mao, C. Flueraru, S. Chang, D. P. Popescu, and M. G. Sowa, “High-quality tissue imaging using a catheter-based swept-source optical coherence tomography systems with an integrated semiconductor optical amplifier,” IEEE Trans. Instrum. Meas. 60(10), 3376–3383 (2011).
[Crossref]

Martina, D.

Metzler, C. A.

C. A. Metzler, A. Maleki, and R. G. Baraniuk, “Bm3d-prgamp: Compressive phase retrieval based on bm3d denoising,” in 2016 IEEE International Conference on Image Processing (ICIP), (IEEE, 2016), pp. 2504–2508.

Moser, C.

Mosk, A. P.

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
[Crossref]

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Nixon, M.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Peng, X.

D. Lu, M. Liao, W. He, Z. Cai, and X. Peng, “Imaging dynamic objects hidden behind scattering medium by retrieving the point spread function,” in Speckle 2018: VII International Conference on Speckle Metrology, vol. 10834 (International Society for Optics and Photonics, 2018), pp. 578–581.

Popescu, D. P.

Y. Mao, C. Flueraru, S. Chang, D. P. Popescu, and M. G. Sowa, “High-quality tissue imaging using a catheter-based swept-source optical coherence tomography systems with an integrated semiconductor optical amplifier,” IEEE Trans. Instrum. Meas. 60(10), 3376–3383 (2011).
[Crossref]

Psaltis, D.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Rangan, S.

P. Schniter and S. Rangan, “Compressive phase retrieval via generalized approximate message passing,” IEEE Trans. Signal Process. 63(4), 1043–1055 (2015).
[Crossref]

Richie, C. T.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Ronneberger, O.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, (Springer, 2015), pp. 234–241.

Sahoo, S. K.

Schniter, P.

P. Schniter and S. Rangan, “Compressive phase retrieval via generalized approximate message passing,” IEEE Trans. Signal Process. 63(4), 1043–1055 (2015).
[Crossref]

Schülke, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Shao, X.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

H. Li, T. Wu, J. Liu, C. Gong, and X. Shao, “Simulation and experimental verification for imaging of gray-scale objects through scattering layers,” Appl. Opt. 55(34), 9731–9737 (2016).
[Crossref]

Shi, J.

Silberberg, Y.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Sinha, A.

Situ, G.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(03), 1 (2019).
[Crossref]

Small, E.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Sowa, M. G.

Y. Mao, C. Flueraru, S. Chang, D. P. Popescu, and M. G. Sowa, “High-quality tissue imaging using a catheter-based swept-source optical coherence tomography systems with an integrated semiconductor optical amplifier,” IEEE Trans. Instrum. Meas. 60(10), 3376–3383 (2011).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sun, L.

Sun, S.

Sun, W.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Sun, Y.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Tang, D.

Thendiyammal, A.

Thomaz, C. E.

C. E. Thomaz, “FEI Face Database,” https://fei.edu.br/~cet/facedatabase.html .

Tian, L.

Tran, V.

Van Putten, E. G.

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Vos, W. L.

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Wang, G.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Wang, H.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(03), 1 (2019).
[Crossref]

Wang, J.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Wang, K.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Wang, X.

Watnik, A. T.

Wetzstein, G.

J. Chang and G. Wetzstein, “Single-shot speckle correlation fluorescence microscopy in thick scattering tissue with image reconstruction priors,” J. Biophotonics 11(3), e201700224 (2018).
[Crossref]

Wu, T.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

H. Li, T. Wu, J. Liu, C. Gong, and X. Shao, “Simulation and experimental verification for imaging of gray-scale objects through scattering layers,” Appl. Opt. 55(34), 9731–9737 (2016).
[Crossref]

Xie, J.

J. Xie, X. Xie, Y. Gao, X. Xu, Y. Liu, and X. Yu, “Depth detection capability and ultra-large depth of field in imaging through a thin scattering layer,” J. Opt. 21(8), 085606 (2019).
[Crossref]

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
[Crossref]

Xie, X.

H. He, X. Xie, Y. Liu, H. Liang, and J. Zhou, “Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method,” J. Innovative Opt. Health Sci. 12(04), 1930005 (2019).
[Crossref]

J. Xie, X. Xie, Y. Gao, X. Xu, Y. Liu, and X. Yu, “Depth detection capability and ultra-large depth of field in imaging through a thin scattering layer,” J. Opt. 21(8), 085606 (2019).
[Crossref]

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
[Crossref]

Xu, J.-S.

M. Yang, Z.-H. Liu, Z.-D. Cheng, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Deep hybrid scattering image learning,” J. Phys. D: Appl. Phys. 52(11), 115105 (2019).
[Crossref]

Xu, X.

J. Xie, X. Xie, Y. Gao, X. Xu, Y. Liu, and X. Yu, “Depth detection capability and ultra-large depth of field in imaging through a thin scattering layer,” J. Opt. 21(8), 085606 (2019).
[Crossref]

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
[Crossref]

Xue, Y.

Yang, M.

M. Yang, Z.-H. Liu, Z.-D. Cheng, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Deep hybrid scattering image learning,” J. Phys. D: Appl. Phys. 52(11), 115105 (2019).
[Crossref]

Yoon, C.

Yu, X.

J. Xie, X. Xie, Y. Gao, X. Xu, Y. Liu, and X. Yu, “Depth detection capability and ultra-large depth of field in imaging through a thin scattering layer,” J. Opt. 21(8), 085606 (2019).
[Crossref]

Zeng, G.

Zheng, S.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(03), 1 (2019).
[Crossref]

Zhou, J.

H. He, X. Xie, Y. Liu, H. Liang, and J. Zhou, “Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method,” J. Innovative Opt. Health Sci. 12(04), 1930005 (2019).
[Crossref]

X. Xu, X. Xie, A. Thendiyammal, H. Zhuang, J. Xie, Y. Liu, J. Zhou, and A. P. Mosk, “Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference,” Opt. Express 26(12), 15073–15083 (2018).
[Crossref]

Zhu, L.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Zhuang, H.

Adv. Photonics (1)

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(03), 1 (2019).
[Crossref]

Appl. Opt. (4)

IEEE Trans. Instrum. Meas. (1)

Y. Mao, C. Flueraru, S. Chang, D. P. Popescu, and M. G. Sowa, “High-quality tissue imaging using a catheter-based swept-source optical coherence tomography systems with an integrated semiconductor optical amplifier,” IEEE Trans. Instrum. Meas. 60(10), 3376–3383 (2011).
[Crossref]

IEEE Trans. Signal Process. (1)

P. Schniter and S. Rangan, “Compressive phase retrieval via generalized approximate message passing,” IEEE Trans. Signal Process. 63(4), 1043–1055 (2015).
[Crossref]

J. Biophotonics (1)

J. Chang and G. Wetzstein, “Single-shot speckle correlation fluorescence microscopy in thick scattering tissue with image reconstruction priors,” J. Biophotonics 11(3), e201700224 (2018).
[Crossref]

J. Innovative Opt. Health Sci. (1)

H. He, X. Xie, Y. Liu, H. Liang, and J. Zhou, “Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method,” J. Innovative Opt. Health Sci. 12(04), 1930005 (2019).
[Crossref]

J. Opt. (1)

J. Xie, X. Xie, Y. Gao, X. Xu, Y. Liu, and X. Yu, “Depth detection capability and ultra-large depth of field in imaging through a thin scattering layer,” J. Opt. 21(8), 085606 (2019).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. Yang, Z.-H. Liu, Z.-D. Cheng, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Deep hybrid scattering image learning,” J. Phys. D: Appl. Phys. 52(11), 115105 (2019).
[Crossref]

Nat. Commun. (1)

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6(1), 7276 (2015).
[Crossref]

Nat. Photonics (2)

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Nature (1)

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Opt. Commun. (1)

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (3)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Other (6)

D. Lu, M. Liao, W. He, Z. Cai, and X. Peng, “Imaging dynamic objects hidden behind scattering medium by retrieving the point spread function,” in Speckle 2018: VII International Conference on Speckle Metrology, vol. 10834 (International Society for Optics and Photonics, 2018), pp. 578–581.

C. A. Metzler, A. Maleki, and R. G. Baraniuk, “Bm3d-prgamp: Compressive phase retrieval based on bm3d denoising,” in 2016 IEEE International Conference on Image Processing (ICIP), (IEEE, 2016), pp. 2504–2508.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, (Springer, 2015), pp. 234–241.

J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts and Company Publishers, 2007).

Y. LeCun, C. Cortes, and C. J. C. Burges, “THE MNIST DATABASE of handwritten digits,” http://yann.lecun.com/exdb/mnist/ .

C. E. Thomaz, “FEI Face Database,” https://fei.edu.br/~cet/facedatabase.html .

Supplementary Material (1)

NameDescription
» Visualization 1       The video is a demonstration of the reconstruction results under the effect of 40 times optical memory range.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. The structure of the proposed PDSNet.
Fig. 2.
Fig. 2. Experiment setup uses an DMD as the object. (a) experiment setup; (b) the actual optical system.
Fig. 3.
Fig. 3. Test result of the complex object dataset with 2 characters, 3 characters and 4 characters: (a) speckle image; (b) autocorrelation of (a); (c)original target; (d) autocorrelation of (c); (e)output image of PDSNet; (f) output image of U-net; (g)–(i) belong to the experiment of the complex object dataset with 2 characters; (j)–(l) belong to the experiment of the complex object dataset with 3 characters; (m)–(o) belong to the experiment of the complex object dataset with 4 characters. Scale bars: 75 pixels.
Fig. 4.
Fig. 4. Test result of the multi-medium A dataset with same property and the multi-medium B dataset with different property: (a) speckle image; (b) original target; (c) output image of PDSNet;(d)–(g) belong to the experiment of the multi-medium A dataset with same property; (h)–(k) belong to the experiment of the multi-medium B dataset with different property. Scale bars: 75 pixels.
Fig. 5.
Fig. 5. Test result of the human face dataset: (a) original target; (b) output image; (c) and (d) results of PDSNet; (e)–(h) results of PDSNet-L. Scale bars: 50 pixels.
Fig. 6.
Fig. 6. The curve of cross-correlation coefficient to measure the ME range of the ground glass used in the following experiments.
Fig. 7.
Fig. 7. Test result of PDSNet with and without skip connection: (a) autocorrelation of the original targets; (b) autocorrelation of the speckle images (c) original targets, and the blue circles are used to show the range of OME; (d) output images of PDSNet with skip connection; (e) output images of PDSNet without skip connection. Scale bars: 50 pixels.
Fig. 8.
Fig. 8. Test PDSNet’s ability to reconstruct targets in untrained size: (a) speckle patterns from different size of targets, and the red circles are used to show the range of OME; (b)speckle images; (c) original targets; (d) output images of PDSNet. Scale bars: 50 pixels.
Fig. 9.
Fig. 9. Test PDSNet’s ability to reconstruct targets through several scattering media: (a) speckle patterns through different diffusers, and the red circle is used to show the range of OME; (b)speckle images; (c) original targets; (d) output images of PDSNet. Scale bars: 50 pixels.
Fig. 10.
Fig. 10. Test results of the complex object dataset with 2 characters under different scales. Scale bars: 50 pixels (see Visualization 1.

Tables (4)

Tables Icon

Table 1. The simulation datasets are generated according to the following conditions.

Tables Icon

Table 2. Results of Test Set of the Complex Object Datasets (Average MAE, SSIM and PSNR).

Tables Icon

Table 3. Results of the Test Set of Two Multi-medium Datasets (Average MAE, SSIM and PSNR).

Tables Icon

Table 4. Results of the Test Set of Two Multi-medium Datasets (Average MAE, SSIM and PSNR).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

O = F 1 ( M ) ,
O = a r g m i n F ( O ) M 2 + λ R ( O ) ,
I = i = 1 n ( O i S i ) ,
I I O O .
I I i = 1 n ( O i O i ) ,
{ g k + 1 ( x , y ) = g k ( x , y ) , f o r ( x , y ) Γ g k + 1 ( x , y ) = g k ( x , y ) β g k ( x , y ) , f o r ( x , y ) Γ ,

Metrics