Abstract

We demonstrate the third harmonic generation of a 1542-nm laser using a dual-pitch periodically poled lithium niobate waveguide with a conversion efficiency of 66%/W2. The generated 514-nm light is used for saturation spectroscopy of molecular iodine and laser frequency stabilization. The achieved laser frequency stability is 1.1×10−12 at an average time of 1 s, which is approximately one order of magnitude better than the acetylene-stabilized laser at 1542 nm. Uncertainty evaluation and absolute frequency measurement are also performed. The developed frequency-stabilized laser can be used as a reliable frequency reference at the telecom wavelength for various applications including optical frequency combs and precision interferometric measurement.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrier-envelope offset frequency control

Jie Jiang, Atsushi Onae, Hirokazu Matsumoto, and Feng-Lei Hong
Opt. Express 13(6) 1958-1965 (2005)

Compact iodine-stabilized laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module

Takumi Kobayashi, Daisuke Akamatsu, Kazumoto Hosaka, Hajime Inaba, Sho Okubo, Takehiko Tanabe, Masami Yasuda, Atsushi Onae, and Feng-Lei Hong
Opt. Express 23(16) 20749-20759 (2015)

Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm

Feng-Lei Hong, Atsushi Onae, Jie Jiang, Ruixiang Guo, Hajime Inaba, Kaoru Minoshima, Thomas R. Schibli, Hirokazu Matsumoto, and Ken’ichi Nakagawa
Opt. Lett. 28(23) 2324-2326 (2003)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref]
  2. F.-L. Hong, “Optical frequency standards for time and length applications,” Meas. Sci. Technol. 28(1), 012002 (2017).
    [Crossref]
  3. R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42(4), 323–325 (2005).
    [Crossref]
  4. https://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html
  5. C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
    [Crossref]
  6. V. Leonhardt, J. H. Chow, and J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA and MAXIM,” Proc. SPIE 6265, 62652M (2006).
    [Crossref]
  7. J. F. Cliche, C. Latrasse, M. Têtu, A. Babin, S. Tremblay, S. Tranchart, and D. Poulin, “Turnkey compact frequency standard at 1556 nm based on Rb two-photon transitions,” Conference on Precision Electromagnetic Measurements (CPEM), Digest, 674–675 (2004).
  8. K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt. 50(7), 1047–1056 (2011).
    [Crossref]
  9. S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical Frequency Comb Generation based on Erbium Fiber Lasers,” Nanophotonics 5(2), 196–213 (2016).
    [Crossref]
  10. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
    [Crossref]
  11. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-µm bands of acetylene,” J. Opt. Soc. Am. B 13(12), 2708–2714 (1996).
    [Crossref]
  12. A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 /spl mu/m based on the acetylene overtone band transition,” IEEE Trans. Instrum. Meas. 48(2), 563–566 (1999).
    [Crossref]
  13. J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2−5D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).
    [Crossref]
  14. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett. 21(16), 1280–1282 (1996).
    [Crossref]
  15. Y. Bitou, K. Sasaki, H. Inaba, F.-L. Hong, and A. Onae, “Rubidium-stabilized diode laser for high-precision interferometer,” Opt. Eng. 43(4), 900–903 (2004).
    [Crossref]
  16. C. Philippe, E. Chea, Y. Nishida, F. du Burck, and O. Acef, “Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode,” Appl. Phys. B 122(10), 265 (2016).
    [Crossref]
  17. C. Philippe, D. Holleville, R. Le Targat, P. Wolf, T. Leveque, R. Le Goff, E. Martaud, and O. Acef, “A compact frequency stabilized telecom laser diode for space applications,” Proc. SPIE 10562, 1056253 (2016).
    [Crossref]
  18. J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
    [Crossref]
  19. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
    [Crossref]
  20. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
    [Crossref]
  21. A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, and S. Fathpour, “Actively-monitored periodic-poling in thin film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600%W−1cm−2,” Opt. Express 27(18), 25920–25930 (2019).
    [Crossref]
  22. M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39(10), 1327–1333 (2003).
    [Crossref]
  23. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
    [Crossref]
  24. T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0−1 P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
    [Crossref]
  25. K. Hitachi, A. Ishizawa, T. Nishikawa, M. Asobe, and T. Sogawa, “Carrier-envelope offset locking with a 2f-to-3f self-referencing interferometer using a dual-pitch PPLN ridge waveguide,” Opt. Express 22(2), 1629–1635 (2014).
    [Crossref]
  26. S. Gerstenkorn and P. Luc, “Atlas Du Spectre D’ Absorption de la Molecule D’ Iode,” Editions de CNRS, Paris (1978).
  27. F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, and H. Matsumoto, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28(23), 2324–2326 (2003).
    [Crossref]
  28. K. Yoshii, J. Nomura, K. Taguchi, Y. Hisai, and F.-L. Hong, “Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation,” Phys. Rev. Appl. 11(5), 054031 (2019).
    [Crossref]
  29. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [Crossref]
  30. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7(11), 537–539 (1982).
    [Crossref]
  31. G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41(5), 325–330 (1982).
    [Crossref]
  32. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44(2), 155–158 (1995).
    [Crossref]
  33. F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235(4-6), 377–385 (2004).
    [Crossref]
  34. C. J. Bordé, G. Camy, and B. Decomps, “Measurement of the recoil shift of saturation resonances of 127I2 at 5145 Å: A test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20(1), 254–268 (1979).
    [Crossref]
  35. F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, C. J. Bordé, and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18(3), 379–387 (2001).
    [Crossref]
  36. F.-L. Hong, J. Ishikawa, A. Onae, and H. Matsumoto, “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2,” J. Opt. Soc. Am. B 18(10), 1416–1422 (2001).
    [Crossref]
  37. L. Chen and J. Ye, “Extensive, high-resolution measurement of hyperfine interactions: precise investigations of molecular potentials and wave function,” Chem. Phys. Lett. 381(5-6), 777–783 (2003).
    [Crossref]
  38. F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm,” J. Opt. Soc. Am. B 19(5), 946–953 (2002).
    [Crossref]
  39. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
    [Crossref]
  40. S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura, and H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2018), paper STu3P.1
  41. T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “Compact iodine-stabilized laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23(16), 20749–20759 (2015).
    [Crossref]
  42. J. Nomura, K. Yoshii, Y. Hisai, and F.-L. Hong, “Precision spectroscopy and frequency stabilization using coin-sized laser modules,” J. Opt. Soc. Am. B 36(3), 631–637 (2019).
    [Crossref]
  43. J. E. Decker and J. R. Petelsky, “Uncertainty evaluation for the measurement of the gauge blocks by optical interferometry,” Metrologia 34(6), 479–493 (1997).
    [Crossref]

2019 (3)

2018 (2)

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438–1441 (2018).
[Crossref]

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

2017 (1)

F.-L. Hong, “Optical frequency standards for time and length applications,” Meas. Sci. Technol. 28(1), 012002 (2017).
[Crossref]

2016 (6)

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical Frequency Comb Generation based on Erbium Fiber Lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3(5), 531–535 (2016).
[Crossref]

C. Philippe, E. Chea, Y. Nishida, F. du Burck, and O. Acef, “Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode,” Appl. Phys. B 122(10), 265 (2016).
[Crossref]

C. Philippe, D. Holleville, R. Le Targat, P. Wolf, T. Leveque, R. Le Goff, E. Martaud, and O. Acef, “A compact frequency stabilized telecom laser diode for space applications,” Proc. SPIE 10562, 1056253 (2016).
[Crossref]

T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0−1 P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref]

2015 (1)

2014 (1)

2011 (1)

2009 (1)

2008 (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

2006 (2)

2005 (1)

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42(4), 323–325 (2005).
[Crossref]

2004 (2)

Y. Bitou, K. Sasaki, H. Inaba, F.-L. Hong, and A. Onae, “Rubidium-stabilized diode laser for high-precision interferometer,” Opt. Eng. 43(4), 900–903 (2004).
[Crossref]

F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235(4-6), 377–385 (2004).
[Crossref]

2003 (3)

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, and H. Matsumoto, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28(23), 2324–2326 (2003).
[Crossref]

L. Chen and J. Ye, “Extensive, high-resolution measurement of hyperfine interactions: precise investigations of molecular potentials and wave function,” Chem. Phys. Lett. 381(5-6), 777–783 (2003).
[Crossref]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39(10), 1327–1333 (2003).
[Crossref]

2002 (2)

2001 (2)

2000 (1)

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2−5D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).
[Crossref]

1999 (1)

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 /spl mu/m based on the acetylene overtone band transition,” IEEE Trans. Instrum. Meas. 48(2), 563–566 (1999).
[Crossref]

1997 (2)

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
[Crossref]

J. E. Decker and J. R. Petelsky, “Uncertainty evaluation for the measurement of the gauge blocks by optical interferometry,” Metrologia 34(6), 479–493 (1997).
[Crossref]

1996 (2)

1995 (1)

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44(2), 155–158 (1995).
[Crossref]

1982 (2)

J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7(11), 537–539 (1982).
[Crossref]

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41(5), 325–330 (1982).
[Crossref]

1979 (1)

C. J. Bordé, G. Camy, and B. Decomps, “Measurement of the recoil shift of saturation resonances of 127I2 at 5145 Å: A test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20(1), 254–268 (1979).
[Crossref]

Abdelsalam, K.

Abgrall, M.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Abshire, J. B.

Acef, O.

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

C. Philippe, E. Chea, Y. Nishida, F. du Burck, and O. Acef, “Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode,” Appl. Phys. B 122(10), 265 (2016).
[Crossref]

C. Philippe, D. Holleville, R. Le Targat, P. Wolf, T. Leveque, R. Le Goff, E. Martaud, and O. Acef, “A compact frequency stabilized telecom laser diode for space applications,” Proc. SPIE 10562, 1056253 (2016).
[Crossref]

Akamatsu, D.

Allard, M.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2−5D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).
[Crossref]

Al-Masoudi, A.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Alvarez-Martinez, H.

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

Amy-Klein, A.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Asobe, M.

Awaji, Y.

Babin, A.

J. F. Cliche, C. Latrasse, M. Têtu, A. Babin, S. Tremblay, S. Tranchart, and D. Poulin, “Turnkey compact frequency standard at 1556 nm based on Rb two-photon transitions,” Conference on Precision Electromagnetic Measurements (CPEM), Digest, 674–675 (2004).

Barbarat, J.

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

Bernard, J. E.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2−5D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).
[Crossref]

Bilicki, S.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Bitou, Y.

Y. Bitou, K. Sasaki, H. Inaba, F.-L. Hong, and A. Onae, “Rubidium-stabilized diode laser for high-precision interferometer,” Opt. Eng. 43(4), 900–903 (2004).
[Crossref]

Bookjans, E.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Bordé, C. J.

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, C. J. Bordé, and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18(3), 379–387 (2001).
[Crossref]

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41(5), 325–330 (1982).
[Crossref]

C. J. Bordé, G. Camy, and B. Decomps, “Measurement of the recoil shift of saturation resonances of 127I2 at 5145 Å: A test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20(1), 254–268 (1979).
[Crossref]

Bowers, J. E.

Camacho-Gonzalez, G. F.

Camisard, E.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Camp, J. B.

V. Leonhardt, J. H. Chow, and J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA and MAXIM,” Proc. SPIE 6265, 62652M (2006).
[Crossref]

Camy, G.

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41(5), 325–330 (1982).
[Crossref]

C. J. Bordé, G. Camy, and B. Decomps, “Measurement of the recoil shift of saturation resonances of 127I2 at 5145 Å: A test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20(1), 254–268 (1979).
[Crossref]

Chang, L.

Chardonnet, C.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Chea, E.

C. Philippe, E. Chea, Y. Nishida, F. du Burck, and O. Acef, “Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode,” Appl. Phys. B 122(10), 265 (2016).
[Crossref]

Chen, J. R.

Chen, L.

L. Chen and J. Ye, “Extensive, high-resolution measurement of hyperfine interactions: precise investigations of molecular potentials and wave function,” Chem. Phys. Lett. 381(5-6), 777–783 (2003).
[Crossref]

Chiodo, N.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Chow, J. H.

V. Leonhardt, J. H. Chow, and J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA and MAXIM,” Proc. SPIE 6265, 62652M (2006).
[Crossref]

Cliche, J. F.

J. F. Cliche, C. Latrasse, M. Têtu, A. Babin, S. Tremblay, S. Tranchart, and D. Poulin, “Turnkey compact frequency standard at 1556 nm based on Rb two-photon transitions,” Conference on Precision Electromagnetic Measurements (CPEM), Digest, 674–675 (2004).

Coddington, I.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical Frequency Comb Generation based on Erbium Fiber Lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Daimon, Y.

de Labachelerie, M.

Decker, J. E.

J. E. Decker and J. R. Petelsky, “Uncertainty evaluation for the measurement of the gauge blocks by optical interferometry,” Metrologia 34(6), 479–493 (1997).
[Crossref]

Decomps, B.

C. J. Bordé, G. Camy, and B. Decomps, “Measurement of the recoil shift of saturation resonances of 127I2 at 5145 Å: A test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20(1), 254–268 (1979).
[Crossref]

Denker, H.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Desiatov, B.

Dörscher, S.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Droste, S.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical Frequency Comb Generation based on Erbium Fiber Lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

du Burck, F.

C. Philippe, E. Chea, Y. Nishida, F. du Burck, and O. Acef, “Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode,” Appl. Phys. B 122(10), 265 (2016).
[Crossref]

Ducloy, M.

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41(5), 325–330 (1982).
[Crossref]

Eickhoff, M. L.

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44(2), 155–158 (1995).
[Crossref]

Esnault, F-X.

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

Fathpour, S.

Fejer, M. M.

Felder, R.

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42(4), 323–325 (2005).
[Crossref]

Gerstenkorn, S.

S. Gerstenkorn and P. Luc, “Atlas Du Spectre D’ Absorption de la Molecule D’ Iode,” Editions de CNRS, Paris (1978).

Gillot, J.

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

Grebing, C.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Grosche, G.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Guo, R.

F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235(4-6), 377–385 (2004).
[Crossref]

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, and H. Matsumoto, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28(23), 2324–2326 (2003).
[Crossref]

Häfner, S.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Hall, J. L.

Hänsch, T. W.

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

Hirano, M.

Hisai, Y.

K. Yoshii, J. Nomura, K. Taguchi, Y. Hisai, and F.-L. Hong, “Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation,” Phys. Rev. Appl. 11(5), 054031 (2019).
[Crossref]

J. Nomura, K. Yoshii, Y. Hisai, and F.-L. Hong, “Precision spectroscopy and frequency stabilization using coin-sized laser modules,” J. Opt. Soc. Am. B 36(3), 631–637 (2019).
[Crossref]

Hitachi, K.

Holleville, D.

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

C. Philippe, D. Holleville, R. Le Targat, P. Wolf, T. Leveque, R. Le Goff, E. Martaud, and O. Acef, “A compact frequency stabilized telecom laser diode for space applications,” Proc. SPIE 10562, 1056253 (2016).
[Crossref]

Holzwarth, R.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

Honardoost, A.

Hong, F.-L.

K. Yoshii, J. Nomura, K. Taguchi, Y. Hisai, and F.-L. Hong, “Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation,” Phys. Rev. Appl. 11(5), 054031 (2019).
[Crossref]

J. Nomura, K. Yoshii, Y. Hisai, and F.-L. Hong, “Precision spectroscopy and frequency stabilization using coin-sized laser modules,” J. Opt. Soc. Am. B 36(3), 631–637 (2019).
[Crossref]

F.-L. Hong, “Optical frequency standards for time and length applications,” Meas. Sci. Technol. 28(1), 012002 (2017).
[Crossref]

T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0−1 P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref]

T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “Compact iodine-stabilized laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23(16), 20749–20759 (2015).
[Crossref]

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
[Crossref]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]

F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235(4-6), 377–385 (2004).
[Crossref]

Y. Bitou, K. Sasaki, H. Inaba, F.-L. Hong, and A. Onae, “Rubidium-stabilized diode laser for high-precision interferometer,” Opt. Eng. 43(4), 900–903 (2004).
[Crossref]

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, and H. Matsumoto, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28(23), 2324–2326 (2003).
[Crossref]

F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm,” J. Opt. Soc. Am. B 19(5), 946–953 (2002).
[Crossref]

F.-L. Hong, J. Ishikawa, A. Onae, and H. Matsumoto, “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2,” J. Opt. Soc. Am. B 18(10), 1416–1422 (2001).
[Crossref]

F.-L. Hong, J. Ye, L.-S. Ma, S. Picard, C. J. Bordé, and J. L. Hall, “Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy,” J. Opt. Soc. Am. B 18(3), 379–387 (2001).
[Crossref]

S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura, and H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2018), paper STu3P.1

Hosaka, K.

Imai, K.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 /spl mu/m based on the acetylene overtone band transition,” IEEE Trans. Instrum. Meas. 48(2), 563–566 (1999).
[Crossref]

Inaba, H.

Ishikawa, J.

F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235(4-6), 377–385 (2004).
[Crossref]

F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm,” J. Opt. Soc. Am. B 19(5), 946–953 (2002).
[Crossref]

F.-L. Hong, J. Ishikawa, A. Onae, and H. Matsumoto, “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2,” J. Opt. Soc. Am. B 18(10), 1416–1422 (2001).
[Crossref]

S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura, and H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2018), paper STu3P.1

Ishizawa, A.

Izumiura, H.

S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura, and H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2018), paper STu3P.1

Jankowski, M.

Jiang, J.

Jundt, D. H.

Jungner, P.

Kambe, E.

S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura, and H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2018), paper STu3P.1

Kashiwagi, K.

S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura, and H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2018), paper STu3P.1

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Kobayashi, T.

Koczwara, A.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Koke, S.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Kourogi, M.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 /spl mu/m based on the acetylene overtone band transition,” IEEE Trans. Instrum. Meas. 48(2), 563–566 (1999).
[Crossref]

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-µm bands of acetylene,” J. Opt. Soc. Am. B 13(12), 2708–2714 (1996).
[Crossref]

Krainak, M. A.

Kuhl, A.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Langrock, C.

Latrasse, C.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2−5D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).
[Crossref]

J. F. Cliche, C. Latrasse, M. Têtu, A. Babin, S. Tremblay, S. Tranchart, and D. Poulin, “Turnkey compact frequency standard at 1556 nm based on Rb two-photon transitions,” Conference on Precision Electromagnetic Measurements (CPEM), Digest, 674–675 (2004).

Le Coq, Y.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Le Goff, R.

C. Philippe, D. Holleville, R. Le Targat, P. Wolf, T. Leveque, R. Le Goff, E. Martaud, and O. Acef, “A compact frequency stabilized telecom laser diode for space applications,” Proc. SPIE 10562, 1056253 (2016).
[Crossref]

Le Targat, R.

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

C. Philippe, D. Holleville, R. Le Targat, P. Wolf, T. Leveque, R. Le Goff, E. Martaud, and O. Acef, “A compact frequency stabilized telecom laser diode for space applications,” Proc. SPIE 10562, 1056253 (2016).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Legero, T.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Leonhardt, V.

V. Leonhardt, J. H. Chow, and J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA and MAXIM,” Proc. SPIE 6265, 62652M (2006).
[Crossref]

Leveque, T.

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

C. Philippe, D. Holleville, R. Le Targat, P. Wolf, T. Leveque, R. Le Goff, E. Martaud, and O. Acef, “A compact frequency stabilized telecom laser diode for space applications,” Proc. SPIE 10562, 1056253 (2016).
[Crossref]

Li, Y.

Lisdat, C.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Lodewyck, J.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Loncar, M.

Lopez, O.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Lours, M.

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Luc, P.

S. Gerstenkorn and P. Luc, “Atlas Du Spectre D’ Absorption de la Molecule D’ Iode,” Editions de CNRS, Paris (1978).

Ma, L.-S.

Madej, A. A.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2−5D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).
[Crossref]

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Marandi, A.

Marmet, L.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2−5D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).
[Crossref]

Martaud, E.

C. Philippe, D. Holleville, R. Le Targat, P. Wolf, T. Leveque, R. Le Goff, E. Martaud, and O. Acef, “A compact frequency stabilized telecom laser diode for space applications,” Proc. SPIE 10562, 1056253 (2016).
[Crossref]

Matsumoto, H.

Meynadier, F.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Minoshima, K.

Miyazawa, H.

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39(10), 1327–1333 (2003).
[Crossref]

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Nakagawa, K.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 /spl mu/m based on the acetylene overtone band transition,” IEEE Trans. Instrum. Meas. 48(2), 563–566 (1999).
[Crossref]

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5-µm bands of acetylene,” J. Opt. Soc. Am. B 13(12), 2708–2714 (1996).
[Crossref]

Nakamura, K.

S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura, and H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2018), paper STu3P.1

Nakazawa, M.

Newbury, N. R.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical Frequency Comb Generation based on Erbium Fiber Lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Nicolodi, D.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Nishida, Y.

C. Philippe, E. Chea, Y. Nishida, F. du Burck, and O. Acef, “Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode,” Appl. Phys. B 122(10), 265 (2016).
[Crossref]

T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0−1 P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref]

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
[Crossref]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39(10), 1327–1333 (2003).
[Crossref]

Nishikawa, T.

Nomura, J.

K. Yoshii, J. Nomura, K. Taguchi, Y. Hisai, and F.-L. Hong, “Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation,” Phys. Rev. Appl. 11(5), 054031 (2019).
[Crossref]

J. Nomura, K. Yoshii, Y. Hisai, and F.-L. Hong, “Precision spectroscopy and frequency stabilization using coin-sized laser modules,” J. Opt. Soc. Am. B 36(3), 631–637 (2019).
[Crossref]

Numata, K.

Okubo, S.

T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “Compact iodine-stabilized laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23(16), 20749–20759 (2015).
[Crossref]

S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura, and H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2018), paper STu3P.1

Okumura, K.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 /spl mu/m based on the acetylene overtone band transition,” IEEE Trans. Instrum. Meas. 48(2), 563–566 (1999).
[Crossref]

Okuno, T.

Onae, A.

T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “Compact iodine-stabilized laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23(16), 20749–20759 (2015).
[Crossref]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]

F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235(4-6), 377–385 (2004).
[Crossref]

Y. Bitou, K. Sasaki, H. Inaba, F.-L. Hong, and A. Onae, “Rubidium-stabilized diode laser for high-precision interferometer,” Opt. Eng. 43(4), 900–903 (2004).
[Crossref]

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, and H. Matsumoto, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28(23), 2324–2326 (2003).
[Crossref]

F.-L. Hong, Y. Zhang, J. Ishikawa, A. Onae, and H. Matsumoto, “Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm,” J. Opt. Soc. Am. B 19(5), 946–953 (2002).
[Crossref]

F.-L. Hong, J. Ishikawa, A. Onae, and H. Matsumoto, “Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of 127I2,” J. Opt. Soc. Am. B 18(10), 1416–1422 (2001).
[Crossref]

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 /spl mu/m based on the acetylene overtone band transition,” IEEE Trans. Instrum. Meas. 48(2), 563–566 (1999).
[Crossref]

Onishi, M.

Ozawa, A.

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Petelsky, J. R.

J. E. Decker and J. R. Petelsky, “Uncertainty evaluation for the measurement of the gauge blocks by optical interferometry,” Metrologia 34(6), 479–493 (1997).
[Crossref]

Peters, J.

Philippe, C.

C. Philippe, E. Chea, Y. Nishida, F. du Burck, and O. Acef, “Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode,” Appl. Phys. B 122(10), 265 (2016).
[Crossref]

C. Philippe, D. Holleville, R. Le Targat, P. Wolf, T. Leveque, R. Le Goff, E. Martaud, and O. Acef, “A compact frequency stabilized telecom laser diode for space applications,” Proc. SPIE 10562, 1056253 (2016).
[Crossref]

Picard, S.

Pottie, P.-E.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Pottie, P-E.

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

Poulin, D.

J. F. Cliche, C. Latrasse, M. Têtu, A. Babin, S. Tremblay, S. Tranchart, and D. Poulin, “Turnkey compact frequency standard at 1556 nm based on Rb two-photon transitions,” Conference on Precision Electromagnetic Measurements (CPEM), Digest, 674–675 (2004).

Poulin, M.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2−5D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).
[Crossref]

Quintin, N.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Rao, A.

Raupach, S. M. F.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Robyr, J.-L.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Santarelli, G.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Sasaki, K.

Y. Bitou, K. Sasaki, H. Inaba, F.-L. Hong, and A. Onae, “Rubidium-stabilized diode laser for high-precision interferometer,” Opt. Eng. 43(4), 900–903 (2004).
[Crossref]

Schibli, T. R.

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Schnatz, H.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Schramm, M.

S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura, and H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2018), paper STu3P.1

Shi, C.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Shirley, J. H.

Siemsen, K. J.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2−5D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).
[Crossref]

Sjaardema, T.

Sogawa, T.

Stefani, F.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Sterr, U.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Suzuki, H.

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39(10), 1327–1333 (2003).
[Crossref]

Swartz, S.

Tadanaga, O.

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39(10), 1327–1333 (2003).
[Crossref]

Taguchi, K.

K. Yoshii, J. Nomura, K. Taguchi, Y. Hisai, and F.-L. Hong, “Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation,” Phys. Rev. Appl. 11(5), 054031 (2019).
[Crossref]

Tanabe, T.

Têtu, M.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2−5D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).
[Crossref]

J. F. Cliche, C. Latrasse, M. Têtu, A. Babin, S. Tremblay, S. Tranchart, and D. Poulin, “Turnkey compact frequency standard at 1556 nm based on Rb two-photon transitions,” Conference on Precision Electromagnetic Measurements (CPEM), Digest, 674–675 (2004).

Touahri, D.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2−5D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).
[Crossref]

Tranchart, S.

J. F. Cliche, C. Latrasse, M. Têtu, A. Babin, S. Tremblay, S. Tranchart, and D. Poulin, “Turnkey compact frequency standard at 1556 nm based on Rb two-photon transitions,” Conference on Precision Electromagnetic Measurements (CPEM), Digest, 674–675 (2004).

Tremblay, S.

J. F. Cliche, C. Latrasse, M. Têtu, A. Babin, S. Tremblay, S. Tranchart, and D. Poulin, “Turnkey compact frequency standard at 1556 nm based on Rb two-photon transitions,” Conference on Precision Electromagnetic Measurements (CPEM), Digest, 674–675 (2004).

Tsutsui, H.

S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura, and H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2018), paper STu3P.1

Tuckey, P.

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

Volet, N.

Wang, C.

Wang, L.

Washburn, B. R.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical Frequency Comb Generation based on Erbium Fiber Lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Widiyatomoko, B.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 /spl mu/m based on the acetylene overtone band transition,” IEEE Trans. Instrum. Meas. 48(2), 563–566 (1999).
[Crossref]

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Wiotte, F.

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Wolf, P.

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

C. Philippe, D. Holleville, R. Le Targat, P. Wolf, T. Leveque, R. Le Goff, E. Martaud, and O. Acef, “A compact frequency stabilized telecom laser diode for space applications,” Proc. SPIE 10562, 1056253 (2016).
[Crossref]

Wu, S. T.

Yamaguchi, A.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 /spl mu/m based on the acetylene overtone band transition,” IEEE Trans. Instrum. Meas. 48(2), 563–566 (1999).
[Crossref]

Yamamoto, H.

S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura, and H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2018), paper STu3P.1

Yasuda, M.

Ycas, G.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical Frequency Comb Generation based on Erbium Fiber Lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Ye, J.

Yoda, J.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 /spl mu/m based on the acetylene overtone band transition,” IEEE Trans. Instrum. Meas. 48(2), 563–566 (1999).
[Crossref]

Yoshii, K.

K. Yoshii, J. Nomura, K. Taguchi, Y. Hisai, and F.-L. Hong, “Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation,” Phys. Rev. Appl. 11(5), 054031 (2019).
[Crossref]

J. Nomura, K. Yoshii, Y. Hisai, and F.-L. Hong, “Precision spectroscopy and frequency stabilization using coin-sized laser modules,” J. Opt. Soc. Am. B 36(3), 631–637 (2019).
[Crossref]

Zhang, M.

Zhang, Y.

Appl. Opt. (1)

Appl. Phys. B (1)

C. Philippe, E. Chea, Y. Nishida, F. du Burck, and O. Acef, “Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode,” Appl. Phys. B 122(10), 265 (2016).
[Crossref]

Chem. Phys. Lett. (1)

L. Chen and J. Ye, “Extensive, high-resolution measurement of hyperfine interactions: precise investigations of molecular potentials and wave function,” Chem. Phys. Lett. 381(5-6), 777–783 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron. 39(10), 1327–1333 (2003).
[Crossref]

IEEE Trans. Instrum. Meas. (2)

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44(2), 155–158 (1995).
[Crossref]

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 /spl mu/m based on the acetylene overtone band transition,” IEEE Trans. Instrum. Meas. 48(2), 563–566 (1999).
[Crossref]

J. Opt. Soc. Am. B (5)

Meas. Sci. Technol. (1)

F.-L. Hong, “Optical frequency standards for time and length applications,” Meas. Sci. Technol. 28(1), 012002 (2017).
[Crossref]

Metrologia (2)

R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42(4), 323–325 (2005).
[Crossref]

J. E. Decker and J. R. Petelsky, “Uncertainty evaluation for the measurement of the gauge blocks by optical interferometry,” Metrologia 34(6), 479–493 (1997).
[Crossref]

Nanophotonics (1)

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical Frequency Comb Generation based on Erbium Fiber Lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Nat. Commun. (1)

C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, and P.-E. Pottie, “A clock network for geodesy and fundamental science,” Nat. Commun. 7(1), 12443 (2016).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

Opt. Commun. (3)

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, “Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2−5D5/2 two-photon transition in 87Rb,” Opt. Commun. 173(1-6), 357–364 (2000).
[Crossref]

F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235(4-6), 377–385 (2004).
[Crossref]

G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41(5), 325–330 (1982).
[Crossref]

Opt. Eng. (1)

Y. Bitou, K. Sasaki, H. Inaba, F.-L. Hong, and A. Onae, “Rubidium-stabilized diode laser for high-precision interferometer,” Opt. Eng. 43(4), 900–903 (2004).
[Crossref]

Opt. Express (6)

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009).
[Crossref]

K. Hitachi, A. Ishizawa, T. Nishikawa, M. Asobe, and T. Sogawa, “Carrier-envelope offset locking with a 2f-to-3f self-referencing interferometer using a dual-pitch PPLN ridge waveguide,” Opt. Express 22(2), 1629–1635 (2014).
[Crossref]

T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, M. Yasuda, A. Onae, and F.-L. Hong, “Compact iodine-stabilized laser operating at 531 nm with stability at the 10−12 level and using a coin-sized laser module,” Opt. Express 23(16), 20749–20759 (2015).
[Crossref]

A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, and S. Fathpour, “Actively-monitored periodic-poling in thin film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600%W−1cm−2,” Opt. Express 27(18), 25920–25930 (2019).
[Crossref]

T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0−1 P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref]

Opt. Lett. (4)

Optica (2)

Phys. Rev. A (1)

C. J. Bordé, G. Camy, and B. Decomps, “Measurement of the recoil shift of saturation resonances of 127I2 at 5145 Å: A test of accuracy for high-resolution saturation spectroscopy,” Phys. Rev. A 20(1), 254–268 (1979).
[Crossref]

Phys. Rev. Appl. (1)

K. Yoshii, J. Nomura, K. Taguchi, Y. Hisai, and F.-L. Hong, “Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation,” Phys. Rev. Appl. 11(5), 054031 (2019).
[Crossref]

Proc. SPIE (3)

C. Philippe, D. Holleville, R. Le Targat, P. Wolf, T. Leveque, R. Le Goff, E. Martaud, and O. Acef, “A compact frequency stabilized telecom laser diode for space applications,” Proc. SPIE 10562, 1056253 (2016).
[Crossref]

J. Barbarat, J. Gillot, H. Alvarez-Martinez, M. Lours, D. Holleville, R. Le Targat, P-E. Pottie, P. Wolf, P. Tuckey, O. Acef, F-X. Esnault, and T. Leveque, “Compact and Transportable Iodine Frequency-Stabilized Laser,” Proc. SPIE 11180, 111800T (2018).
[Crossref]

V. Leonhardt, J. H. Chow, and J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA and MAXIM,” Proc. SPIE 6265, 62652M (2006).
[Crossref]

Science (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref]

Other (4)

S. Okubo, K. Nakamura, M. Schramm, H. Yamamoto, J. Ishikawa, F.-L. Hong, K. Kashiwagi, K. Minoshima, H. Tsutsui, E. Kambe, H. Izumiura, and H. Inaba, “Erbium-Fiber-Based Visible Astro-Comb with 42-GHz Mode Spacing,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, CA, USA, 2018), paper STu3P.1

S. Gerstenkorn and P. Luc, “Atlas Du Spectre D’ Absorption de la Molecule D’ Iode,” Editions de CNRS, Paris (1978).

J. F. Cliche, C. Latrasse, M. Têtu, A. Babin, S. Tremblay, S. Tranchart, and D. Poulin, “Turnkey compact frequency standard at 1556 nm based on Rb two-photon transitions,” Conference on Precision Electromagnetic Measurements (CPEM), Digest, 674–675 (2004).

https://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Frequency atlas of the I2 absorption lines near the third harmonic frequency of the P(16) transition in the ν1 + ν3 band of 13C2H2 at 514 nm. The relative intensity of the iodine lines is taken from [26]. The intensity of the 13C2H2 transition is much weaker and is not on the same scale compared to the iodine lines.
Fig. 2.
Fig. 2. Illustration of a dual-pitch PPLN waveguide for the third harmonic generation from 1542 nm to 514 nm (one example of the six waveguides). SHG: Second harmonic generation. SFG: Sum frequency generation.
Fig. 3.
Fig. 3. SHG (771 nm) and SFG (514 nm) output power as a function of the temperature of dual-pitch waveguides when the QPM pitch of the first stage is Chirp 1 (a) and Chirp 2 (b).
Fig. 4.
Fig. 4. THG power at 514 nm as a function of the coupled fundamental power at 1542 nm.
Fig. 5.
Fig. 5. Schematic diagram of the experimental setup for Doppler-free spectroscopy and laser frequency stabilization based on the modulation transfer technique. EDFA: Erbium-doped fiber amplifier, PPLN-WG: Periodically polled lithium niobate waveguide, DM: Dichroic mirror, HWP: Half-wave plate, PBS: Polarizing beam splitter, AOM: Acousto-optic modulator, EOM: Electro-optic modulator, GTP: Glan–Thompson prism, PD: Photodetector, LO: Local oscillator, DBM: Double-balanced mixer, UTC (NMIJ): Coordinated Universal Time at the National Metrology Institute of Japan. The optical and electrical paths are shown as solid and dashed lines, respectively.
Fig. 6.
Fig. 6. Doppler-free spectra of the R(73)46-0 transition of molecular iodine observed with a 1-kHz cutoff frequency of the lowpass filter after demodulation.
Fig. 7.
Fig. 7. The Allan standard deviation calculated from the measured beat frequency between the iodine-stabilized laser and the frequency comb. The black dotted (dashed) black line shows the frequency stability of the UTC(NMIJ) (an acetylene-stabilized laser).
Fig. 8.
Fig. 8. Absolute frequency and repeatability of the iodine-stabilized laser. The solid red line indicates the average frequency of the thirteen measurements.
Fig. 9.
Fig. 9. Measured frequency shifts of the iodine-stabilized laser at 514 nm locked on the a1 component of the R(73) 46-0 transition: (a) pressure shift, (b) power shift, and (c) shift due to the adjustment in phase modulation.
Fig. 10.
Fig. 10. Relative intensity noise of the diode and fiber lasers used in the present experiment as a function of Fourier frequency.

Tables (2)

Tables Icon

Table 1. Quasi-phase matching (QPM) pitches of the first and second stages in each waveguide.

Tables Icon

Table 2. The most significant contributions to the estimated frequency uncertainty of the a1 component of the R(73)46-0 transition.

Metrics