Abstract

Emerging fields of mixed reality and electronic sports necessitate greater spatial and temporal resolutions in displays. We introduce a novel scanning display method that enhances spatiotemporal qualities of displays. Specifically, we demonstrate that scanning multiple image patches that are representing basis functions of each block in a target image can help to synthesize spatiotemporally enhanced visuals. To discover the right image patches, we introduce an optimization framework tailored to our hardware. In our method, spatiotemporally enhanced visuals are synthesized using an optical scanner scanning image patches from an image generator illuminated by a locally addressable backlight. As a validation of our method, we demonstrate a prototype using commodity equipment. Our method improves pixel fill factor to hundred percent and enhances spatial resolution of a display up to four times. An inherent constrain regarding to spatiotemporal qualities of displays could be solved using our method.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide angle holographic display system with spatiotemporal multiplexing

Tomasz Kozacki, Grzegorz Finke, Piotr Garbat, Weronika Zaperty, and Małgorzata Kujawińska
Opt. Express 20(25) 27473-27481 (2012)

Addressable spatial light modulators for eye-tracking autostereoscopic three-dimensional display using a scanning laser

Zhenfeng Zhuang, Lei Zhang, Phil Surman, Weitao Song, Simon Thibault, Xiao Wei Sun, and Yuanjin Zheng
Appl. Opt. 57(16) 4457-4466 (2018)

Three-dimensional display technologies

Jason Geng
Adv. Opt. Photon. 5(4) 456-535 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Koulieris, K. Akşit, M. Stengel, R. Mantiuk, K. Mania, and C. Richardt, “Near-eye display and tracking technologies for virtual and augmented reality,” in Computer Graphics Forum, vol. 38 (Wiley Online Library, 2019), pp. 493–519.
  2. D. B. Elliott, K. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optom Vis Sci. 72(3), 186–191 (1995).
    [Crossref]
  3. D. Kelly, “Motion and vision. ii. stabilized spatio-temporal threshold surface,” J. Opt. Soc. Am. 69(10), 1340–1349 (1979).
    [Crossref]
  4. J. Roberts and A. Wilkins, “Flicker can be perceived during saccades at frequencies in excess of 1 khz,” Light. Res. Technol. 45(1), 124–132 (2013).
    [Crossref]
  5. J. Liu, S.-M. Morgens, R. C. Sumner, L. Buschmann, Y. Zhang, and J. Davis, “When does the hidden butterfly not flicker?” in SIGGRAPH ASIA Technical Briefs, (2014), pp. 1–3.
  6. J. Davis, Y.-H. Hsieh, and H.-C. Lee, “Humans perceive flicker artifacts at 500 hz,” Sci. Rep. 5(1), 7861 (2015).
    [Crossref]
  7. K. Noland, “The application of sampling theory to television frame rate requirements,” BBC Res. Dev. White Pap. 282, 1–22 (2014).
  8. M. A. Khoei, F. Galluppi, Q. Sabatier, P. Pouget, B. R. Cottereau, and R. Benosman, “Faster is better: Visual responses to motion are stronger for higher refresh rates,” bioRxiv p. 505354 (2018).
  9. S. Kime, F. Galluppi, X. Lagorce, R. B. Benosman, and J. Lorenceau, “Psychophysical assessment of perceptual performance with varying display frame rates,” J. Disp. Technol. 12(11), 1372–1382 (2016).
    [Crossref]
  10. C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 1443 ppi 120 hz oled display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
    [Crossref]
  11. B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided resolution enhancement in projectors via optical pixel sharing,” ACM Trans. Graph. 31(4), 1–122 (2012).
    [Crossref]
  12. C. Jaynes and D. Ramakrishnan, “Super-resolution composition in multi-projector displays,” in IEEE Int’l Workshop on Projector-Camera Systems vol. 8 (2003).
  13. F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 1–11 (2014).
    [Crossref]
  14. B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: Screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” in SID Symposium Digest of Technical Papers, vol. 48 (Wiley Online Library, 2017), pp. 1150–1153.
  15. W. Allen and R. Ulichney, “47.4: Invited paper: Wobulation: Doubling the addressed resolution of projection displays,” in SID Symposium Digest of Technical Papers, vol. 36 (Wiley Online Library, 2005), pp. 1514–1517.
  16. F. Berthouzoz and R. Fattal, “Resolution enhancement by vibrating displays,” ACM Trans. Graph. 31(2), 1–14 (2012).
    [Crossref]
  17. B. Sajadi, D. Qoc-Lai, A. H. Ihler, M. Gopi, and A. Majumder, “Image enhancement in projectors via optical pixel shift and overlay,” in IEEE International Conference on Computational Photography (ICCP), (IEEE, 2013), pp. 1–10.
  18. T. Zhan, J. Xiong, G. Tan, Y.-H. Lee, J. Yang, S. Liu, and S.-T. Wu, “Improving near-eye display resolution by polarization multiplexing,” Opt. Express 27(11), 15327–15334 (2019).
    [Crossref]
  19. J.-Y. Wu, P.-Y. Chou, K.-E. Peng, Y.-P. Huang, H.-H. Lo, C.-C. Chang, and F.-M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
    [Crossref]
  20. P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 1 (2010).
    [Crossref]
  21. H. Lee and P. Didyk, “Real-time apparent resolution enhancement for head-mounted displays,” Proc. ACM on Comput. Graph. Interact. Tech. 1(1), 1–15 (2018).
    [Crossref]
  22. G. Tan, Y.-H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S.-T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26(19), 25076–25085 (2018).
    [Crossref]
  23. J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
    [Crossref]
  24. K. Akşit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing application-driven foveated near-eye displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
    [Crossref]
  25. M. K. Brown, “Scanning projector with vertical interpolation onto horizontal trajectory,” (2013). US Patent 8,371,698.
  26. E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lighting (Morgan Kaufmann, 2010).
  27. D. C. Hood and M. A. Finkelstein, “Sensitivity to light,” Handbook of Perception and Human Performance. (Vol. 1: Sensory Processes and Perception)John Wiley and Sons10–20. (1986).
  28. S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 47–54.
  29. O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40(14), 1813–1826 (2000).
    [Crossref]
  30. D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Advances in neural information processing systems, (2001), pp. 556–562
  31. Z. Yuan and E. Oja, “Projective nonnegative matrix factorization for image compression and feature extraction,” in Scandinavian Conference on Image Analysis, (Springer, 2005), pp. 333–342.
  32. M. Leblanc, “Etude sur la transmission électrique des impressions lumineuses,” La Lumière électrique 2, 477–481 (1880).
  33. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (xxx, 2018586–595
  34. H. Urey and D. L. Dickensheets, “Display and imaging systems,” MOEMS and Applications (2005).
  35. H. Urey, “Optical advantages in retinal scanning displays,” in Helmet-and Head-Mounted Displays V, vol. 4021 (International Society for Optics and Photonics, 2000) pp. 20–26.
  36. J. Buck, S. Serati, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” in Acquisition, Tracking, Pointing, and Laser Systems Technologies XXVI, vol. 8395 (International Society for Optics and Photonics, 2012), p. 83950F.
  37. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
    [Crossref]
  38. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
    [Crossref]
  39. P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and H. Fuchs, “From motion to photons in 80 microseconds: Towards minimal latency for virtual and augmented reality,” IEEE Trans. Visual. Comput. Graphics 22(4), 1367–1376 (2016).
    [Crossref]
  40. K. Rathinavel, H. Wang, A. Blate, and H. Fuchs, “An extended depth-at-field volumetric near-eye augmented reality display,” IEEE Trans. Visual. Comput. Graphics 24(11), 2857–2866 (2018).
    [Crossref]
  41. Y. Jo, S. Lee, D. Yoo, S. Choi, D. Kim, and B. Lee, “Tomographic projector: large scale volumetric display with uniform viewing experiences,” ACM Trans. Graph. 38(6), 1–13 (2019).
    [Crossref]

2019 (4)

T. Zhan, J. Xiong, G. Tan, Y.-H. Lee, J. Yang, S. Liu, and S.-T. Wu, “Improving near-eye display resolution by polarization multiplexing,” Opt. Express 27(11), 15327–15334 (2019).
[Crossref]

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

K. Akşit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing application-driven foveated near-eye displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

Y. Jo, S. Lee, D. Yoo, S. Choi, D. Kim, and B. Lee, “Tomographic projector: large scale volumetric display with uniform viewing experiences,” ACM Trans. Graph. 38(6), 1–13 (2019).
[Crossref]

2018 (5)

K. Rathinavel, H. Wang, A. Blate, and H. Fuchs, “An extended depth-at-field volumetric near-eye augmented reality display,” IEEE Trans. Visual. Comput. Graphics 24(11), 2857–2866 (2018).
[Crossref]

H. Lee and P. Didyk, “Real-time apparent resolution enhancement for head-mounted displays,” Proc. ACM on Comput. Graph. Interact. Tech. 1(1), 1–15 (2018).
[Crossref]

G. Tan, Y.-H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S.-T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26(19), 25076–25085 (2018).
[Crossref]

J.-Y. Wu, P.-Y. Chou, K.-E. Peng, Y.-P. Huang, H.-H. Lo, C.-C. Chang, and F.-M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 1443 ppi 120 hz oled display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

2016 (2)

S. Kime, F. Galluppi, X. Lagorce, R. B. Benosman, and J. Lorenceau, “Psychophysical assessment of perceptual performance with varying display frame rates,” J. Disp. Technol. 12(11), 1372–1382 (2016).
[Crossref]

P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and H. Fuchs, “From motion to photons in 80 microseconds: Towards minimal latency for virtual and augmented reality,” IEEE Trans. Visual. Comput. Graphics 22(4), 1367–1376 (2016).
[Crossref]

2015 (2)

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

J. Davis, Y.-H. Hsieh, and H.-C. Lee, “Humans perceive flicker artifacts at 500 hz,” Sci. Rep. 5(1), 7861 (2015).
[Crossref]

2014 (2)

K. Noland, “The application of sampling theory to television frame rate requirements,” BBC Res. Dev. White Pap. 282, 1–22 (2014).

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

2013 (1)

J. Roberts and A. Wilkins, “Flicker can be perceived during saccades at frequencies in excess of 1 khz,” Light. Res. Technol. 45(1), 124–132 (2013).
[Crossref]

2012 (2)

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided resolution enhancement in projectors via optical pixel sharing,” ACM Trans. Graph. 31(4), 1–122 (2012).
[Crossref]

F. Berthouzoz and R. Fattal, “Resolution enhancement by vibrating displays,” ACM Trans. Graph. 31(2), 1–14 (2012).
[Crossref]

2010 (1)

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 1 (2010).
[Crossref]

2009 (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

2000 (1)

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40(14), 1813–1826 (2000).
[Crossref]

1995 (1)

D. B. Elliott, K. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optom Vis Sci. 72(3), 186–191 (1995).
[Crossref]

1979 (1)

1880 (1)

M. Leblanc, “Etude sur la transmission électrique des impressions lumineuses,” La Lumière électrique 2, 477–481 (1880).

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

Aksit, K.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

K. Akşit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing application-driven foveated near-eye displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

G. A. Koulieris, K. Akşit, M. Stengel, R. Mantiuk, K. Mania, and C. Richardt, “Near-eye display and tracking technologies for virtual and augmented reality,” in Computer Graphics Forum, vol. 38 (Wiley Online Library, 2019), pp. 493–519.

Albert, R.

K. Akşit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing application-driven foveated near-eye displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Allen, W.

W. Allen and R. Ulichney, “47.4: Invited paper: Wobulation: Doubling the addressed resolution of projection displays,” in SID Symposium Digest of Technical Papers, vol. 36 (Wiley Online Library, 2005), pp. 1514–1517.

Argyropoulos, C.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

Balram, N.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 1443 ppi 120 hz oled display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Benosman, R.

M. A. Khoei, F. Galluppi, Q. Sabatier, P. Pouget, B. R. Cottereau, and R. Benosman, “Faster is better: Visual responses to motion are stronger for higher refresh rates,” bioRxiv p. 505354 (2018).

Benosman, R. B.

S. Kime, F. Galluppi, X. Lagorce, R. B. Benosman, and J. Lorenceau, “Psychophysical assessment of perceptual performance with varying display frame rates,” J. Disp. Technol. 12(11), 1372–1382 (2016).
[Crossref]

Berthouzoz, F.

F. Berthouzoz and R. Fattal, “Resolution enhancement by vibrating displays,” ACM Trans. Graph. 31(2), 1–14 (2012).
[Crossref]

Blate, A.

K. Rathinavel, H. Wang, A. Blate, and H. Fuchs, “An extended depth-at-field volumetric near-eye augmented reality display,” IEEE Trans. Visual. Comput. Graphics 24(11), 2857–2866 (2018).
[Crossref]

P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and H. Fuchs, “From motion to photons in 80 microseconds: Towards minimal latency for virtual and augmented reality,” IEEE Trans. Visual. Comput. Graphics 22(4), 1367–1376 (2016).
[Crossref]

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Boudaoud, B.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Brown, M. K.

M. K. Brown, “Scanning projector with vertical interpolation onto horizontal trajectory,” (2013). US Patent 8,371,698.

Buck, J.

J. Buck, S. Serati, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” in Acquisition, Tracking, Pointing, and Laser Systems Technologies XXVI, vol. 8395 (International Society for Optics and Photonics, 2012), p. 83950F.

Buschmann, L.

J. Liu, S.-M. Morgens, R. C. Sumner, L. Buschmann, Y. Zhang, and J. Davis, “When does the hidden butterfly not flicker?” in SIGGRAPH ASIA Technical Briefs, (2014), pp. 1–3.

Chakravarthula, P.

K. Akşit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing application-driven foveated near-eye displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

Chang, C.-C.

J.-Y. Wu, P.-Y. Chou, K.-E. Peng, Y.-P. Huang, H.-H. Lo, C.-C. Chang, and F.-M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Choi, S.

Y. Jo, S. Lee, D. Yoo, S. Choi, D. Kim, and B. Lee, “Tomographic projector: large scale volumetric display with uniform viewing experiences,” ACM Trans. Graph. 38(6), 1–13 (2019).
[Crossref]

Chou, P.-Y.

J.-Y. Wu, P.-Y. Chou, K.-E. Peng, Y.-P. Huang, H.-H. Lo, C.-C. Chang, and F.-M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Chuang, F.-M.

J.-Y. Wu, P.-Y. Chou, K.-E. Peng, Y.-P. Huang, H.-H. Lo, C.-C. Chang, and F.-M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Cottereau, B. R.

M. A. Khoei, F. Galluppi, Q. Sabatier, P. Pouget, B. R. Cottereau, and R. Benosman, “Faster is better: Visual responses to motion are stronger for higher refresh rates,” bioRxiv p. 505354 (2018).

Davis, J.

J. Davis, Y.-H. Hsieh, and H.-C. Lee, “Humans perceive flicker artifacts at 500 hz,” Sci. Rep. 5(1), 7861 (2015).
[Crossref]

J. Liu, S.-M. Morgens, R. C. Sumner, L. Buschmann, Y. Zhang, and J. Davis, “When does the hidden butterfly not flicker?” in SIGGRAPH ASIA Technical Briefs, (2014), pp. 1–3.

Debevec, P.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lighting (Morgan Kaufmann, 2010).

Dickensheets, D. L.

H. Urey and D. L. Dickensheets, “Display and imaging systems,” MOEMS and Applications (2005).

Didyk, P.

H. Lee and P. Didyk, “Real-time apparent resolution enhancement for head-mounted displays,” Proc. ACM on Comput. Graph. Interact. Tech. 1(1), 1–15 (2018).
[Crossref]

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 1 (2010).
[Crossref]

Efros, A. A.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (xxx, 2018586–595

Eisemann, E.

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 1 (2010).
[Crossref]

Elliott, D. B.

D. B. Elliott, K. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optom Vis Sci. 72(3), 186–191 (1995).
[Crossref]

Escuti, M.

J. Buck, S. Serati, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” in Acquisition, Tracking, Pointing, and Laser Systems Technologies XXVI, vol. 8395 (International Society for Optics and Photonics, 2012), p. 83950F.

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Fattal, R.

F. Berthouzoz and R. Fattal, “Resolution enhancement by vibrating displays,” ACM Trans. Graph. 31(2), 1–14 (2012).
[Crossref]

Finkelstein, M. A.

D. C. Hood and M. A. Finkelstein, “Sensitivity to light,” Handbook of Perception and Human Performance. (Vol. 1: Sensory Processes and Perception)John Wiley and Sons10–20. (1986).

Fuchs, H.

K. Akşit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing application-driven foveated near-eye displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

K. Rathinavel, H. Wang, A. Blate, and H. Fuchs, “An extended depth-at-field volumetric near-eye augmented reality display,” IEEE Trans. Visual. Comput. Graphics 24(11), 2857–2866 (2018).
[Crossref]

P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and H. Fuchs, “From motion to photons in 80 microseconds: Towards minimal latency for virtual and augmented reality,” IEEE Trans. Visual. Comput. Graphics 22(4), 1367–1376 (2016).
[Crossref]

Galluppi, F.

S. Kime, F. Galluppi, X. Lagorce, R. B. Benosman, and J. Lorenceau, “Psychophysical assessment of perceptual performance with varying display frame rates,” J. Disp. Technol. 12(11), 1372–1382 (2016).
[Crossref]

M. A. Khoei, F. Galluppi, Q. Sabatier, P. Pouget, B. R. Cottereau, and R. Benosman, “Faster is better: Visual responses to motion are stronger for higher refresh rates,” bioRxiv p. 505354 (2018).

Gegenfurtner, K. R.

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40(14), 1813–1826 (2000).
[Crossref]

Gopi, M.

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided resolution enhancement in projectors via optical pixel sharing,” ACM Trans. Graph. 31(4), 1–122 (2012).
[Crossref]

B. Sajadi, D. Qoc-Lai, A. H. Ihler, M. Gopi, and A. Majumder, “Image enhancement in projectors via optical pixel shift and overlay,” in IEEE International Conference on Computational Photography (ICCP), (IEEE, 2013), pp. 1–10.

Greenberg, D. P.

S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 47–54.

Greer, T.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Heide, F.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Heidrich, W.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lighting (Morgan Kaufmann, 2010).

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

Hood, D. C.

D. C. Hood and M. A. Finkelstein, “Sensitivity to light,” Handbook of Perception and Human Performance. (Vol. 1: Sensory Processes and Perception)John Wiley and Sons10–20. (1986).

Hsieh, Y.-H.

J. Davis, Y.-H. Hsieh, and H.-C. Lee, “Humans perceive flicker artifacts at 500 hz,” Sci. Rep. 5(1), 7861 (2015).
[Crossref]

Huang, J.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

Huang, Y.-P.

J.-Y. Wu, P.-Y. Chou, K.-E. Peng, Y.-P. Huang, H.-H. Lo, C.-C. Chang, and F.-M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Ihler, A. H.

B. Sajadi, D. Qoc-Lai, A. H. Ihler, M. Gopi, and A. Majumder, “Image enhancement in projectors via optical pixel shift and overlay,” in IEEE International Conference on Computational Photography (ICCP), (IEEE, 2013), pp. 1–10.

Isola, P.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (xxx, 2018586–595

Jaynes, C.

C. Jaynes and D. Ramakrishnan, “Super-resolution composition in multi-projector displays,” in IEEE Int’l Workshop on Projector-Camera Systems vol. 8 (2003).

Jeong, Y.

K. Akşit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing application-driven foveated near-eye displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Jo, Y.

Y. Jo, S. Lee, D. Yoo, S. Choi, D. Kim, and B. Lee, “Tomographic projector: large scale volumetric display with uniform viewing experiences,” ACM Trans. Graph. 38(6), 1–13 (2019).
[Crossref]

Jung, S. H.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 1443 ppi 120 hz oled display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Kang, I. B.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 1443 ppi 120 hz oled display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Kautz, J.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Kelly, D.

Khoei, M. A.

M. A. Khoei, F. Galluppi, Q. Sabatier, P. Pouget, B. R. Cottereau, and R. Benosman, “Faster is better: Visual responses to motion are stronger for higher refresh rates,” bioRxiv p. 505354 (2018).

Kim, D.

Y. Jo, S. Lee, D. Yoo, S. Choi, D. Kim, and B. Lee, “Tomographic projector: large scale volumetric display with uniform viewing experiences,” ACM Trans. Graph. 38(6), 1–13 (2019).
[Crossref]

Kim, J.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

J. Buck, S. Serati, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” in Acquisition, Tracking, Pointing, and Laser Systems Technologies XXVI, vol. 8395 (International Society for Optics and Photonics, 2012), p. 83950F.

Kime, S.

S. Kime, F. Galluppi, X. Lagorce, R. B. Benosman, and J. Lorenceau, “Psychophysical assessment of perceptual performance with varying display frame rates,” J. Disp. Technol. 12(11), 1372–1382 (2016).
[Crossref]

Koulieris, G. A.

G. A. Koulieris, K. Akşit, M. Stengel, R. Mantiuk, K. Mania, and C. Richardt, “Near-eye display and tracking technologies for virtual and augmented reality,” in Computer Graphics Forum, vol. 38 (Wiley Online Library, 2019), pp. 493–519.

Lagorce, X.

S. Kime, F. Galluppi, X. Lagorce, R. B. Benosman, and J. Lorenceau, “Psychophysical assessment of perceptual performance with varying display frame rates,” J. Disp. Technol. 12(11), 1372–1382 (2016).
[Crossref]

Lanman, D.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Lastra, A.

P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and H. Fuchs, “From motion to photons in 80 microseconds: Towards minimal latency for virtual and augmented reality,” IEEE Trans. Visual. Comput. Graphics 22(4), 1367–1376 (2016).
[Crossref]

Leblanc, M.

M. Leblanc, “Etude sur la transmission électrique des impressions lumineuses,” La Lumière électrique 2, 477–481 (1880).

Lee, B.

Y. Jo, S. Lee, D. Yoo, S. Choi, D. Kim, and B. Lee, “Tomographic projector: large scale volumetric display with uniform viewing experiences,” ACM Trans. Graph. 38(6), 1–13 (2019).
[Crossref]

Lee, D. D.

D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Advances in neural information processing systems, (2001), pp. 556–562

Lee, G.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 1443 ppi 120 hz oled display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Lee, H.

H. Lee and P. Didyk, “Real-time apparent resolution enhancement for head-mounted displays,” Proc. ACM on Comput. Graph. Interact. Tech. 1(1), 1–15 (2018).
[Crossref]

Lee, H.-C.

J. Davis, Y.-H. Hsieh, and H.-C. Lee, “Humans perceive flicker artifacts at 500 hz,” Sci. Rep. 5(1), 7861 (2015).
[Crossref]

Lee, S.

Y. Jo, S. Lee, D. Yoo, S. Choi, D. Kim, and B. Lee, “Tomographic projector: large scale volumetric display with uniform viewing experiences,” ACM Trans. Graph. 38(6), 1–13 (2019).
[Crossref]

Lee, Y.-H.

Lincoln, P.

P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and H. Fuchs, “From motion to photons in 80 microseconds: Towards minimal latency for virtual and augmented reality,” IEEE Trans. Visual. Comput. Graphics 22(4), 1367–1376 (2016).
[Crossref]

Liu, J.

J. Liu, S.-M. Morgens, R. C. Sumner, L. Buschmann, Y. Zhang, and J. Davis, “When does the hidden butterfly not flicker?” in SIGGRAPH ASIA Technical Briefs, (2014), pp. 1–3.

Liu, S.

Lo, H.-H.

J.-Y. Wu, P.-Y. Chou, K.-E. Peng, Y.-P. Huang, H.-H. Lo, C.-C. Chang, and F.-M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Lonergan, J.

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: Screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” in SID Symposium Digest of Technical Papers, vol. 48 (Wiley Online Library, 2017), pp. 1150–1153.

Lopes, W.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Lorenceau, J.

S. Kime, F. Galluppi, X. Lagorce, R. B. Benosman, and J. Lorenceau, “Psychophysical assessment of perceptual performance with varying display frame rates,” J. Disp. Technol. 12(11), 1372–1382 (2016).
[Crossref]

Luebke, D.

K. Akşit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing application-driven foveated near-eye displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Majerciket al., Z.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Majumder, A.

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided resolution enhancement in projectors via optical pixel sharing,” ACM Trans. Graph. 31(4), 1–122 (2012).
[Crossref]

B. Sajadi, D. Qoc-Lai, A. H. Ihler, M. Gopi, and A. Majumder, “Image enhancement in projectors via optical pixel shift and overlay,” in IEEE International Conference on Computational Photography (ICCP), (IEEE, 2013), pp. 1–10.

Mania, K.

G. A. Koulieris, K. Akşit, M. Stengel, R. Mantiuk, K. Mania, and C. Richardt, “Near-eye display and tracking technologies for virtual and augmented reality,” in Computer Graphics Forum, vol. 38 (Wiley Online Library, 2019), pp. 493–519.

Mantiuk, R.

G. A. Koulieris, K. Akşit, M. Stengel, R. Mantiuk, K. Mania, and C. Richardt, “Near-eye display and tracking technologies for virtual and augmented reality,” in Computer Graphics Forum, vol. 38 (Wiley Online Library, 2019), pp. 493–519.

Masterson, H.

J. Buck, S. Serati, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” in Acquisition, Tracking, Pointing, and Laser Systems Technologies XXVI, vol. 8395 (International Society for Optics and Photonics, 2012), p. 83950F.

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

Miskiewicz, M.

J. Buck, S. Serati, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” in Acquisition, Tracking, Pointing, and Laser Systems Technologies XXVI, vol. 8395 (International Society for Optics and Photonics, 2012), p. 83950F.

Morgens, S.-M.

J. Liu, S.-M. Morgens, R. C. Sumner, L. Buschmann, Y. Zhang, and J. Davis, “When does the hidden butterfly not flicker?” in SIGGRAPH ASIA Technical Briefs, (2014), pp. 1–3.

Myszkowski, K.

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 1 (2010).
[Crossref]

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lighting (Morgan Kaufmann, 2010).

Naismith, N.

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: Screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” in SID Symposium Digest of Technical Papers, vol. 48 (Wiley Online Library, 2017), pp. 1150–1153.

Noland, K.

K. Noland, “The application of sampling theory to television frame rate requirements,” BBC Res. Dev. White Pap. 282, 1–22 (2014).

Oja, E.

Z. Yuan and E. Oja, “Projective nonnegative matrix factorization for image compression and feature extraction,” in Scandinavian Conference on Image Analysis, (Springer, 2005), pp. 333–342.

Pattanaik, S.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lighting (Morgan Kaufmann, 2010).

Pattanaik, S. N.

S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 47–54.

Peng, K.-E.

J.-Y. Wu, P.-Y. Chou, K.-E. Peng, Y.-P. Huang, H.-H. Lo, C.-C. Chang, and F.-M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Pouget, P.

M. A. Khoei, F. Galluppi, Q. Sabatier, P. Pouget, B. R. Cottereau, and R. Benosman, “Faster is better: Visual responses to motion are stronger for higher refresh rates,” bioRxiv p. 505354 (2018).

Pulli, K.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Qoc-Lai, D.

B. Sajadi, D. Qoc-Lai, A. H. Ihler, M. Gopi, and A. Majumder, “Image enhancement in projectors via optical pixel shift and overlay,” in IEEE International Conference on Computational Photography (ICCP), (IEEE, 2013), pp. 1–10.

Ramakrishnan, D.

C. Jaynes and D. Ramakrishnan, “Super-resolution composition in multi-projector displays,” in IEEE Int’l Workshop on Projector-Camera Systems vol. 8 (2003).

Rathinavel, K.

K. Akşit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing application-driven foveated near-eye displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

K. Rathinavel, H. Wang, A. Blate, and H. Fuchs, “An extended depth-at-field volumetric near-eye augmented reality display,” IEEE Trans. Visual. Comput. Graphics 24(11), 2857–2866 (2018).
[Crossref]

Reddy, D.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Reinhard, E.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lighting (Morgan Kaufmann, 2010).

Richardt, C.

G. A. Koulieris, K. Akşit, M. Stengel, R. Mantiuk, K. Mania, and C. Richardt, “Near-eye display and tracking technologies for virtual and augmented reality,” in Computer Graphics Forum, vol. 38 (Wiley Online Library, 2019), pp. 493–519.

Rinner, O.

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40(14), 1813–1826 (2000).
[Crossref]

Ritschel, T.

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 1 (2010).
[Crossref]

Roberts, J.

J. Roberts and A. Wilkins, “Flicker can be perceived during saccades at frequencies in excess of 1 khz,” Light. Res. Technol. 45(1), 124–132 (2013).
[Crossref]

Sabatier, Q.

M. A. Khoei, F. Galluppi, Q. Sabatier, P. Pouget, B. R. Cottereau, and R. Benosman, “Faster is better: Visual responses to motion are stronger for higher refresh rates,” bioRxiv p. 505354 (2018).

Sajadi, B.

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided resolution enhancement in projectors via optical pixel sharing,” ACM Trans. Graph. 31(4), 1–122 (2012).
[Crossref]

B. Sajadi, D. Qoc-Lai, A. H. Ihler, M. Gopi, and A. Majumder, “Image enhancement in projectors via optical pixel shift and overlay,” in IEEE International Conference on Computational Photography (ICCP), (IEEE, 2013), pp. 1–10.

Seidel, H.-P.

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 1 (2010).
[Crossref]

Serati, R.

J. Buck, S. Serati, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” in Acquisition, Tracking, Pointing, and Laser Systems Technologies XXVI, vol. 8395 (International Society for Optics and Photonics, 2012), p. 83950F.

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

J. Buck, S. Serati, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” in Acquisition, Tracking, Pointing, and Laser Systems Technologies XXVI, vol. 8395 (International Society for Optics and Photonics, 2012), p. 83950F.

Seung, H. S.

D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Advances in neural information processing systems, (2001), pp. 556–562

Shechtman, E.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (xxx, 2018586–595

Singh, M.

P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and H. Fuchs, “From motion to photons in 80 microseconds: Towards minimal latency for virtual and augmented reality,” IEEE Trans. Visual. Comput. Graphics 22(4), 1367–1376 (2016).
[Crossref]

Sitter, B.

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: Screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” in SID Symposium Digest of Technical Papers, vol. 48 (Wiley Online Library, 2017), pp. 1150–1153.

Smith, D. R.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

State, A.

P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and H. Fuchs, “From motion to photons in 80 microseconds: Towards minimal latency for virtual and augmented reality,” IEEE Trans. Visual. Comput. Graphics 22(4), 1367–1376 (2016).
[Crossref]

Stengel, M.

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

G. A. Koulieris, K. Akşit, M. Stengel, R. Mantiuk, K. Mania, and C. Richardt, “Near-eye display and tracking technologies for virtual and augmented reality,” in Computer Graphics Forum, vol. 38 (Wiley Online Library, 2019), pp. 493–519.

Sumner, R. C.

J. Liu, S.-M. Morgens, R. C. Sumner, L. Buschmann, Y. Zhang, and J. Davis, “When does the hidden butterfly not flicker?” in SIGGRAPH ASIA Technical Briefs, (2014), pp. 1–3.

Tan, G.

Thielen, J.

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: Screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” in SID Symposium Digest of Technical Papers, vol. 48 (Wiley Online Library, 2017), pp. 1150–1153.

Tumblin, J.

S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 47–54.

Ulichney, R.

W. Allen and R. Ulichney, “47.4: Invited paper: Wobulation: Doubling the addressed resolution of projection displays,” in SID Symposium Digest of Technical Papers, vol. 36 (Wiley Online Library, 2005), pp. 1514–1517.

Urey, H.

H. Urey, “Optical advantages in retinal scanning displays,” in Helmet-and Head-Mounted Displays V, vol. 4021 (International Society for Optics and Photonics, 2000) pp. 20–26.

H. Urey and D. L. Dickensheets, “Display and imaging systems,” MOEMS and Applications (2005).

Vieri, C.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 1443 ppi 120 hz oled display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Wang, H.

K. Rathinavel, H. Wang, A. Blate, and H. Fuchs, “An extended depth-at-field volumetric near-eye augmented reality display,” IEEE Trans. Visual. Comput. Graphics 24(11), 2857–2866 (2018).
[Crossref]

Wang, O.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (xxx, 2018586–595

Ward, G.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lighting (Morgan Kaufmann, 2010).

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Whitaker, D.

D. B. Elliott, K. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optom Vis Sci. 72(3), 186–191 (1995).
[Crossref]

Whitted, T.

P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and H. Fuchs, “From motion to photons in 80 microseconds: Towards minimal latency for virtual and augmented reality,” IEEE Trans. Visual. Comput. Graphics 22(4), 1367–1376 (2016).
[Crossref]

Wilkins, A.

J. Roberts and A. Wilkins, “Flicker can be perceived during saccades at frequencies in excess of 1 khz,” Light. Res. Technol. 45(1), 124–132 (2013).
[Crossref]

Wu, J.-Y.

J.-Y. Wu, P.-Y. Chou, K.-E. Peng, Y.-P. Huang, H.-H. Lo, C.-C. Chang, and F.-M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Wu, S.-T.

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Xiong, J.

Yang, J.

T. Zhan, J. Xiong, G. Tan, Y.-H. Lee, J. Yang, S. Liu, and S.-T. Wu, “Improving near-eye display resolution by polarization multiplexing,” Opt. Express 27(11), 15327–15334 (2019).
[Crossref]

G. Tan, Y.-H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S.-T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26(19), 25076–25085 (2018).
[Crossref]

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: Screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” in SID Symposium Digest of Technical Papers, vol. 48 (Wiley Online Library, 2017), pp. 1150–1153.

Yang, J. Y.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 1443 ppi 120 hz oled display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Yang, K.

D. B. Elliott, K. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optom Vis Sci. 72(3), 186–191 (1995).
[Crossref]

Yee, H.

S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 47–54.

Yoo, D.

Y. Jo, S. Lee, D. Yoo, S. Choi, D. Kim, and B. Lee, “Tomographic projector: large scale volumetric display with uniform viewing experiences,” ACM Trans. Graph. 38(6), 1–13 (2019).
[Crossref]

Yoon, S. Y.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 1443 ppi 120 hz oled display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Yuan, Z.

Z. Yuan and E. Oja, “Projective nonnegative matrix factorization for image compression and feature extraction,” in Scandinavian Conference on Image Analysis, (Springer, 2005), pp. 333–342.

Zhan, T.

Zhang, R.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (xxx, 2018586–595

Zhang, Y.

J. Liu, S.-M. Morgens, R. C. Sumner, L. Buschmann, Y. Zhang, and J. Davis, “When does the hidden butterfly not flicker?” in SIGGRAPH ASIA Technical Briefs, (2014), pp. 1–3.

Zhao, D.

ACM Trans. Graph. (6)

J. Kim, Y. Jeong, M. Stengel, K. Akşit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes, and Z. Majerciket al., “Foveated ar: dynamically-foveated augmented reality display,” ACM Trans. Graph. 38(4), 1–15 (2019).
[Crossref]

Y. Jo, S. Lee, D. Yoo, S. Choi, D. Kim, and B. Lee, “Tomographic projector: large scale volumetric display with uniform viewing experiences,” ACM Trans. Graph. 38(6), 1–13 (2019).
[Crossref]

B. Sajadi, M. Gopi, and A. Majumder, “Edge-guided resolution enhancement in projectors via optical pixel sharing,” ACM Trans. Graph. 31(4), 1–122 (2012).
[Crossref]

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

F. Berthouzoz and R. Fattal, “Resolution enhancement by vibrating displays,” ACM Trans. Graph. 31(2), 1–14 (2012).
[Crossref]

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 1 (2010).
[Crossref]

BBC Res. Dev. White Pap. (1)

K. Noland, “The application of sampling theory to television frame rate requirements,” BBC Res. Dev. White Pap. 282, 1–22 (2014).

IEEE Trans. Visual. Comput. Graphics (3)

P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and H. Fuchs, “From motion to photons in 80 microseconds: Towards minimal latency for virtual and augmented reality,” IEEE Trans. Visual. Comput. Graphics 22(4), 1367–1376 (2016).
[Crossref]

K. Rathinavel, H. Wang, A. Blate, and H. Fuchs, “An extended depth-at-field volumetric near-eye augmented reality display,” IEEE Trans. Visual. Comput. Graphics 24(11), 2857–2866 (2018).
[Crossref]

K. Akşit, P. Chakravarthula, K. Rathinavel, Y. Jeong, R. Albert, H. Fuchs, and D. Luebke, “Manufacturing application-driven foveated near-eye displays,” IEEE Trans. Visual. Comput. Graphics 25(5), 1928–1939 (2019).
[Crossref]

J. Disp. Technol. (1)

S. Kime, F. Galluppi, X. Lagorce, R. B. Benosman, and J. Lorenceau, “Psychophysical assessment of perceptual performance with varying display frame rates,” J. Disp. Technol. 12(11), 1372–1382 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Soc. Inf. Disp. (2)

J.-Y. Wu, P.-Y. Chou, K.-E. Peng, Y.-P. Huang, H.-H. Lo, C.-C. Chang, and F.-M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3 1443 ppi 120 hz oled display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

La Lumière électrique (1)

M. Leblanc, “Etude sur la transmission électrique des impressions lumineuses,” La Lumière électrique 2, 477–481 (1880).

Light. Res. Technol. (1)

J. Roberts and A. Wilkins, “Flicker can be perceived during saccades at frequencies in excess of 1 khz,” Light. Res. Technol. 45(1), 124–132 (2013).
[Crossref]

Nat. Commun. (1)

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

Opt. Express (2)

Optom Vis Sci. (1)

D. B. Elliott, K. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optom Vis Sci. 72(3), 186–191 (1995).
[Crossref]

Proc. ACM on Comput. Graph. Interact. Tech. (1)

H. Lee and P. Didyk, “Real-time apparent resolution enhancement for head-mounted displays,” Proc. ACM on Comput. Graph. Interact. Tech. 1(1), 1–15 (2018).
[Crossref]

Proc. IEEE (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Sci. Rep. (1)

J. Davis, Y.-H. Hsieh, and H.-C. Lee, “Humans perceive flicker artifacts at 500 hz,” Sci. Rep. 5(1), 7861 (2015).
[Crossref]

Vision Res. (1)

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40(14), 1813–1826 (2000).
[Crossref]

Other (17)

D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Advances in neural information processing systems, (2001), pp. 556–562

Z. Yuan and E. Oja, “Projective nonnegative matrix factorization for image compression and feature extraction,” in Scandinavian Conference on Image Analysis, (Springer, 2005), pp. 333–342.

J. Liu, S.-M. Morgens, R. C. Sumner, L. Buschmann, Y. Zhang, and J. Davis, “When does the hidden butterfly not flicker?” in SIGGRAPH ASIA Technical Briefs, (2014), pp. 1–3.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (xxx, 2018586–595

H. Urey and D. L. Dickensheets, “Display and imaging systems,” MOEMS and Applications (2005).

H. Urey, “Optical advantages in retinal scanning displays,” in Helmet-and Head-Mounted Displays V, vol. 4021 (International Society for Optics and Photonics, 2000) pp. 20–26.

J. Buck, S. Serati, R. Serati, H. Masterson, M. Escuti, J. Kim, and M. Miskiewicz, “Polarization gratings for non-mechanical beam steering applications,” in Acquisition, Tracking, Pointing, and Laser Systems Technologies XXVI, vol. 8395 (International Society for Optics and Photonics, 2012), p. 83950F.

M. K. Brown, “Scanning projector with vertical interpolation onto horizontal trajectory,” (2013). US Patent 8,371,698.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: acquisition, display, and image-based lighting (Morgan Kaufmann, 2010).

D. C. Hood and M. A. Finkelstein, “Sensitivity to light,” Handbook of Perception and Human Performance. (Vol. 1: Sensory Processes and Perception)John Wiley and Sons10–20. (1986).

S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 47–54.

B. Sajadi, D. Qoc-Lai, A. H. Ihler, M. Gopi, and A. Majumder, “Image enhancement in projectors via optical pixel shift and overlay,” in IEEE International Conference on Computational Photography (ICCP), (IEEE, 2013), pp. 1–10.

G. A. Koulieris, K. Akşit, M. Stengel, R. Mantiuk, K. Mania, and C. Richardt, “Near-eye display and tracking technologies for virtual and augmented reality,” in Computer Graphics Forum, vol. 38 (Wiley Online Library, 2019), pp. 493–519.

M. A. Khoei, F. Galluppi, Q. Sabatier, P. Pouget, B. R. Cottereau, and R. Benosman, “Faster is better: Visual responses to motion are stronger for higher refresh rates,” bioRxiv p. 505354 (2018).

B. Sitter, J. Yang, J. Thielen, N. Naismith, and J. Lonergan, “78-3: Screen door effect reduction with diffractive film for virtual reality and augmented reality displays,” in SID Symposium Digest of Technical Papers, vol. 48 (Wiley Online Library, 2017), pp. 1150–1153.

W. Allen and R. Ulichney, “47.4: Invited paper: Wobulation: Doubling the addressed resolution of projection displays,” in SID Symposium Digest of Technical Papers, vol. 36 (Wiley Online Library, 2005), pp. 1514–1517.

C. Jaynes and D. Ramakrishnan, “Super-resolution composition in multi-projector displays,” in IEEE Int’l Workshop on Projector-Camera Systems vol. 8 (2003).

Supplementary Material (3)

NameDescription
» Visualization 1       Introduction video
» Visualization 2       An example showing image transformation (T) over a static image caused by an optical scanning in our method. Please consult to Section 2.1 of `Patch Scanning Displays: Spatiotemporal enhancement for displays` for more.
» Visualization 3       A sample image reconstruction for `patch scanning displays`.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Spatiotemporal enhancement and pixel fill-factor enhancement by patch scanning displays. (Left) Image generation of a spatial light modulator (SLM) at its native resolution is compared with a patch scanning display basing on the same SLM. (Right) Zoomed comparison on the same data provided in left photograph is shown. Both images are simulated. Source images courtesy Erhan Meço. See Visualization 1 for more data.
Fig. 2.
Fig. 2. System layout of patch scanning display method. An intermediate image is formed by combining multicolor locally addressable incoherent backlight with a multicolor Spatial Light Modulator (SLM), in which the backlight is updated at a fast pace in a binary fashion and the SLM is updated at a much lower rate. An optical scanner scans an intermediate image to reconstruct a target image at a final image plane. The resultant reconstructed image has enhanced spatiotemporal qualities. The SLM shows tiled patches, which are learned from a training dataset for a given set of input target images. The backlight array acts as coefficients to reconstruct different portions of a target image, and updated for each step during a scan.
Fig. 3.
Fig. 3. Renderings of a virtual prototype for a patch scanning display. (Left) This image shows an optical assembly for the functional prototype, where light from a light source array follows the optical path highlighted with a red line representing a chief ray, and gets modulated using a transmissive Spatial Light Modulator (SLM), and modulated light bounces off a mirror of an optical scanner. (Middle) The image shows computation and control modules used in the functional prototype. (Right)The image shows an entire assembly of a functional prototype. Only omitted part in the right image is an optical scanner control circuitry. See Visualization 2 for a mirror scan simulation with a static input image.
Fig. 4.
Fig. 4. A photograph of our functional prototype The photograph shows two raspberry pis, a NVIDIA Jetson Nano, a light source array, a transmissive spatial light modulator and an optical scanner.
Fig. 5.
Fig. 5. Image quality assesment of patch scanning displays. Target image has four times more spatial resolution with respect to a base Spatial Light Modulator (SLM). As more binary updates $n_t$ for a light source array is used in one pass of a scan trajectory, Peak signal-to-noise ratio (PSNR), structural similarity (SSIM) index and a learned perceptual image patch distance (LPIPD) [33] show improvements over a base SLM with a certain pixel fill factor. Displayed images are generated using our virtual prototype with $r=36$ basis with $m\times n=6\times 6$ pxs patches. Source images courtesy Erhan Meço. See Visualization 1 and Visualization 3 for sample image reconstructions.
Fig. 6.
Fig. 6. Photographs from a functional prototype of a patch scanning display in comparison to a simulated virtual prototype and a base Spatial Light Modulator (SLM). Displayed results are generated using r = 36 bases with m × n = 6 × 6 pxs for both virtual and functional prototypes. Source images courtesy Erhan Meço.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R ( x , y ) = t = t 0 t n T ( M t , t ) = t = t 0 t n T ( ( O t S t ) , t ) ,
F ( t ) = I i ( t ) ( 1 e Δ t τ ) ,
R ( x , y ) = t = t 0 t n T ( ( O t S t ) , t ) ( 1 e t n t τ ) .
arg min W 0 V W W T V ,
A B 2 = x , y ( A x y B x y ) 2 .
W x y W x y ( V V T W ) x y ( W W T V V T W ) x y + ( V V T W W T W ) x y .
J t ( x , y ) = I ( x , y ) R t ( x , y ) ,
O t ( x , y ) = { if J t ( x , y ) 0 1 if J t ( x , y ) < 0 0 ,
Θ x = a r c t a n ( p x c x c o s ( 2 π t Δ t f k x ) z ) , Θ y = a r c t a n ( p y c y c o s ( 2 π t Δ t f k y ) z ) + 45 ,

Metrics