D. Baranov, Y. Xiao, I. Nechepurenko, A. Krasnok, A. Alù, and M. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).

[Crossref]

L.-P. Yang and Z. Jacob, “Quantum critical detector: amplifying weak signals using discontinuous quantum phase transitions,” Opt. Express 27(8), 10482–10494 (2019).

[Crossref]

M. Minkov, D. Gerace, and S. Fan, “Doubly resonant χ(2) nonlinear photonic crystal cavity based on a bound state in the continuum,” Optica 6(8), 1039–1045 (2019).

[Crossref]

C. Khandekar and Z. Jacob, “Thermal spin photonics in the near-field of nonreciprocal media,” New J. Phys. 21(10), 103030 (2019).

[Crossref]

C. Khandekar and Z. Jacob, “Circularly polarized thermal radiation from nonequilibrium coupled antennas,” Phys. Rev. Appl. 12(1), 014053 (2019).

[Crossref]

C. Sitawarin, W. Jin, Z. Lin, and A. Rodriguez, “Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion,” Photonics Res. 6(5), B82–B89 (2018).

[Crossref]

L. Zhu, Y. Guo, and S. Fan, “Theory of many-body radiative heat transfer without the constraint of reciprocity,” Phys. Rev. B 97(9), 094302 (2018).

[Crossref]

L. Carletti, K. Koshelev, C. De Angelis, and Y. Kivshar, “Giant nonlinear response at the nanoscale driven by bound states in the continuum,” Phys. Rev. Lett. 121(3), 033903 (2018).

[Crossref]

H. Soo and M. Krüger, “Fluctuational electrodynamics for nonlinear materials in and out of thermal equilibrium,” Phys. Rev. B 97(4), 045412 (2018).

[Crossref]

V. Fernández-Hurtado, A. Fernández-Domínguez, J. Feist, F. García-Vidal, and J. Cuevas, “Super-planckian far-field radiative heat transfer,” Phys. Rev. B 97(4), 045408 (2018).

[Crossref]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).

[Crossref]

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).

[Crossref]

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic limits of energy harvesting from outgoing thermal radiation,” Proc. Natl. Acad. Sci. 115(16), E3609–E3615 (2018).

[Crossref]

J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light emission by nonequilibrium bodies: local kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

[Crossref]

W. Li and S. Fan, “Nanophotonic control of thermal radiation for energy applications,” Opt. Express 26(12), 15995–16021 (2018).

[Crossref]

E. Tervo, E. Bagherisereshki, and Z. Zhang, “Near-field radiative thermoelectric energy converters: a review,” Front. Energy 12(1), 5–21 (2018).

[Crossref]

C. Khandekar, R. Messina, and A. Rodriguez, “Near-field refrigeration and tunable heat exchange through four-wave mixing,” AIP Adv. 8(5), 055029 (2018).

[Crossref]

C. Khandekar and A. Rodriguez, “Near-field thermal upconversion and energy transfer through a kerr medium,” Opt. Express 25(19), 23164–23180 (2017).

[Crossref]

S. Fan, “Thermal photonics and energy applications,” Joule 1(2), 264–273 (2017).

[Crossref]

N. Rivera, G. Rosolen, J. Joannopoulos, I. Kaminer, and M. Soljačić, “Making two-photon processes dominate one-photon processes using mid-ir phonon polaritons,” Proc. Natl. Acad. Sci. 114(52), 13607–13612 (2017).

[Crossref]

D. Miller, L. Zhu, and S. Fan, “Universal modal radiation laws for all thermal emitters,” Proc. Natl. Acad. Sci. 114(17), 4336–4341 (2017).

[Crossref]

W. Jin, A. Polimeridis, and A. Rodriguez, “Temperature control of thermal radiation from composite bodies,” Phys. Rev. B 93(12), 121403 (2016).

[Crossref]

Z. Lin, X. Liang, M. Lončar, S. Johnson, and A. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).

[Crossref]

S.-A. Biehs and P. Ben-Abdallah, “Revisiting super-planckian thermal emission in the far-field regime,” Phys. Rev. B 93(16), 165405 (2016).

[Crossref]

O. D. Miller, A. G. Polimeridis, M. H. Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

C. Khandekar, A. Pick, S. Johnson, and A. Rodriguez, “Radiative heat transfer in nonlinear kerr media,” Phys. Rev. B 91(11), 115406 (2015).

[Crossref]

C. Khandekar, Z. Lin, and A. Rodriguez, “Thermal radiation from optically driven kerr (χ (3)) photonic cavities,” Appl. Phys. Lett. 106(15), 151109 (2015).

[Crossref]

A. Karalis and J. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107(14), 141108 (2015).

[Crossref]

C. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: A brief overview,” J. Quant. Spectrosc. Radiat. Transfer 132, 3–11 (2014).

[Crossref]

D. Chang, V. Vuletić, and M. Lukin, “Quantum nonlinear optics–photon by photon,” Nat. Photonics 8(9), 685–694 (2014).

[Crossref]

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, and M. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).

[Crossref]

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9(12), 806–810 (2013).

[Crossref]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. Sinclair, and T. Shan Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).

[Crossref]

S.-A. Biehs and G. Agarwal, “Dynamical quantum theory of heat transfer between plasmonic nanosystems,” J. Opt. Soc. Am. B 30(3), 700–707 (2013).

[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).

[Crossref]

S. Wu, L. Mao, A. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett. 12(4), 2032–2036 (2012).

[Crossref]

Z.-F. Bi, A. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators,” Opt. Express 20(7), 7526–7543 (2012).

[Crossref]

J. Bravo-Abad, S. Fan, S. Johnson, J. Joannopoulos, and M. Soljacic, “Modeling nonlinear optical phenomena in nanophotonics,” J. Lightwave Technol. 25(9), 2539–2546 (2007).

[Crossref]

A. Rodriguez, M. Soljačić, J. Joannopoulos, and S. Johnson, “χ (2) and χ (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007).

[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).

[Crossref]

P. Campagnola and L. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).

[Crossref]

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).

[Crossref]

H. Schmidt and A. Imamoglu, “Giant kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21(23), 1936–1938 (1996).

[Crossref]

A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77(8), 1413–1415 (1996).

[Crossref]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]

T. Heinz, C. Chen, D. Ricard, and Y. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48(7), 478–481 (1982).

[Crossref]

M. Kozierowski and R. Tanaś, “Quantum fluctuations in second-harmonic light generation,” Opt. Commun. 21(2), 229–231 (1977).

[Crossref]

M. Dykman and M. Krivoglaz, “Spectral distribution of nonlinear oscillators with nonlinear friction due to a medium,” Phys. Status Solidi B 68(1), 111–123 (1975).

[Crossref]

G. Agarwal, “Quantum theory of second harmonic generation,” Opt. Commun. 1(3), 132–134 (1969).

[Crossref]

S. Rytov, “Theory of electric fluctuations and thermal radiation,” AFCRC-TR 59, 162 (1959).

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, and M. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).

[Crossref]

D. Baranov, Y. Xiao, I. Nechepurenko, A. Krasnok, A. Alù, and M. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).

[Crossref]

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, and M. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).

[Crossref]

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, and M. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).

[Crossref]

E. Tervo, E. Bagherisereshki, and Z. Zhang, “Near-field radiative thermoelectric energy converters: a review,” Front. Energy 12(1), 5–21 (2018).

[Crossref]

D. Baranov, Y. Xiao, I. Nechepurenko, A. Krasnok, A. Alù, and M. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).

[Crossref]

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, and M. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).

[Crossref]

S.-A. Biehs and P. Ben-Abdallah, “Revisiting super-planckian thermal emission in the far-field regime,” Phys. Rev. B 93(16), 165405 (2016).

[Crossref]

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).

[Crossref]

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, and M. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).

[Crossref]

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).

[Crossref]

J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light emission by nonequilibrium bodies: local kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

[Crossref]

R. W. Boyd, Nonlinear optics (Elsevier, 2003).

H. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University, 2002).

J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light emission by nonequilibrium bodies: local kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

[Crossref]

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic limits of energy harvesting from outgoing thermal radiation,” Proc. Natl. Acad. Sci. 115(16), E3609–E3615 (2018).

[Crossref]

P. Campagnola and L. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).

[Crossref]

L. Carletti, K. Koshelev, C. De Angelis, and Y. Kivshar, “Giant nonlinear response at the nanoscale driven by bound states in the continuum,” Phys. Rev. Lett. 121(3), 033903 (2018).

[Crossref]

D. Chang, V. Vuletić, and M. Lukin, “Quantum nonlinear optics–photon by photon,” Nat. Photonics 8(9), 685–694 (2014).

[Crossref]

T. Heinz, C. Chen, D. Ricard, and Y. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48(7), 478–481 (1982).

[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).

[Crossref]

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, and M. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).

[Crossref]

V. Fernández-Hurtado, A. Fernández-Domínguez, J. Feist, F. García-Vidal, and J. Cuevas, “Super-planckian far-field radiative heat transfer,” Phys. Rev. B 97(4), 045408 (2018).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

L. Carletti, K. Koshelev, C. De Angelis, and Y. Kivshar, “Giant nonlinear response at the nanoscale driven by bound states in the continuum,” Phys. Rev. Lett. 121(3), 033903 (2018).

[Crossref]

O. D. Miller, A. G. Polimeridis, M. H. Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).

[Crossref]

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, and M. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).

[Crossref]

P. Drummond and M. Hillery, The quantum theory of nonlinear optics (Cambridge University, 2014).

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).

[Crossref]

M. Dykman and M. Krivoglaz, “Spectral distribution of nonlinear oscillators with nonlinear friction due to a medium,” Phys. Status Solidi B 68(1), 111–123 (1975).

[Crossref]

M. Minkov, D. Gerace, and S. Fan, “Doubly resonant χ(2) nonlinear photonic crystal cavity based on a bound state in the continuum,” Optica 6(8), 1039–1045 (2019).

[Crossref]

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic limits of energy harvesting from outgoing thermal radiation,” Proc. Natl. Acad. Sci. 115(16), E3609–E3615 (2018).

[Crossref]

W. Li and S. Fan, “Nanophotonic control of thermal radiation for energy applications,” Opt. Express 26(12), 15995–16021 (2018).

[Crossref]

L. Zhu, Y. Guo, and S. Fan, “Theory of many-body radiative heat transfer without the constraint of reciprocity,” Phys. Rev. B 97(9), 094302 (2018).

[Crossref]

S. Fan, “Thermal photonics and energy applications,” Joule 1(2), 264–273 (2017).

[Crossref]

D. Miller, L. Zhu, and S. Fan, “Universal modal radiation laws for all thermal emitters,” Proc. Natl. Acad. Sci. 114(17), 4336–4341 (2017).

[Crossref]

C. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: A brief overview,” J. Quant. Spectrosc. Radiat. Transfer 132, 3–11 (2014).

[Crossref]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. Sinclair, and T. Shan Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).

[Crossref]

J. Bravo-Abad, S. Fan, S. Johnson, J. Joannopoulos, and M. Soljacic, “Modeling nonlinear optical phenomena in nanophotonics,” J. Lightwave Technol. 25(9), 2539–2546 (2007).

[Crossref]

V. Fernández-Hurtado, A. Fernández-Domínguez, J. Feist, F. García-Vidal, and J. Cuevas, “Super-planckian far-field radiative heat transfer,” Phys. Rev. B 97(4), 045408 (2018).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

V. Fernández-Hurtado, A. Fernández-Domínguez, J. Feist, F. García-Vidal, and J. Cuevas, “Super-planckian far-field radiative heat transfer,” Phys. Rev. B 97(4), 045408 (2018).

[Crossref]

V. Fernández-Hurtado, A. Fernández-Domínguez, J. Feist, F. García-Vidal, and J. Cuevas, “Super-planckian far-field radiative heat transfer,” Phys. Rev. B 97(4), 045408 (2018).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).

[Crossref]

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).

[Crossref]

V. Fernández-Hurtado, A. Fernández-Domínguez, J. Feist, F. García-Vidal, and J. Cuevas, “Super-planckian far-field radiative heat transfer,” Phys. Rev. B 97(4), 045408 (2018).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9(12), 806–810 (2013).

[Crossref]

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).

[Crossref]

J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light emission by nonequilibrium bodies: local kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

[Crossref]

L. Zhu, Y. Guo, and S. Fan, “Theory of many-body radiative heat transfer without the constraint of reciprocity,” Phys. Rev. B 97(9), 094302 (2018).

[Crossref]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).

[Crossref]

T. Heinz, C. Chen, D. Ricard, and Y. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48(7), 478–481 (1982).

[Crossref]

P. Drummond and M. Hillery, The quantum theory of nonlinear optics (Cambridge University, 2014).

O. D. Miller, A. G. Polimeridis, M. H. Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).

[Crossref]

C. Khandekar and Z. Jacob, “Thermal spin photonics in the near-field of nonreciprocal media,” New J. Phys. 21(10), 103030 (2019).

[Crossref]

C. Khandekar and Z. Jacob, “Circularly polarized thermal radiation from nonequilibrium coupled antennas,” Phys. Rev. Appl. 12(1), 014053 (2019).

[Crossref]

L.-P. Yang and Z. Jacob, “Quantum critical detector: amplifying weak signals using discontinuous quantum phase transitions,” Opt. Express 27(8), 10482–10494 (2019).

[Crossref]

L.-P. Yang and Z. Jacob, “Engineering first-order quantum phase transitions for weak signal detection,” arXiv preprint arXiv:1905.07420 (2019).

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

C. Sitawarin, W. Jin, Z. Lin, and A. Rodriguez, “Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion,” Photonics Res. 6(5), B82–B89 (2018).

[Crossref]

W. Jin, A. Polimeridis, and A. Rodriguez, “Temperature control of thermal radiation from composite bodies,” Phys. Rev. B 93(12), 121403 (2016).

[Crossref]

S. Molesky, W. Jin, P. Venkataram, and A. Rodriguez, “Bounds on absorption and thermal radiation for arbitrary objects,” arXiv:1907.04418 (2019).

S. Molesky, P. Venkataram, W. Jin, and A. Rodriguez, “Fundamental limits to radiative heat transfer: theory,” arXiv:1907.03000 (2019).

N. Rivera, G. Rosolen, J. Joannopoulos, I. Kaminer, and M. Soljačić, “Making two-photon processes dominate one-photon processes using mid-ir phonon polaritons,” Proc. Natl. Acad. Sci. 114(52), 13607–13612 (2017).

[Crossref]

A. Karalis and J. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107(14), 141108 (2015).

[Crossref]

A. Rodriguez, M. Soljačić, J. Joannopoulos, and S. Johnson, “χ (2) and χ (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007).

[Crossref]

J. Bravo-Abad, S. Fan, S. Johnson, J. Joannopoulos, and M. Soljacic, “Modeling nonlinear optical phenomena in nanophotonics,” J. Lightwave Technol. 25(9), 2539–2546 (2007).

[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).

[Crossref]

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic crystals: Molding the flow of light (Princeton University, 2011).

O. D. Miller, A. G. Polimeridis, M. H. Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).

[Crossref]

Z. Lin, X. Liang, M. Lončar, S. Johnson, and A. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).

[Crossref]

C. Khandekar, A. Pick, S. Johnson, and A. Rodriguez, “Radiative heat transfer in nonlinear kerr media,” Phys. Rev. B 91(11), 115406 (2015).

[Crossref]

Z.-F. Bi, A. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators,” Opt. Express 20(7), 7526–7543 (2012).

[Crossref]

A. Rodriguez, M. Soljačić, J. Joannopoulos, and S. Johnson, “χ (2) and χ (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007).

[Crossref]

J. Bravo-Abad, S. Fan, S. Johnson, J. Joannopoulos, and M. Soljacic, “Modeling nonlinear optical phenomena in nanophotonics,” J. Lightwave Technol. 25(9), 2539–2546 (2007).

[Crossref]

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic crystals: Molding the flow of light (Princeton University, 2011).

O. D. Miller, A. G. Polimeridis, M. H. Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).

[Crossref]

S. Wu, L. Mao, A. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett. 12(4), 2032–2036 (2012).

[Crossref]

N. Rivera, G. Rosolen, J. Joannopoulos, I. Kaminer, and M. Soljačić, “Making two-photon processes dominate one-photon processes using mid-ir phonon polaritons,” Proc. Natl. Acad. Sci. 114(52), 13607–13612 (2017).

[Crossref]

A. Karalis and J. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107(14), 141108 (2015).

[Crossref]

D. Baranov, Y. Xiao, I. Nechepurenko, A. Krasnok, A. Alù, and M. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).

[Crossref]

C. Khandekar and Z. Jacob, “Thermal spin photonics in the near-field of nonreciprocal media,” New J. Phys. 21(10), 103030 (2019).

[Crossref]

C. Khandekar and Z. Jacob, “Circularly polarized thermal radiation from nonequilibrium coupled antennas,” Phys. Rev. Appl. 12(1), 014053 (2019).

[Crossref]

C. Khandekar, R. Messina, and A. Rodriguez, “Near-field refrigeration and tunable heat exchange through four-wave mixing,” AIP Adv. 8(5), 055029 (2018).

[Crossref]

C. Khandekar and A. Rodriguez, “Near-field thermal upconversion and energy transfer through a kerr medium,” Opt. Express 25(19), 23164–23180 (2017).

[Crossref]

C. Khandekar, Z. Lin, and A. Rodriguez, “Thermal radiation from optically driven kerr (χ (3)) photonic cavities,” Appl. Phys. Lett. 106(15), 151109 (2015).

[Crossref]

C. Khandekar, A. Pick, S. Johnson, and A. Rodriguez, “Radiative heat transfer in nonlinear kerr media,” Phys. Rev. B 91(11), 115406 (2015).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

L. Carletti, K. Koshelev, C. De Angelis, and Y. Kivshar, “Giant nonlinear response at the nanoscale driven by bound states in the continuum,” Phys. Rev. Lett. 121(3), 033903 (2018).

[Crossref]

L. Carletti, K. Koshelev, C. De Angelis, and Y. Kivshar, “Giant nonlinear response at the nanoscale driven by bound states in the continuum,” Phys. Rev. Lett. 121(3), 033903 (2018).

[Crossref]

M. Kozierowski and R. Tanaś, “Quantum fluctuations in second-harmonic light generation,” Opt. Commun. 21(2), 229–231 (1977).

[Crossref]

D. Baranov, Y. Xiao, I. Nechepurenko, A. Krasnok, A. Alù, and M. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).

[Crossref]

M. Dykman and M. Krivoglaz, “Spectral distribution of nonlinear oscillators with nonlinear friction due to a medium,” Phys. Status Solidi B 68(1), 111–123 (1975).

[Crossref]

H. Soo and M. Krüger, “Fluctuational electrodynamics for nonlinear materials in and out of thermal equilibrium,” Phys. Rev. B 97(4), 045412 (2018).

[Crossref]

L. Landau and E. Lifshitz, “Course of theoretical physics, volume 5,” Publ. Butterworth-Heinemann 3 (1980).

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, and M. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

L. Landau and E. Lifshitz, “Course of theoretical physics, volume 5,” Publ. Butterworth-Heinemann 3 (1980).

C. Sitawarin, W. Jin, Z. Lin, and A. Rodriguez, “Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion,” Photonics Res. 6(5), B82–B89 (2018).

[Crossref]

Z. Lin, X. Liang, M. Lončar, S. Johnson, and A. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).

[Crossref]

C. Khandekar, Z. Lin, and A. Rodriguez, “Thermal radiation from optically driven kerr (χ (3)) photonic cavities,” Appl. Phys. Lett. 106(15), 151109 (2015).

[Crossref]

K. Rivoire, Z. Lin, F. Hatami, W. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17(25), 22609–22615 (2009).

[Crossref]

P. Campagnola and L. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).

[Crossref]

Z. Lin, X. Liang, M. Lončar, S. Johnson, and A. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).

[Crossref]

Z.-F. Bi, A. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators,” Opt. Express 20(7), 7526–7543 (2012).

[Crossref]

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, and M. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).

[Crossref]

D. Chang, V. Vuletić, and M. Lukin, “Quantum nonlinear optics–photon by photon,” Nat. Photonics 8(9), 685–694 (2014).

[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).

[Crossref]

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).

[Crossref]

S. Wu, L. Mao, A. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett. 12(4), 2032–2036 (2012).

[Crossref]

J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light emission by nonequilibrium bodies: local kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

[Crossref]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).

[Crossref]

F. Moss and P. McClintock, Noise in nonlinear dynamical systems, vol. 2 (Cambridge University, 1989).

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic crystals: Molding the flow of light (Princeton University, 2011).

C. Khandekar, R. Messina, and A. Rodriguez, “Near-field refrigeration and tunable heat exchange through four-wave mixing,” AIP Adv. 8(5), 055029 (2018).

[Crossref]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

D. Walls and G. Milburn, Quantum optics (Springer, 2008).

D. Miller, L. Zhu, and S. Fan, “Universal modal radiation laws for all thermal emitters,” Proc. Natl. Acad. Sci. 114(17), 4336–4341 (2017).

[Crossref]

O. D. Miller, A. G. Polimeridis, M. H. Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).

[Crossref]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).

[Crossref]

S. Molesky, P. Venkataram, W. Jin, and A. Rodriguez, “Fundamental limits to radiative heat transfer: theory,” arXiv:1907.03000 (2019).

S. Molesky, W. Jin, P. Venkataram, and A. Rodriguez, “Bounds on absorption and thermal radiation for arbitrary objects,” arXiv:1907.04418 (2019).

F. Moss and P. McClintock, Noise in nonlinear dynamical systems, vol. 2 (Cambridge University, 1989).

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).

[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).

[Crossref]

D. Baranov, Y. Xiao, I. Nechepurenko, A. Krasnok, A. Alù, and M. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).

[Crossref]

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9(12), 806–810 (2013).

[Crossref]

C. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: A brief overview,” J. Quant. Spectrosc. Radiat. Transfer 132, 3–11 (2014).

[Crossref]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. Sinclair, and T. Shan Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).

[Crossref]

A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77(8), 1413–1415 (1996).

[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).

[Crossref]

H. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University, 2002).

C. Khandekar, A. Pick, S. Johnson, and A. Rodriguez, “Radiative heat transfer in nonlinear kerr media,” Phys. Rev. B 91(11), 115406 (2015).

[Crossref]

W. Jin, A. Polimeridis, and A. Rodriguez, “Temperature control of thermal radiation from composite bodies,” Phys. Rev. B 93(12), 121403 (2016).

[Crossref]

O. D. Miller, A. G. Polimeridis, M. H. Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).

[Crossref]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).

[Crossref]

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9(12), 806–810 (2013).

[Crossref]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

O. D. Miller, A. G. Polimeridis, M. H. Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).

[Crossref]

T. Heinz, C. Chen, D. Ricard, and Y. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48(7), 478–481 (1982).

[Crossref]

N. Rivera, G. Rosolen, J. Joannopoulos, I. Kaminer, and M. Soljačić, “Making two-photon processes dominate one-photon processes using mid-ir phonon polaritons,” Proc. Natl. Acad. Sci. 114(52), 13607–13612 (2017).

[Crossref]

C. Sitawarin, W. Jin, Z. Lin, and A. Rodriguez, “Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion,” Photonics Res. 6(5), B82–B89 (2018).

[Crossref]

C. Khandekar, R. Messina, and A. Rodriguez, “Near-field refrigeration and tunable heat exchange through four-wave mixing,” AIP Adv. 8(5), 055029 (2018).

[Crossref]

C. Khandekar and A. Rodriguez, “Near-field thermal upconversion and energy transfer through a kerr medium,” Opt. Express 25(19), 23164–23180 (2017).

[Crossref]

W. Jin, A. Polimeridis, and A. Rodriguez, “Temperature control of thermal radiation from composite bodies,” Phys. Rev. B 93(12), 121403 (2016).

[Crossref]

Z. Lin, X. Liang, M. Lončar, S. Johnson, and A. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).

[Crossref]

C. Khandekar, Z. Lin, and A. Rodriguez, “Thermal radiation from optically driven kerr (χ (3)) photonic cavities,” Appl. Phys. Lett. 106(15), 151109 (2015).

[Crossref]

C. Khandekar, A. Pick, S. Johnson, and A. Rodriguez, “Radiative heat transfer in nonlinear kerr media,” Phys. Rev. B 91(11), 115406 (2015).

[Crossref]

Z.-F. Bi, A. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators,” Opt. Express 20(7), 7526–7543 (2012).

[Crossref]

A. Rodriguez, M. Soljačić, J. Joannopoulos, and S. Johnson, “χ (2) and χ (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007).

[Crossref]

S. Molesky, W. Jin, P. Venkataram, and A. Rodriguez, “Bounds on absorption and thermal radiation for arbitrary objects,” arXiv:1907.04418 (2019).

S. Molesky, P. Venkataram, W. Jin, and A. Rodriguez, “Fundamental limits to radiative heat transfer: theory,” arXiv:1907.03000 (2019).

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).

[Crossref]

N. Rivera, G. Rosolen, J. Joannopoulos, I. Kaminer, and M. Soljačić, “Making two-photon processes dominate one-photon processes using mid-ir phonon polaritons,” Proc. Natl. Acad. Sci. 114(52), 13607–13612 (2017).

[Crossref]

S. Rytov, “Theory of electric fluctuations and thermal radiation,” AFCRC-TR 59, 162 (1959).

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).

[Crossref]

C. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: A brief overview,” J. Quant. Spectrosc. Radiat. Transfer 132, 3–11 (2014).

[Crossref]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. Sinclair, and T. Shan Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).

[Crossref]

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic limits of energy harvesting from outgoing thermal radiation,” Proc. Natl. Acad. Sci. 115(16), E3609–E3615 (2018).

[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).

[Crossref]

M. Scully and M. Zubairy, Quantum optics (AAPT, 1999).

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. Sinclair, and T. Shan Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).

[Crossref]

T. Heinz, C. Chen, D. Ricard, and Y. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48(7), 478–481 (1982).

[Crossref]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. Sinclair, and T. Shan Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).

[Crossref]

C. Sitawarin, W. Jin, Z. Lin, and A. Rodriguez, “Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion,” Photonics Res. 6(5), B82–B89 (2018).

[Crossref]

N. Rivera, G. Rosolen, J. Joannopoulos, I. Kaminer, and M. Soljačić, “Making two-photon processes dominate one-photon processes using mid-ir phonon polaritons,” Proc. Natl. Acad. Sci. 114(52), 13607–13612 (2017).

[Crossref]

O. D. Miller, A. G. Polimeridis, M. H. Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).

[Crossref]

J. Bravo-Abad, S. Fan, S. Johnson, J. Joannopoulos, and M. Soljacic, “Modeling nonlinear optical phenomena in nanophotonics,” J. Lightwave Technol. 25(9), 2539–2546 (2007).

[Crossref]

A. Rodriguez, M. Soljačić, J. Joannopoulos, and S. Johnson, “χ (2) and χ (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

H. Soo and M. Krüger, “Fluctuational electrodynamics for nonlinear materials in and out of thermal equilibrium,” Phys. Rev. B 97(4), 045412 (2018).

[Crossref]

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).

[Crossref]

M. Kozierowski and R. Tanaś, “Quantum fluctuations in second-harmonic light generation,” Opt. Commun. 21(2), 229–231 (1977).

[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).

[Crossref]

E. Tervo, E. Bagherisereshki, and Z. Zhang, “Near-field radiative thermoelectric energy converters: a review,” Front. Energy 12(1), 5–21 (2018).

[Crossref]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, and M. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).

[Crossref]

N. Van Kampen, Stochastic processes in physics and chemistry, vol. 1 (Elsevier, 1992).

S. Molesky, P. Venkataram, W. Jin, and A. Rodriguez, “Fundamental limits to radiative heat transfer: theory,” arXiv:1907.03000 (2019).

S. Molesky, W. Jin, P. Venkataram, and A. Rodriguez, “Bounds on absorption and thermal radiation for arbitrary objects,” arXiv:1907.04418 (2019).

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).

[Crossref]

D. Chang, V. Vuletić, and M. Lukin, “Quantum nonlinear optics–photon by photon,” Nat. Photonics 8(9), 685–694 (2014).

[Crossref]

D. Walls and G. Milburn, Quantum optics (Springer, 2008).

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic crystals: Molding the flow of light (Princeton University, 2011).

S. Wu, L. Mao, A. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett. 12(4), 2032–2036 (2012).

[Crossref]

D. Baranov, Y. Xiao, I. Nechepurenko, A. Krasnok, A. Alù, and M. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).

[Crossref]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).

[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).

[Crossref]

S. Wu, L. Mao, A. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett. 12(4), 2032–2036 (2012).

[Crossref]

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).

[Crossref]

S. Wu, L. Mao, A. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett. 12(4), 2032–2036 (2012).

[Crossref]

S. Wu, L. Mao, A. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett. 12(4), 2032–2036 (2012).

[Crossref]

E. Tervo, E. Bagherisereshki, and Z. Zhang, “Near-field radiative thermoelectric energy converters: a review,” Front. Energy 12(1), 5–21 (2018).

[Crossref]

L. Zhu, Y. Guo, and S. Fan, “Theory of many-body radiative heat transfer without the constraint of reciprocity,” Phys. Rev. B 97(9), 094302 (2018).

[Crossref]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).

[Crossref]

D. Miller, L. Zhu, and S. Fan, “Universal modal radiation laws for all thermal emitters,” Proc. Natl. Acad. Sci. 114(17), 4336–4341 (2017).

[Crossref]

C. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: A brief overview,” J. Quant. Spectrosc. Radiat. Transfer 132, 3–11 (2014).

[Crossref]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. Sinclair, and T. Shan Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).

[Crossref]

M. Scully and M. Zubairy, Quantum optics (AAPT, 1999).

S. Rytov, “Theory of electric fluctuations and thermal radiation,” AFCRC-TR 59, 162 (1959).

C. Khandekar, R. Messina, and A. Rodriguez, “Near-field refrigeration and tunable heat exchange through four-wave mixing,” AIP Adv. 8(5), 055029 (2018).

[Crossref]

C. Khandekar, Z. Lin, and A. Rodriguez, “Thermal radiation from optically driven kerr (χ (3)) photonic cavities,” Appl. Phys. Lett. 106(15), 151109 (2015).

[Crossref]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. Sinclair, and T. Shan Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).

[Crossref]

A. Karalis and J. Joannopoulos, “Temporal coupled-mode theory model for resonant near-field thermophotovoltaics,” Appl. Phys. Lett. 107(14), 141108 (2015).

[Crossref]

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012).

[Crossref]

E. Tervo, E. Bagherisereshki, and Z. Zhang, “Near-field radiative thermoelectric energy converters: a review,” Front. Energy 12(1), 5–21 (2018).

[Crossref]

C. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: A brief overview,” J. Quant. Spectrosc. Radiat. Transfer 132, 3–11 (2014).

[Crossref]

S. Fan, “Thermal photonics and energy applications,” Joule 1(2), 264–273 (2017).

[Crossref]

S. Wu, L. Mao, A. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett. 12(4), 2032–2036 (2012).

[Crossref]

P. Campagnola and L. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).

[Crossref]

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).

[Crossref]

D. Baranov, Y. Xiao, I. Nechepurenko, A. Krasnok, A. Alù, and M. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).

[Crossref]

D. Chang, V. Vuletić, and M. Lukin, “Quantum nonlinear optics–photon by photon,” Nat. Photonics 8(9), 685–694 (2014).

[Crossref]

J. Gieseler, L. Novotny, and R. Quidant, “Thermal nonlinearities in a nanomechanical oscillator,” Nat. Phys. 9(12), 806–810 (2013).

[Crossref]

J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, and M. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014).

[Crossref]

K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. Reid, F. García-Vidal, E. Meyhofer, and P. Reddy, “Radiative heat transfer in the extreme near field,” Nature 528(7582), 387–391 (2015).

[Crossref]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).

[Crossref]

C. Khandekar and Z. Jacob, “Thermal spin photonics in the near-field of nonreciprocal media,” New J. Phys. 21(10), 103030 (2019).

[Crossref]

M. Kozierowski and R. Tanaś, “Quantum fluctuations in second-harmonic light generation,” Opt. Commun. 21(2), 229–231 (1977).

[Crossref]

G. Agarwal, “Quantum theory of second harmonic generation,” Opt. Commun. 1(3), 132–134 (1969).

[Crossref]

O. D. Miller, A. G. Polimeridis, M. H. Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).

[Crossref]

A. Rodriguez, M. Soljačić, J. Joannopoulos, and S. Johnson, “χ (2) and χ (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007).

[Crossref]

K. Rivoire, Z. Lin, F. Hatami, W. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17(25), 22609–22615 (2009).

[Crossref]

Z.-F. Bi, A. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators,” Opt. Express 20(7), 7526–7543 (2012).

[Crossref]

C. Khandekar and A. Rodriguez, “Near-field thermal upconversion and energy transfer through a kerr medium,” Opt. Express 25(19), 23164–23180 (2017).

[Crossref]

W. Li and S. Fan, “Nanophotonic control of thermal radiation for energy applications,” Opt. Express 26(12), 15995–16021 (2018).

[Crossref]

L.-P. Yang and Z. Jacob, “Quantum critical detector: amplifying weak signals using discontinuous quantum phase transitions,” Opt. Express 27(8), 10482–10494 (2019).

[Crossref]

M. Minkov, D. Gerace, and S. Fan, “Doubly resonant χ(2) nonlinear photonic crystal cavity based on a bound state in the continuum,” Optica 6(8), 1039–1045 (2019).

[Crossref]

Z. Lin, X. Liang, M. Lončar, S. Johnson, and A. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).

[Crossref]

C. Sitawarin, W. Jin, Z. Lin, and A. Rodriguez, “Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion,” Photonics Res. 6(5), B82–B89 (2018).

[Crossref]

C. Khandekar and Z. Jacob, “Circularly polarized thermal radiation from nonequilibrium coupled antennas,” Phys. Rev. Appl. 12(1), 014053 (2019).

[Crossref]

W. Jin, A. Polimeridis, and A. Rodriguez, “Temperature control of thermal radiation from composite bodies,” Phys. Rev. B 93(12), 121403 (2016).

[Crossref]

L. Zhu, Y. Guo, and S. Fan, “Theory of many-body radiative heat transfer without the constraint of reciprocity,” Phys. Rev. B 97(9), 094302 (2018).

[Crossref]

S.-A. Biehs and P. Ben-Abdallah, “Revisiting super-planckian thermal emission in the far-field regime,” Phys. Rev. B 93(16), 165405 (2016).

[Crossref]

V. Fernández-Hurtado, A. Fernández-Domínguez, J. Feist, F. García-Vidal, and J. Cuevas, “Super-planckian far-field radiative heat transfer,” Phys. Rev. B 97(4), 045408 (2018).

[Crossref]

C. Khandekar, A. Pick, S. Johnson, and A. Rodriguez, “Radiative heat transfer in nonlinear kerr media,” Phys. Rev. B 91(11), 115406 (2015).

[Crossref]

H. Soo and M. Krüger, “Fluctuational electrodynamics for nonlinear materials in and out of thermal equilibrium,” Phys. Rev. B 97(4), 045412 (2018).

[Crossref]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).

[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).

[Crossref]

L. Carletti, K. Koshelev, C. De Angelis, and Y. Kivshar, “Giant nonlinear response at the nanoscale driven by bound states in the continuum,” Phys. Rev. Lett. 121(3), 033903 (2018).

[Crossref]

T. Heinz, C. Chen, D. Ricard, and Y. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48(7), 478–481 (1982).

[Crossref]

A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77(8), 1413–1415 (1996).

[Crossref]

J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light emission by nonequilibrium bodies: local kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

[Crossref]

M. Dykman and M. Krivoglaz, “Spectral distribution of nonlinear oscillators with nonlinear friction due to a medium,” Phys. Status Solidi B 68(1), 111–123 (1975).

[Crossref]

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic limits of energy harvesting from outgoing thermal radiation,” Proc. Natl. Acad. Sci. 115(16), E3609–E3615 (2018).

[Crossref]

N. Rivera, G. Rosolen, J. Joannopoulos, I. Kaminer, and M. Soljačić, “Making two-photon processes dominate one-photon processes using mid-ir phonon polaritons,” Proc. Natl. Acad. Sci. 114(52), 13607–13612 (2017).

[Crossref]

D. Miller, L. Zhu, and S. Fan, “Universal modal radiation laws for all thermal emitters,” Proc. Natl. Acad. Sci. 114(17), 4336–4341 (2017).

[Crossref]

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum engineering of optical nonlinearities,” Science 271(5246), 168–173 (1996).

[Crossref]

D. Walls and G. Milburn, Quantum optics (Springer, 2008).

F. Moss and P. McClintock, Noise in nonlinear dynamical systems, vol. 2 (Cambridge University, 1989).

N. Van Kampen, Stochastic processes in physics and chemistry, vol. 1 (Elsevier, 1992).

S. Molesky, W. Jin, P. Venkataram, and A. Rodriguez, “Bounds on absorption and thermal radiation for arbitrary objects,” arXiv:1907.04418 (2019).

S. Molesky, P. Venkataram, W. Jin, and A. Rodriguez, “Fundamental limits to radiative heat transfer: theory,” arXiv:1907.03000 (2019).

R. W. Boyd, Nonlinear optics (Elsevier, 2003).

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic crystals: Molding the flow of light (Princeton University, 2011).

L.-P. Yang and Z. Jacob, “Engineering first-order quantum phase transitions for weak signal detection,” arXiv preprint arXiv:1905.07420 (2019).

P. Drummond and M. Hillery, The quantum theory of nonlinear optics (Cambridge University, 2014).

M. Scully and M. Zubairy, Quantum optics (AAPT, 1999).

H. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University, 2002).

L. Landau and E. Lifshitz, “Course of theoretical physics, volume 5,” Publ. Butterworth-Heinemann 3 (1980).