Abstract

A multilayer metamaterial with switchable functionalities is presented based on the phase-transition property of vanadium dioxide. When vanadium dioxide is in the metallic state, a broadband absorber is formed. Calculated results show that the combination of two absorption peaks enables absorptance more than 90% in the wide spectral range from 0.393 THz to 0.897 THz. Absorption performance is insensitive to polarization at the small incident angle and work well even at the larger incident angle. When vanadium dioxide is in the insulating state, the designed system behaves as a narrowband absorber at the frequency of 0.677 THz. This narrowband absorber shows the advantages of wide angle and polarization insensitivity due to the localized magnetic resonance. Furthermore, the influences of geometrical parameters on the performance of absorptance are discussed. The proposed switchable absorber can be used in various applications, such as selective heat emitter and solar photovoltaic field.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integrated metamaterial with functionalities of absorption and electromagnetically induced transparency

Zhengyong Song, Apeng Chen, Jiahe Zhang, and Jiayuan Wang
Opt. Express 27(18) 25196-25204 (2019)

Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial

Tongling Wang, Yuping Zhang, Huiyun Zhang, and Maoyong Cao
Opt. Mater. Express 10(2) 369-386 (2020)

Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study

Shengxiang Wang, Chengfeng Cai, Menghan You, Fangyan Liu, Menghao Wu, Songzhan Li, Huaguang Bao, Lei Kang, and Douglas H. Werner
Opt. Express 27(14) 19436-19447 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  3. K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref]
  4. Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
    [Crossref]
  5. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref]
  6. S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref]
  7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref]
  8. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  10. M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
    [Crossref]
  11. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [Crossref]
  12. R. I. Stantchev, D. B. Phillips, P. Hobson, S. M. Hornett, M. J. Padgett, and E. Hendry, “Compressed sensing with near-field THz radiation,” Optica 4(8), 989–992 (2017).
    [Crossref]
  13. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
    [Crossref]
  14. S. F. Zhang, Y. Li, G. J. Feng, B. C. Zhu, S. Y. Xiao, L. Zhou, and L. Zhao, “Strong infrared absorber: surface-microstructured Au film replicated from black silicon,” Opt. Express 19(21), 20462–20467 (2011).
    [Crossref]
  15. Y. X. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref]
  16. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref]
  17. S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
    [Crossref]
  18. C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
    [Crossref]
  19. B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, and K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
    [Crossref]
  20. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
    [Crossref]
  21. K. V. Sreekanth, S. Han, and R. Singh, “Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies,” Adv. Mater. 30(21), 1706696 (2018).
    [Crossref]
  22. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref]
  23. S. Wang, L. Kang, and D. H. Werner, “Active terahertz chiral metamaterials based on phase transition of vanadium dioxide (VO2),” Sci. Rep. 8(1), 189 (2018).
    [Crossref]
  24. Z. Song, A. Chen, J. Zhang, and J. Wang, “Integrated metamaterial with functionalities of absorption and electromagnetically induced transparency,” Opt. Express 27(18), 25196–25204 (2019).
    [Crossref]
  25. H. Zou, Z. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A 124(4), 322 (2018).
    [Crossref]
  26. Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
    [Crossref]
  27. Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
    [Crossref]
  28. N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
    [Crossref]
  29. X. Tian and Z. Y. Li, “An optically-triggered switchable mid-infrared perfect absorber based on phase-change material of vanadium dioxide,” Plasmonics 13(4), 1393–1402 (2018).
    [Crossref]
  30. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
    [Crossref]
  31. S. G. C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
    [Crossref]
  32. Y. Fan, Y. Qian, S. Yin, D. Li, M. Jiang, X. Lin, and F. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
    [Crossref]
  33. F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
    [Crossref]
  34. S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
    [Crossref]
  35. Y. G. Jeong, Y. M. Bahk, and D. S. Kim, “Dynamic terahertz plasmonics enabled by phase-change materials,” Adv. Optical Mater.1900548 (2019).
  36. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref]
  37. H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid-infrared plasmonic resonances in 2D VO2 nanosquare arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
    [Crossref]
  38. S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
    [Crossref]
  39. Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Terahertz toroidal metamaterial with tunable properties,” Opt. Express 27(4), 5792–5797 (2019).
    [Crossref]
  40. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
    [Crossref]
  41. Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Tunable toroidal dipolar resonance for terahertz wave enabled by a vanadium dioxide metamaterial,” IEEE Photonics J. 11(2), 1–5 (2019).
    [Crossref]
  42. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]
  43. G. Zhang, H. Ma, C. Lan, R. Gao, and J. Zhou, “Microwave Tunable metamaterial based on semiconductor-to-metal phase transition,” Sci. Rep. 7(1), 5773 (2017).
    [Crossref]
  44. K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photonics 5(6), 2280–2286 (2018).
    [Crossref]
  45. H. F. Zhu, L. H. Du, J. Li, Q. W. Shi, B. Peng, Z. R. Li, W. X. Huang, and L. G. Zhu, “Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films,” Appl. Phys. Lett. 112(8), 081103 (2018).
    [Crossref]
  46. K. Shibuya, Y. Atsumi, T. Yoshida, Y. Sakakibara, M. Mori, and A. Sawa, “Silicon waveguide optical modulator driven by metal–insulator transition of vanadium dioxide cladding layer,” Opt. Express 27(4), 4147–4156 (2019).
    [Crossref]

2019 (7)

2018 (10)

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photonics 5(6), 2280–2286 (2018).
[Crossref]

H. F. Zhu, L. H. Du, J. Li, Q. W. Shi, B. Peng, Z. R. Li, W. X. Huang, and L. G. Zhu, “Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films,” Appl. Phys. Lett. 112(8), 081103 (2018).
[Crossref]

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

H. Zou, Z. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A 124(4), 322 (2018).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Active terahertz chiral metamaterials based on phase transition of vanadium dioxide (VO2),” Sci. Rep. 8(1), 189 (2018).
[Crossref]

K. V. Sreekanth, S. Han, and R. Singh, “Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies,” Adv. Mater. 30(21), 1706696 (2018).
[Crossref]

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

X. Tian and Z. Y. Li, “An optically-triggered switchable mid-infrared perfect absorber based on phase-change material of vanadium dioxide,” Plasmonics 13(4), 1393–1402 (2018).
[Crossref]

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

2017 (5)

R. I. Stantchev, D. B. Phillips, P. Hobson, S. M. Hornett, M. J. Padgett, and E. Hendry, “Compressed sensing with near-field THz radiation,” Optica 4(8), 989–992 (2017).
[Crossref]

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref]

G. Zhang, H. Ma, C. Lan, R. Gao, and J. Zhou, “Microwave Tunable metamaterial based on semiconductor-to-metal phase transition,” Sci. Rep. 7(1), 5773 (2017).
[Crossref]

2016 (1)

2015 (2)

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref]

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid-infrared plasmonic resonances in 2D VO2 nanosquare arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

2012 (3)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Y. X. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

2011 (3)

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

S. F. Zhang, Y. Li, G. J. Feng, B. C. Zhu, S. Y. Xiao, L. Zhou, and L. Zhao, “Strong infrared absorber: surface-microstructured Au film replicated from black silicon,” Opt. Express 19(21), 20462–20467 (2011).
[Crossref]

2009 (3)

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

2008 (3)

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref]

2007 (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
[Crossref]

2006 (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref]

2005 (1)

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, and K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[Crossref]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref]

1991 (1)

K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Abelson, J. R.

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, and K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[Crossref]

Aieta, F.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Atsumi, Y.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]

Averitt, R. D.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]

Bahk, Y. M.

Y. G. Jeong, Y. M. Bahk, and D. S. Kim, “Dynamic terahertz plasmonics enabled by phase-change materials,” Adv. Optical Mater.1900548 (2019).

Bao, H.

Basov, D. N.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

Bhaskaran, H.

Bilenberg, B.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photonics 5(6), 2280–2286 (2018).
[Crossref]

Bishop, S. G.

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, and K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[Crossref]

Boiler, K. J.

K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Boyd, E. M.

Bozhevolnyi, S. I.

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Butakov, N. A.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Cai, C.

Capasso, F.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Carrillo, S. G. C.

Chae, B. G.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

Chen, A.

Chen, Q.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Cheng, Q.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Cheong, B. K.

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, and K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[Crossref]

Choi, J. W.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref]

Chorsi, H. T.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Chu, P. K.

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

Chu, Q.

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Cryan, M. J.

Cui, T. J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Cui, Y. X.

Y. X. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

de Groot, C. H.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photonics 5(6), 2280–2286 (2018).
[Crossref]

Delaunay, J. J.

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid-infrared plasmonic resonances in 2D VO2 nanosquare arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

Deng, Y.

Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Terahertz toroidal metamaterial with tunable properties,” Opt. Express 27(4), 5792–5797 (2019).
[Crossref]

Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Tunable toroidal dipolar resonance for terahertz wave enabled by a vanadium dioxide metamaterial,” IEEE Photonics J. 11(2), 1–5 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Dicken, M. J.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Ding, F.

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Driscoll, T.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

Du, L. H.

H. F. Zhu, L. H. Du, J. Li, Q. W. Shi, B. Peng, Z. R. Li, W. X. Huang, and L. G. Zhu, “Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films,” Appl. Phys. Lett. 112(8), 081103 (2018).
[Crossref]

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Fan, S.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

Fan, Y.

Y. Fan, Y. Qian, S. Yin, D. Li, M. Jiang, X. Lin, and F. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Fang, N. X.

Y. X. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Feng, G. J.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Fung, K. H.

Y. X. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Gaburro, Z.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gao, R.

G. Zhang, H. Ma, C. Lan, R. Gao, and J. Zhou, “Microwave Tunable metamaterial based on semiconductor-to-metal phase transition,” Sci. Rep. 7(1), 5773 (2017).
[Crossref]

Genevet, P.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Granda, J. D. V.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Han, S.

K. V. Sreekanth, S. Han, and R. Singh, “Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies,” Adv. Mater. 30(21), 1706696 (2018).
[Crossref]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref]

Hao, Q.

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

Harris, S. E.

K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Hayat, H.

He, Q.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

He, S.

Y. X. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Hendry, E.

Higgs, D.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Ho, Y. L.

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid-infrared plasmonic resonances in 2D VO2 nanosquare arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

Hobson, P.

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref]

Hon, P. W. C.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Hong, S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref]

Hornett, S. M.

Hu, F.

Y. Fan, Y. Qian, S. Yin, D. Li, M. Jiang, X. Lin, and F. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Huang, J.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Huang, W. X.

H. F. Zhu, L. H. Du, J. Li, Q. W. Shi, B. Peng, Z. R. Li, W. X. Huang, and L. G. Zhu, “Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films,” Appl. Phys. Lett. 112(8), 081103 (2018).
[Crossref]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Imamoglu, A.

K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Iyer, P. P.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Jeong, Y. G.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref]

Y. G. Jeong, Y. M. Bahk, and D. S. Kim, “Dynamic terahertz plasmonics enabled by phase-change materials,” Adv. Optical Mater.1900548 (2019).

Jiang, M.

Y. Fan, Y. Qian, S. Yin, D. Li, M. Jiang, X. Lin, and F. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Jiang, W.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Jiang, X.

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

Jin, Y.

Y. X. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Jokerst, N. M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

Kalcheim, Y.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Kang, D. H.

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, and K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[Crossref]

Kang, L.

S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Active terahertz chiral metamaterials based on phase transition of vanadium dioxide (VO2),” Sci. Rep. 8(1), 189 (2018).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref]

Kanki, T.

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid-infrared plasmonic resonances in 2D VO2 nanosquare arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

Kats, M. A.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Kim, B. J.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

Kim, D. S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref]

Y. G. Jeong, Y. M. Bahk, and D. S. Kim, “Dynamic terahertz plasmonics enabled by phase-change materials,” Adv. Optical Mater.1900548 (2019).

Kim, H. T.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

Kim, K. B.

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, and K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[Crossref]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Klemm, M.

Knight, M. W.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref]

Kyoung, J. S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref]

Lan, C.

G. Zhang, H. Ma, C. Lan, R. Gao, and J. Zhou, “Microwave Tunable metamaterial based on semiconductor-to-metal phase transition,” Sci. Rep. 7(1), 5773 (2017).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Lee, B. S.

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, and K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[Crossref]

Lee, Y. W.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref]

Lewi, T.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Li, C.

H. Zou, Z. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A 124(4), 322 (2018).
[Crossref]

Li, D.

Y. Fan, Y. Qian, S. Yin, D. Li, M. Jiang, X. Lin, and F. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Li, J.

H. F. Zhu, L. H. Du, J. Li, Q. W. Shi, B. Peng, Z. R. Li, W. X. Huang, and L. G. Zhu, “Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films,” Appl. Phys. Lett. 112(8), 081103 (2018).
[Crossref]

Li, S.

Li, W.

H. Zou, Z. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A 124(4), 322 (2018).
[Crossref]

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

Li, X.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Li, Y.

Li, Z. R.

H. F. Zhu, L. H. Du, J. Li, Q. W. Shi, B. Peng, Z. R. Li, W. X. Huang, and L. G. Zhu, “Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films,” Appl. Phys. Lett. 112(8), 081103 (2018).
[Crossref]

Li, Z. Y.

X. Tian and Z. Y. Li, “An optically-triggered switchable mid-infrared perfect absorber based on phase-change material of vanadium dioxide,” Plasmonics 13(4), 1393–1402 (2018).
[Crossref]

Lin, X.

Y. Fan, Y. Qian, S. Yin, D. Li, M. Jiang, X. Lin, and F. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Liu, F.

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Liu, Q. H.

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Liu, T.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Liu, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Liu, Z.

Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Tunable toroidal dipolar resonance for terahertz wave enabled by a vanadium dioxide metamaterial,” IEEE Photonics J. 11(2), 1–5 (2019).
[Crossref]

Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Terahertz toroidal metamaterial with tunable properties,” Opt. Express 27(4), 5792–5797 (2019).
[Crossref]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Ma, F.

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

Ma, H.

G. Zhang, H. Ma, C. Lan, R. Gao, and J. Zhou, “Microwave Tunable metamaterial based on semiconductor-to-metal phase transition,” Sci. Rep. 7(1), 5773 (2017).
[Crossref]

Y. X. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Ma, J.

Ma, L.

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

Ma, Y.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Matsui, H.

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid-infrared plasmonic resonances in 2D VO2 nanosquare arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

Mengali, S.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photonics 5(6), 2280–2286 (2018).
[Crossref]

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Mori, M.

Muskens, O. L.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photonics 5(6), 2280–2286 (2018).
[Crossref]

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
[Crossref]

Nash, G. R.

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Padgett, M. J.

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Palit, S.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

Park, N.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref]

Peng, B.

H. F. Zhu, L. H. Du, J. Li, Q. W. Shi, B. Peng, Z. R. Li, W. X. Huang, and L. G. Zhu, “Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films,” Appl. Phys. Lett. 112(8), 081103 (2018).
[Crossref]

Phillips, D. B.

Pryce, I. M.

Qian, Y.

Y. Fan, Y. Qian, S. Yin, D. Li, M. Jiang, X. Lin, and F. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

Rhie, J.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref]

Riedel, C. A.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photonics 5(6), 2280–2286 (2018).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Sakakibara, Y.

Sawa, A.

Schmidt, O. G.

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

Schuller, I. K.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Schuller, J. A.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Shi, Q. W.

H. F. Zhu, L. H. Du, J. Li, Q. W. Shi, B. Peng, Z. R. Li, W. X. Huang, and L. G. Zhu, “Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films,” Appl. Phys. Lett. 112(8), 081103 (2018).
[Crossref]

Shibuya, K.

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref]

Simeoni, M.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photonics 5(6), 2280–2286 (2018).
[Crossref]

Singh, R.

K. V. Sreekanth, S. Han, and R. Singh, “Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies,” Adv. Mater. 30(21), 1706696 (2018).
[Crossref]

Smith, D. R.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Song, Z.

Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Tunable toroidal dipolar resonance for terahertz wave enabled by a vanadium dioxide metamaterial,” IEEE Photonics J. 11(2), 1–5 (2019).
[Crossref]

Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Terahertz toroidal metamaterial with tunable properties,” Opt. Express 27(4), 5792–5797 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, A. Chen, J. Zhang, and J. Wang, “Integrated metamaterial with functionalities of absorption and electromagnetically induced transparency,” Opt. Express 27(18), 25196–25204 (2019).
[Crossref]

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, S. Han, and R. Singh, “Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies,” Adv. Mater. 30(21), 1706696 (2018).
[Crossref]

Stantchev, R. I.

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref]

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Sun, K.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photonics 5(6), 2280–2286 (2018).
[Crossref]

Sun, S. L.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Sweatlock, L. A.

Tabata, H.

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid-infrared plasmonic resonances in 2D VO2 nanosquare arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

Tanaka, H.

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid-infrared plasmonic resonances in 2D VO2 nanosquare arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Tetienne, J. P.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Tian, X.

X. Tian and Z. Y. Li, “An optically-triggered switchable mid-infrared perfect absorber based on phase-change material of vanadium dioxide,” Plasmonics 13(4), 1393–1402 (2018).
[Crossref]

Trastoy, J.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Urban, C.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Urbani, A.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photonics 5(6), 2280–2286 (2018).
[Crossref]

Valmianski, I.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Ventra, M. D.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

Walavalkar, S.

Wang, H.

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

Wang, J.

Z. Song, A. Chen, J. Zhang, and J. Wang, “Integrated metamaterial with functionalities of absorption and electromagnetically induced transparency,” Opt. Express 27(18), 25196–25204 (2019).
[Crossref]

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

Wang, P. Y.

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

Wang, S.

S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Active terahertz chiral metamaterials based on phase transition of vanadium dioxide (VO2),” Sci. Rep. 8(1), 189 (2018).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref]

Wei, M.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Werner, D. H.

S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Active terahertz chiral metamaterials based on phase transition of vanadium dioxide (VO2),” Sci. Rep. 8(1), 189 (2018).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref]

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Wright, C. D.

Wu, M.

Wuttig, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref]

Xiao, S. Y.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

S. F. Zhang, Y. Li, G. J. Feng, B. C. Zhu, S. Y. Xiao, L. Zhou, and L. Zhao, “Strong infrared absorber: surface-microstructured Au film replicated from black silicon,” Opt. Express 19(21), 20462–20467 (2011).
[Crossref]

Xiao, Z.

H. Zou, Z. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A 124(4), 322 (2018).
[Crossref]

Xu, H.

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

Xu, J.

Y. X. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Xu, P.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Xu, Q.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Yang, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Yin, S.

Y. Fan, Y. Qian, S. Yin, D. Li, M. Jiang, X. Lin, and F. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Yin, Y.

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

Yoshida, T.

You, M.

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref]

Yu, N. F.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Zalkovskij, M.

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photonics 5(6), 2280–2286 (2018).
[Crossref]

Zhang, C.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Zhang, G.

G. Zhang, H. Ma, C. Lan, R. Gao, and J. Zhou, “Microwave Tunable metamaterial based on semiconductor-to-metal phase transition,” Sci. Rep. 7(1), 5773 (2017).
[Crossref]

Zhang, J.

Zhang, S. F.

Zhang, X.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Zhao, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Zhao, L.

Zhong, S.

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Zhou, J.

G. Zhang, H. Ma, C. Lan, R. Gao, and J. Zhou, “Microwave Tunable metamaterial based on semiconductor-to-metal phase transition,” Sci. Rep. 7(1), 5773 (2017).
[Crossref]

Zhou, L.

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

S. F. Zhang, Y. Li, G. J. Feng, B. C. Zhu, S. Y. Xiao, L. Zhou, and L. Zhao, “Strong infrared absorber: surface-microstructured Au film replicated from black silicon,” Opt. Express 19(21), 20462–20467 (2011).
[Crossref]

Zhou, Y.

Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Tunable toroidal dipolar resonance for terahertz wave enabled by a vanadium dioxide metamaterial,” IEEE Photonics J. 11(2), 1–5 (2019).
[Crossref]

Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Terahertz toroidal metamaterial with tunable properties,” Opt. Express 27(4), 5792–5797 (2019).
[Crossref]

Zhu, B. C.

Zhu, H. F.

H. F. Zhu, L. H. Du, J. Li, Q. W. Shi, B. Peng, Z. R. Li, W. X. Huang, and L. G. Zhu, “Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films,” Appl. Phys. Lett. 112(8), 081103 (2018).
[Crossref]

Zhu, L. G.

H. F. Zhu, L. H. Du, J. Li, Q. W. Shi, B. Peng, Z. R. Li, W. X. Huang, and L. G. Zhu, “Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films,” Appl. Phys. Lett. 112(8), 081103 (2018).
[Crossref]

Zou, H.

H. Zou, Z. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A 124(4), 322 (2018).
[Crossref]

ACS Photonics (2)

N. A. Butakov, M. W. Knight, T. Lewi, P. P. Iyer, D. Higgs, H. T. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Broadband electrically tunable dielectric resonators using metal-insulator transitions,” ACS Photonics 5(10), 4056–4060 (2018).
[Crossref]

K. Sun, C. A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C. H. de Groot, and O. L. Muskens, “VO2 thermochromic metamaterial-based smart optical solar reflector,” ACS Photonics 5(6), 2280–2286 (2018).
[Crossref]

Adv. Mater. (2)

Q. Hao, W. Li, H. Xu, J. Wang, Y. Yin, H. Wang, L. Ma, F. Ma, X. Jiang, O. G. Schmidt, and P. K. Chu, “VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications,” Adv. Mater. 30(10), 1705421 (2018).
[Crossref]

K. V. Sreekanth, S. Han, and R. Singh, “Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies,” Adv. Mater. 30(21), 1706696 (2018).
[Crossref]

Adv. Opt. Mater. (2)

H. Matsui, Y. L. Ho, T. Kanki, H. Tanaka, J. J. Delaunay, and H. Tabata, “Mid-infrared plasmonic resonances in 2D VO2 nanosquare arrays,” Adv. Opt. Mater. 3(12), 1759–1767 (2015).
[Crossref]

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Appl. Phys. A (1)

H. Zou, Z. Xiao, W. Li, and C. Li, “Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region,” Appl. Phys. A 124(4), 322 (2018).
[Crossref]

Appl. Phys. Express (1)

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Appl. Phys. Lett. (4)

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

H. F. Zhu, L. H. Du, J. Li, Q. W. Shi, B. Peng, Z. R. Li, W. X. Huang, and L. G. Zhu, “Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films,” Appl. Phys. Lett. 112(8), 081103 (2018).
[Crossref]

IEEE Photonics J. (1)

Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Tunable toroidal dipolar resonance for terahertz wave enabled by a vanadium dioxide metamaterial,” IEEE Photonics J. 11(2), 1–5 (2019).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. Appl. Phys. (2)

B. S. Lee, J. R. Abelson, S. G. Bishop, D. H. Kang, B. K. Cheong, and K. B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005).
[Crossref]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
[Crossref]

Mater. Lett. (1)

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Mater. Res. Express (1)

Y. Fan, Y. Qian, S. Yin, D. Li, M. Jiang, X. Lin, and F. Hu, “Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial,” Mater. Res. Express 6(5), 055809 (2019).
[Crossref]

Nano Lett. (2)

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref]

Y. X. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Nat. Mater. (2)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref]

S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Nature (1)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Opt. Express (7)

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]

S. F. Zhang, Y. Li, G. J. Feng, B. C. Zhu, S. Y. Xiao, L. Zhou, and L. Zhao, “Strong infrared absorber: surface-microstructured Au film replicated from black silicon,” Opt. Express 19(21), 20462–20467 (2011).
[Crossref]

S. G. C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref]

K. Shibuya, Y. Atsumi, T. Yoshida, Y. Sakakibara, M. Mori, and A. Sawa, “Silicon waveguide optical modulator driven by metal–insulator transition of vanadium dioxide cladding layer,” Opt. Express 27(4), 4147–4156 (2019).
[Crossref]

Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Terahertz toroidal metamaterial with tunable properties,” Opt. Express 27(4), 5792–5797 (2019).
[Crossref]

S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

Z. Song, A. Chen, J. Zhang, and J. Wang, “Integrated metamaterial with functionalities of absorption and electromagnetically induced transparency,” Opt. Express 27(18), 25196–25204 (2019).
[Crossref]

Optica (1)

Phys. Rev. B (2)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Phys. Rev. Lett. (3)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Plasmonics (1)

X. Tian and Z. Y. Li, “An optically-triggered switchable mid-infrared perfect absorber based on phase-change material of vanadium dioxide,” Plasmonics 13(4), 1393–1402 (2018).
[Crossref]

Sci. Rep. (3)

S. Wang, L. Kang, and D. H. Werner, “Active terahertz chiral metamaterials based on phase transition of vanadium dioxide (VO2),” Sci. Rep. 8(1), 189 (2018).
[Crossref]

G. Zhang, H. Ma, C. Lan, R. Gao, and J. Zhou, “Microwave Tunable metamaterial based on semiconductor-to-metal phase transition,” Sci. Rep. 7(1), 5773 (2017).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref]

Science (4)

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref]

Other (1)

Y. G. Jeong, Y. M. Bahk, and D. S. Kim, “Dynamic terahertz plasmonics enabled by phase-change materials,” Adv. Optical Mater.1900548 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) 3D schematic of the designed switchable terahertz metamaterial. (b) The side view. (c) The top view of the narrowband absorber.
Fig. 2.
Fig. 2. The calculated absorptances with different conductivities of VO2.
Fig. 3.
Fig. 3. The retrieved effective optical parameters (a) permittivity, (b) permeability, (c) refractive index, and (d) impedance when VO2 is in the metallic state.
Fig. 4.
Fig. 4. The distributions of electric currents in the surface of metallic cross (a) and metallic film (b) at the frequency of absorption peak. The directions of them are opposite. The enhanced magnetic field in dielectric spacer (c).
Fig. 5.
Fig. 5. (a) The dependence of inner radius (${r_1}$) of VO2 ring on absorptance under normal incidence with structure parameters ${r_2} = 72\;\mu m$ and ${t_1} = 55\;\mu m$. (b) The dependence of outer radius (${r_2}$) of VO2 ring on absorptance under normal incidence with structure parameters ${r_1} = 23\;\mu m$ and ${t_1} = 55\;\mu m$. (c) The thickness (${t_1}$) of SiO2 on absorptance under normal incidence with structure parameters ${r_1} = 23\;\mu m$ and ${r_2} = 72\;\mu m$.
Fig. 6.
Fig. 6. The dependence of length (L) of metallic cross (a) and thickness (${t_3}$) of SiO2 (b) on absorptance under normal incidence with other structure parameters unchanged.
Fig. 7.
Fig. 7. Angle dependence of broadband absorber for TE (a) and TM (b) polarizations when VO2 is in the metallic state. Angle dependence of narrowband absorber for TE (c) and TM (d) polarizations when VO2 is in the insulating state.

Metrics