Abstract

We propose and demonstrate an external-feedback semiconductor laser-based chaos generation scheme supporting simultaneous bandwidth enhancement and excellent time-delay-signature (TDS) suppression, by using parallel-coupling ring resonators (PCRR) as reflector. The characteristics of effective bandwidth and TDS of chaotic signals generated in three indicative PCRR configurations are thoroughly investigated. The numerical results demonstrate that with the nonlinear feedback of PCRR, the TDS of chaos can be efficiently suppressed toward an indistinguishable level, and the bandwidth of chaos in the proposed scheme can also be enhanced, with respect to the conventional optical feedback configuration. The proposed scheme shows a flexible way to generate wideband complex chaos.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback

Anke Zhao, Ning Jiang, Shiqin Liu, Chenpeng Xue, Jianming Tang, and Kun Qiu
Opt. Express 27(9) 12336-12348 (2019)

Generation of flat wideband chaos with suppressed time delay signature by using optical time lens

Ning Jiang, Chao Wang, Chenpeng Xue, Guilan Li, Shuqing Lin, and Kun Qiu
Opt. Express 25(13) 14359-14367 (2017)

Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback

Ning Jiang, Anke Zhao, Shiqin Liu, Chenpeng Xue, and Kun Qiu
Opt. Express 26(25) 32404-32416 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref]
  2. M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
    [Crossref]
  3. N. Jiang, A. K. Zhao, C. P. Xue, J. M. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44(7), 1536–1539 (2019).
    [Crossref]
  4. X. Tang, G.-Q. Xia, E. Jayaprasath, T. Deng, X.-D. Lin, L. Fan, Z.-Y. Gao, and Z.-M. Wu, “Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection,” IEEE Access 6, 3565–3572 (2018).
    [Crossref]
  5. X. Z. Li, S. S. Li, J. P. Zhuang, and S. C. Chan, “Random bit generation at tunable rates using a chaotic semiconductor laser under distributed feedback,” Opt. Lett. 40(17), 3970–3973 (2015).
    [Crossref]
  6. N. Li, B. Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and W. Pan, “Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser,” Opt. Express 22(6), 6634–6646 (2014).
    [Crossref]
  7. Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
    [Crossref]
  8. F. Y. Lin and J. M. Liu, “Chaotic Lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
    [Crossref]
  9. R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
    [Crossref]
  10. S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
    [Crossref]
  11. H. Someya, I. Oowada, H. Okumura, T. Kida, and A. Uchida, “Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection,” Opt. Express 17(22), 19536–19543 (2009).
    [Crossref]
  12. N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
    [Crossref]
  13. A. B. Wang, Y. B. Yang, B. J. Wang, B. B. Zhang, L. Li, and Y. C. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
    [Crossref]
  14. J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
    [Crossref]
  15. N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36(23), 4632–4634 (2011).
    [Crossref]
  16. S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
    [Crossref]
  17. D. Wang, L. Wang, T. Zhao, H. Gao, Y. Wang, X. Chen, and A. Wang, “Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG,” Opt. Express 25(10), 10911–10924 (2017).
    [Crossref]
  18. S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lightwave Technol. 34(18), 4221–4227 (2016).
    [Crossref]
  19. S. S. Li, X. Z. Li, and S. C. Chan, “Chaotic time-delay signature suppression with bandwidth broadening by fiber propagation,” Opt. Lett. 43(19), 4751–4754 (2018).
    [Crossref]
  20. N. Jiang, C. Wang, C. P. Xue, G. L. Li, S. Q. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25(13), 14359–14367 (2017).
    [Crossref]
  21. P. Mu, P. He, and N. Li, “Simultaneous chaos time-delay signature cancellation and bandwidth enhancement in cascade-coupled semiconductor ring lasers,” IEEE Access 7, 11041–11048 (2019).
    [Crossref]
  22. N. Jiang, A. K. Zhao, S. Q. Liu, C. P. Xue, B. Y. Wang, and K. Qiu, “Generation of broadband chaos with perfect time delay signature suppression by using self-phase-modulated feedback and a microsphere resonator,” Opt. Lett. 43(21), 5359–5362 (2018).
    [Crossref]
  23. A. K. Zhao, N. Jiang, S. Q. Liu, C. P. Xue, J. M. Tang, and K. Qiu, “Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback,” Opt. Express 27(9), 12336–12348 (2019).
    [Crossref]
  24. R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. T. Ho, “Parallel-cascaded semiconductor micro ring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20(5), 900–905 (2002).
    [Crossref]
  25. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [Crossref]
  26. D. G. Rabus, “Integrated ring resonators,” Spring Series in Optical Sciences, Springer, New York, 2007.
  27. J. Carroll, J. Whiteaway, and D. Plumb, “Distributed feedback semiconductor lasers,” IEE Circuits, Devices and Systems Series 10, 1998.
  28. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
    [Crossref]
  29. F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
    [Crossref]
  30. S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
    [Crossref]
  31. L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso, and C. R. Mirasso, “Permutation-information-theory approach to unveil delay dynamics from time-series analysis,” Phys. Rev. E 82(4), 046212 (2010).
    [Crossref]
  32. J. P. Toomey and D. M. Kane, “Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy,” Opt. Express 22(2), 1713–1725 (2014).
    [Crossref]
  33. A. Zhao, N. Jiang, S. Liu, C. Xue, and K. Qiu, “Wideband time delay signature-suppressed chaos generation using self-phase-modulated feedback semiconductor laser cascaded with dispersive component,” J. Lightwave Technol. 37(19), 5132–5139 (2019).
    [Crossref]
  34. D. Rontani, E. Mercier, D. Wolfersberger, and M. Sciamanna, “Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback,” Opt. Lett. 41(20), 4637–4640 (2016).
    [Crossref]

2019 (4)

2018 (3)

2017 (2)

2016 (3)

2015 (3)

2014 (2)

2013 (1)

2012 (2)

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

2011 (1)

2010 (1)

L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso, and C. R. Mirasso, “Permutation-information-theory approach to unveil delay dynamics from time-series analysis,” Phys. Rev. E 82(4), 046212 (2010).
[Crossref]

2009 (3)

2008 (1)

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

2004 (1)

F. Y. Lin and J. M. Liu, “Chaotic Lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

2003 (1)

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

2002 (1)

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. T. Ho, “Parallel-cascaded semiconductor micro ring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20(5), 900–905 (2002).
[Crossref]

1998 (1)

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Absil, P. P.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. T. Ho, “Parallel-cascaded semiconductor micro ring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20(5), 900–905 (2002).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Bloch, M.

Bünner, M. J.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[Crossref]

Calhoun, L. C.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. T. Ho, “Parallel-cascaded semiconductor micro ring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20(5), 900–905 (2002).
[Crossref]

Carroll, J.

J. Carroll, J. Whiteaway, and D. Plumb, “Distributed feedback semiconductor lasers,” IEE Circuits, Devices and Systems Series 10, 1998.

Chan, S. C.

Chen, X.

Chizhevsky, V. N.

Citrin, D. S.

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Deng, T.

X. Tang, G.-Q. Xia, E. Jayaprasath, T. Deng, X.-D. Lin, L. Fan, Z.-Y. Gao, and Z.-M. Wu, “Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection,” IEEE Access 6, 3565–3572 (2018).
[Crossref]

Fan, L.

X. Tang, G.-Q. Xia, E. Jayaprasath, T. Deng, X.-D. Lin, L. Fan, Z.-Y. Gao, and Z.-M. Wu, “Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection,” IEEE Access 6, 3565–3572 (2018).
[Crossref]

Fischer, I.

N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36(23), 4632–4634 (2011).
[Crossref]

L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso, and C. R. Mirasso, “Permutation-information-theory approach to unveil delay dynamics from time-series analysis,” Phys. Rev. E 82(4), 046212 (2010).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Gao, H.

Gao, Z.-Y.

X. Tang, G.-Q. Xia, E. Jayaprasath, T. Deng, X.-D. Lin, L. Fan, Z.-Y. Gao, and Z.-M. Wu, “Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection,” IEEE Access 6, 3565–3572 (2018).
[Crossref]

Garcia-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Giaquinta, A.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[Crossref]

Grover, R.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. T. Ho, “Parallel-cascaded semiconductor micro ring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20(5), 900–905 (2002).
[Crossref]

Guo, X.

He, P.

P. Mu, P. He, and N. Li, “Simultaneous chaos time-delay signature cancellation and bandwidth enhancement in cascade-coupled semiconductor ring lasers,” IEEE Access 7, 11041–11048 (2019).
[Crossref]

Hegger, R.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[Crossref]

Ho, P. T.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. T. Ho, “Parallel-cascaded semiconductor micro ring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20(5), 900–905 (2002).
[Crossref]

Hryniewicz, J. V.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. T. Ho, “Parallel-cascaded semiconductor micro ring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20(5), 900–905 (2002).
[Crossref]

Ibrahim, T. A.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. T. Ho, “Parallel-cascaded semiconductor micro ring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20(5), 900–905 (2002).
[Crossref]

Jayaprasath, E.

X. Tang, G.-Q. Xia, E. Jayaprasath, T. Deng, X.-D. Lin, L. Fan, Z.-Y. Gao, and Z.-M. Wu, “Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection,” IEEE Access 6, 3565–3572 (2018).
[Crossref]

Jiang, N.

Johnson, F. G.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. T. Ho, “Parallel-cascaded semiconductor micro ring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20(5), 900–905 (2002).
[Crossref]

Kane, D. M.

Kantz, H.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[Crossref]

Kida, T.

Kim, B.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Li, G. L.

Li, J.

Li, J. F.

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

Li, L.

Li, N.

Li, N. N.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Li, S. S.

Li, X. Z.

Lin, F. Y.

F. Y. Lin and J. M. Liu, “Chaotic Lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Lin, L.

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lightwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

Lin, S. Q.

Lin, X.-D.

X. Tang, G.-Q. Xia, E. Jayaprasath, T. Deng, X.-D. Lin, L. Fan, Z.-Y. Gao, and Z.-M. Wu, “Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection,” IEEE Access 6, 3565–3572 (2018).
[Crossref]

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic Lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Liu, Q.

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

Liu, S.

Liu, S. Q.

Locquet, A.

Luo, B.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Mercier, E.

Mirasso, C. R.

L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso, and C. R. Mirasso, “Permutation-information-theory approach to unveil delay dynamics from time-series analysis,” Phys. Rev. E 82(4), 046212 (2010).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Mu, P.

P. Mu, P. He, and N. Li, “Simultaneous chaos time-delay signature cancellation and bandwidth enhancement in cascade-coupled semiconductor ring lasers,” IEEE Access 7, 11041–11048 (2019).
[Crossref]

Okumura, H.

Oliver, N.

Oowada, I.

Ortin, S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

Pan, W.

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Plumb, D.

J. Carroll, J. Whiteaway, and D. Plumb, “Distributed feedback semiconductor lasers,” IEE Circuits, Devices and Systems Series 10, 1998.

Qiu, K.

Rabus, D. G.

D. G. Rabus, “Integrated ring resonators,” Spring Series in Optical Sciences, Springer, New York, 2007.

Rontani, D.

D. Rontani, E. Mercier, D. Wolfersberger, and M. Sciamanna, “Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback,” Opt. Lett. 41(20), 4637–4640 (2016).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

Rosso, O. A.

L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso, and C. R. Mirasso, “Permutation-information-theory approach to unveil delay dynamics from time-series analysis,” Phys. Rev. E 82(4), 046212 (2010).
[Crossref]

Sciamanna, M.

D. Rontani, E. Mercier, D. Wolfersberger, and M. Sciamanna, “Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback,” Opt. Lett. 41(20), 4637–4640 (2016).
[Crossref]

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

Shore, K. A.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Someya, H.

Soriano, M. C.

N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36(23), 4632–4634 (2011).
[Crossref]

L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso, and C. R. Mirasso, “Permutation-information-theory approach to unveil delay dynamics from time-series analysis,” Phys. Rev. E 82(4), 046212 (2010).
[Crossref]

Sukow, D. W.

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Tang, J. M.

Tang, X.

X. Tang, G.-Q. Xia, E. Jayaprasath, T. Deng, X.-D. Lin, L. Fan, Z.-Y. Gao, and Z.-M. Wu, “Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection,” IEEE Access 6, 3565–3572 (2018).
[Crossref]

Toomey, J. P.

Uchida, A.

Van, V.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. T. Ho, “Parallel-cascaded semiconductor micro ring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20(5), 900–905 (2002).
[Crossref]

Wang, A.

Wang, A. B.

A. B. Wang, Y. B. Yang, B. J. Wang, B. B. Zhang, L. Li, and Y. C. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, B. J.

A. B. Wang, Y. B. Yang, B. J. Wang, B. B. Zhang, L. Li, and Y. C. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, B. Y.

Wang, C.

Wang, D.

Wang, L.

Wang, Y.

Wang, Y. C.

A. B. Wang, Y. B. Yang, B. J. Wang, B. B. Zhang, L. Li, and Y. C. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref]

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wen, A. J.

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lightwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

Whiteaway, J.

J. Carroll, J. Whiteaway, and D. Plumb, “Distributed feedback semiconductor lasers,” IEE Circuits, Devices and Systems Series 10, 1998.

Wolfersberger, D.

Wu, J. G.

Wu, Z. M.

Wu, Z.-M.

X. Tang, G.-Q. Xia, E. Jayaprasath, T. Deng, X.-D. Lin, L. Fan, Z.-Y. Gao, and Z.-M. Wu, “Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection,” IEEE Access 6, 3565–3572 (2018).
[Crossref]

Xia, G. Q.

Xia, G.-Q.

X. Tang, G.-Q. Xia, E. Jayaprasath, T. Deng, X.-D. Lin, L. Fan, Z.-Y. Gao, and Z.-M. Wu, “Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection,” IEEE Access 6, 3565–3572 (2018).
[Crossref]

Xiang, S. Y.

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

S. Y. Xiang, A. J. Wen, W. Pan, L. Lin, H. Zhang, H. Zhang, X. Guo, and J. Li, “Suppression of chaos time delay signature in a ring network consisting of three semiconductor lasers coupled with heterogeneous delays,” J. Lightwave Technol. 34(18), 4221–4227 (2016).
[Crossref]

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Xue, C.

Xue, C. P.

Yan, L. S.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Yang, Y. B.

Zhang, B. B.

Zhang, H.

Zhang, H. X.

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

Zhao, A.

Zhao, A. K.

Zhao, T.

Zhu, H. N.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Zhuang, J. P.

Zou, X. H.

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

Zunino, L.

L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso, and C. R. Mirasso, “Permutation-information-theory approach to unveil delay dynamics from time-series analysis,” Phys. Rev. E 82(4), 046212 (2010).
[Crossref]

IEEE Access (2)

X. Tang, G.-Q. Xia, E. Jayaprasath, T. Deng, X.-D. Lin, L. Fan, Z.-Y. Gao, and Z.-M. Wu, “Multi-channel physical random bits generation using a vertical-cavity surface-emitting laser under chaotic optical injection,” IEEE Access 6, 3565–3572 (2018).
[Crossref]

P. Mu, P. He, and N. Li, “Simultaneous chaos time-delay signature cancellation and bandwidth enhancement in cascade-coupled semiconductor ring lasers,” IEEE Access 7, 11041–11048 (2019).
[Crossref]

IEEE J. Quantum Electron. (4)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

S. Y. Xiang, W. Pan, B. Luo, L. S. Yan, X. H. Zou, N. N. Li, and H. N. Zhu, “Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections,” IEEE J. Quantum Electron. 48(8), 1069–1076 (2012).
[Crossref]

S. Y. Xiang, A. J. Wen, H. Zhang, J. F. Li, H. X. Zhang, and L. Lin, “Effect of gain nonlinearity on time delay signature of chaos in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 52(4), 1–7 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Y. Lin and J. M. Liu, “Chaotic Lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

IEEE Photonics J. (1)

S. S. Li, Q. Liu, and S. C. Chan, “Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser,” IEEE Photonics J. 4(5), 1930–1935 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. C. Wang, B. J. Wang, and A. B. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photonics Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (1)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Opt. Commun. (1)

F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback,” Opt. Commun. 221(1-3), 173–180 (2003).
[Crossref]

Opt. Express (8)

H. Someya, I. Oowada, H. Okumura, T. Kida, and A. Uchida, “Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection,” Opt. Express 17(22), 19536–19543 (2009).
[Crossref]

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
[Crossref]

A. K. Zhao, N. Jiang, S. Q. Liu, C. P. Xue, J. M. Tang, and K. Qiu, “Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback,” Opt. Express 27(9), 12336–12348 (2019).
[Crossref]

D. Wang, L. Wang, T. Zhao, H. Gao, Y. Wang, X. Chen, and A. Wang, “Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG,” Opt. Express 25(10), 10911–10924 (2017).
[Crossref]

N. Jiang, C. Wang, C. P. Xue, G. L. Li, S. Q. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25(13), 14359–14367 (2017).
[Crossref]

A. B. Wang, Y. B. Yang, B. J. Wang, B. B. Zhang, L. Li, and Y. C. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref]

J. P. Toomey and D. M. Kane, “Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy,” Opt. Express 22(2), 1713–1725 (2014).
[Crossref]

N. Li, B. Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and W. Pan, “Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser,” Opt. Express 22(6), 6634–6646 (2014).
[Crossref]

Opt. Lett. (7)

X. Z. Li, S. S. Li, J. P. Zhuang, and S. C. Chan, “Random bit generation at tunable rates using a chaotic semiconductor laser under distributed feedback,” Opt. Lett. 40(17), 3970–3973 (2015).
[Crossref]

N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
[Crossref]

D. Rontani, E. Mercier, D. Wolfersberger, and M. Sciamanna, “Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback,” Opt. Lett. 41(20), 4637–4640 (2016).
[Crossref]

S. S. Li, X. Z. Li, and S. C. Chan, “Chaotic time-delay signature suppression with bandwidth broadening by fiber propagation,” Opt. Lett. 43(19), 4751–4754 (2018).
[Crossref]

N. Jiang, A. K. Zhao, S. Q. Liu, C. P. Xue, B. Y. Wang, and K. Qiu, “Generation of broadband chaos with perfect time delay signature suppression by using self-phase-modulated feedback and a microsphere resonator,” Opt. Lett. 43(21), 5359–5362 (2018).
[Crossref]

N. Jiang, A. K. Zhao, C. P. Xue, J. M. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44(7), 1536–1539 (2019).
[Crossref]

N. Oliver, M. C. Soriano, D. W. Sukow, and I. Fischer, “Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation,” Opt. Lett. 36(23), 4632–4634 (2011).
[Crossref]

Phys. Rev. E (1)

L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso, and C. R. Mirasso, “Permutation-information-theory approach to unveil delay dynamics from time-series analysis,” Phys. Rev. E 82(4), 046212 (2010).
[Crossref]

Phys. Rev. Lett. (1)

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[Crossref]

Other (2)

D. G. Rabus, “Integrated ring resonators,” Spring Series in Optical Sciences, Springer, New York, 2007.

J. Carroll, J. Whiteaway, and D. Plumb, “Distributed feedback semiconductor lasers,” IEE Circuits, Devices and Systems Series 10, 1998.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of chaos generation using ECSL subject to nonlinear feedback from PCRR, (b) detailed configuration of PCRR. DFB, distributed-feedback laser; PC, polarization controller; OC, optical circulator; VOA, variable optical attenuator; PD, photodetector.
Fig. 2.
Fig. 2. Temporal series (first row), RF spectra (second row), ACF traces (third row) and PE traces (fourth row) of chaos in the cases of (a) COF, (b) SRROF, (c) DRROF and (d) TRROF.
Fig. 3.
Fig. 3. Ratio of energy in frequency band Δf as a function of feedback strength for the cases of (a) COF, (b) SRROF, (c) DRROF and (d) TRROF.
Fig. 4.
Fig. 4. Influences of feedback strength kf and operation current I(Ith) on TDS in ACF trace (first row) and EB (second row), in the cases of COF (first column), SRROF (second column), DRROF (third column) and TRROF (fourth column).
Fig. 5.
Fig. 5. Transmission spectra of “Throughput” port (first row) and “Drop” port (second row) of PCRR composed of (a) SRR, (b) DRR and (c) TRR.
Fig. 6.
Fig. 6. Influences of coupling coefficient к and ring radius R on TDS in ACF trace (first row) and EB (second row), for the cases of (a) SRROF, (b) DRROF and (c) TRROF.
Fig. 7.
Fig. 7. Influences of the mismatches of coupling coefficient к and ring radius R on TDS in ACF (first row) and effective bandwidth (second row), in the configurations of DRROF (first column) and TRROF (second-fifth column).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d E ( t ) d t = 1 + i α 2 [ g ( N ( t ) N 0 ) 1 + ε | E ( t ) | 2 1 τ p ] E ( t ) + k f E ( t τ f ) h 1 ( t )
d N ( t ) d t = I q V N ( t ) τ e g ( N ( t ) N 0 ) 1 + ε | E ( t ) | 2 | E ( t ) | 2
E ( t ) o u t = E ( t τ f / τ f 2 2 ) h 2 ( t )
[ E 1 ( ω ) E 2 ( ω ) ] = T 1 T φ 1 T 2 T φ 2 T i T φ i T n [ E 3 ( ω ) E 4 ( ω ) ] = [ P 11 P 12 P 21 P 22 ] [ E 3 ( ω ) E 4 ( ω ) ]
T i = [ 1 η 1 i η 2 i α r i 2 e j Δ ω t r i η 1 i η 2 i α r i 2 e j Δ ω t r i κ 1 i κ 2 i α r i e j Δ ω t r i / Δ ω t r i 2 2 η 1 i η 2 i α r i 2 e j Δ ω t r i κ 1 i κ 2 i α r i e j Δ ω t r i / Δ ω t r i 2 2 η 1 i η 2 i α r i 2 e j Δ ω t r i η 1 i η 2 i α r i 2 e j Δ ω t r i η 1 i η 2 i α r i 2 e j Δ ω t r i ]
T φ i = [ e j β b L 0 0 e j β b L ]
C ( Δ t ) = ( I ( t + Δ t ) I ( t ) ) ( I ( t ) I ( t ) ) ( I ( t + Δ t ) I ( t + Δ t ) ) 2 ( I ( t ) I ( t ) ) 2
p ( Ω ) = # { t | t N x ( d 1 ) Δ τ ;   X t h a s t y p e Ω } N x ( d 1 ) Δ τ