Abstract

Graphene exhibits remarkable optical and electronic properties when interacts with electromagnetic field. These properties play a vital role in a broad range of applications, such as, optical communication, optical storage, biomedical imaging and security purposes. Based on electromagnetically induced grating (EIG), we study lensless holographic imaging via quantized energy levels of two-dimensional (2D) monolayer graphene model. We observe that by exploiting electromagnetically induced grating (EIG), holographic interference patterns via electromagnetically induced classical holographic imaging (EICHI) and, non locally, electromagnetically induced quantum holographic imaging (EIQHI) can be obtained in the infrared range (THz) of the spectrum. We notice that for EIQHI one can obtain image magnification using monolayer graphene via manipulation of certain controllable parameters. The scheme provides an experimentally viable option for the classical and quantum mechanical holographic imaging and possibilities for the design of graphene-based quantum mechanical devices which can have many applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effective terahertz signal detection via electromagnetically induced transparency in graphene

Shaopeng Liu, Wen-Xing Yang, Zhonghu Zhu, and Ray-Kuang Lee
J. Opt. Soc. Am. B 33(2) 279-285 (2016)

Tunable double electromagnetically induced grating with an incoherent pump field

Azar Vafafard and Mostafa Sahrai
J. Opt. Soc. Am. B 37(2) 244-250 (2020)

References

  • View by:
  • |
  • |
  • |

  1. A. H. Castro Neto, F. Guinea, N. M.-R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  2. M. L. Sadowski, G. Martinez, M. Potemski, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett. 97(26), 266405 (2006).
    [Crossref]
  3. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
    [Crossref]
  4. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  5. M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
    [Crossref]
  6. F. R. Arteaga-Sierra, A. Antikainen, and G. P. Agrawal, “Soliton dynamics in photonic-crystal fibers with frequency-dependent Kerr nonlinearity,” Phys. Rev. A 98(1), 013830 (2018).
    [Crossref]
  7. J. H. Li, X. Y. La, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74(3), 035801 (2006).
    [Crossref]
  8. A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91(14), 143904 (2003).
    [Crossref]
  9. C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Matched infrared soliton pairs in graphene under Landau quantization via four-wave mixing,” Phys. Rev. A 90(4), 043819 (2014).
    [Crossref]
  10. C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Formation and ultraslow propagation of infrared solitons in graphene under an external magnetic field,” J. Appl. Phys. 115(23), 234301 (2014).
    [Crossref]
  11. H. R. Hamedi and S. H. Asadpour, “Realization of optical bistability and multistability in Landau-quantized graphene,” J. Appl. Phys. 117(18), 183101 (2015).
    [Crossref]
  12. M. Tokman, X. Yao, and A. Belyanin, “Generation of entangled photons in graphene in a strong magnetic field,” Phys. Rev. Lett. 110(7), 077404 (2013).
    [Crossref]
  13. X. Yao and A. Belyanin, “Giant optical nonlinearity of graphene in a strong magnetic field,” Phys. Rev. Lett. 108(25), 255503 (2012).
    [Crossref]
  14. C. Ding, X. Hao, D. Zhang, and J. Li, “Nonlinear dynamic instability of Landau quantized graphene inside an optical ring cavity,” Laser Phys. Lett. 16(2), 025202 (2019).
    [Crossref]
  15. F. Xu, J. Zhu, S. Fan, and Y. Qi, “Control of slow light in three- and four level graphene nanostructures,” Mod. Phys. Lett. B 33(20), 1950226 (2019).
    [Crossref]
  16. T. Naseri and R. Moradi, “Realization of electromagnetically induced phase grating and Kerr nonlinearity in graphene ensemble under Raman excitation,” Superlattices Microstruct. 101, 592–601 (2017).
    [Crossref]
  17. S. P. Liu, W. X. yang, Z. H. Zhu, and R.-K. Lee, “Effective terahertz signal detection via electromagnetically induced transparency in graphene,” J. Opt. Soc. Am. B 33(2), 279 (2016).
    [Crossref]
  18. H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
    [Crossref]
  19. X. Yanga, A. Vorobiev, A. Generalov, M. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111(2), 021102 (2017).
    [Crossref]
  20. O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
    [Crossref]
  21. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
    [Crossref]
  22. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Science 34(26), 6012 (1995).
    [Crossref]
  23. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
    [Crossref]
  24. A. Dasgupta, J. Gao, and X. Yang, “Atomically Thin Nonlinear Transition Metal Dichalcogenide Holograms,” Nano Lett. 19(9), 6511–6516 (2019).
    [Crossref]
  25. C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
    [Crossref]
  26. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Tewelde-brhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
    [Crossref]
  27. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
    [Crossref]
  28. S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
    [Crossref]
  29. S. Asghar, M. Abbas, S. Qamar, and S. Qamar, “Electromagnetically induced holographic imaging with Rydberg atoms,” Opt. Commun. 437, 290–296 (2019).
    [Crossref]
  30. T. H. Qiu, “Electromagnetically induced holographic imaging in hybrid artificial molecule,” Opt. Express 23(19), 24537 (2015).
    [Crossref]
  31. Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
    [Crossref]
  32. D. S. L. Abergel and V. I. Fal’ko, “Optical and magneto-optical far-infrared properties of bilayer graphene,” Phys. Rev. B 75(15), 155430 (2007).
    [Crossref]
  33. Y. Zheng and T. Ando, “Hall conductivity of a two-dimensional graphite system,” Phys. Rev. B 65(24), 245420 (2002).
    [Crossref]
  34. T. Ando, “Theory of Electronic States and Transport in Carbon Nanotubes,” J. Phys. Soc. Jpn. 74(3), 777–817 (2005).
    [Crossref]
  35. T. Ando, “Magnetic Oscillation of Optical Phonon in Graphene,” J. Phys. Soc. Jpn. 76(2), 024712 (2007).
    [Crossref]
  36. X. Yao and A. Belyanin, “Nonlinear optics of graphene in a strong magnetic field,” J. Phys.: Condens. Matter 25(5), 054203 (2013).
    [Crossref]
  37. Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared spectroscopy of Landau Levels of graphene,” Phys. Rev. Lett. 98(19), 197403 (2007).
    [Crossref]
  38. S. M. Barnett and P. M. Radmore, Methods in theoretical quantum optics (Oxford. Univ. Press, 2002).
  39. H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
    [Crossref]
  40. S. Asghar-Ziauddin, S. Qamar, and S. Qamar, “Electromagnetically induced grating with Rydberg atoms,” Phys. Rev. A 94(3), 033823 (2016).
    [Crossref]
  41. L. Zhao, “Electromagnetically induced polarization grating,” Sci. Rep. 8(1), 3073 (2018).
    [Crossref]

2019 (4)

C. Ding, X. Hao, D. Zhang, and J. Li, “Nonlinear dynamic instability of Landau quantized graphene inside an optical ring cavity,” Laser Phys. Lett. 16(2), 025202 (2019).
[Crossref]

F. Xu, J. Zhu, S. Fan, and Y. Qi, “Control of slow light in three- and four level graphene nanostructures,” Mod. Phys. Lett. B 33(20), 1950226 (2019).
[Crossref]

A. Dasgupta, J. Gao, and X. Yang, “Atomically Thin Nonlinear Transition Metal Dichalcogenide Holograms,” Nano Lett. 19(9), 6511–6516 (2019).
[Crossref]

S. Asghar, M. Abbas, S. Qamar, and S. Qamar, “Electromagnetically induced holographic imaging with Rydberg atoms,” Opt. Commun. 437, 290–296 (2019).
[Crossref]

2018 (3)

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

F. R. Arteaga-Sierra, A. Antikainen, and G. P. Agrawal, “Soliton dynamics in photonic-crystal fibers with frequency-dependent Kerr nonlinearity,” Phys. Rev. A 98(1), 013830 (2018).
[Crossref]

L. Zhao, “Electromagnetically induced polarization grating,” Sci. Rep. 8(1), 3073 (2018).
[Crossref]

2017 (2)

T. Naseri and R. Moradi, “Realization of electromagnetically induced phase grating and Kerr nonlinearity in graphene ensemble under Raman excitation,” Superlattices Microstruct. 101, 592–601 (2017).
[Crossref]

X. Yanga, A. Vorobiev, A. Generalov, M. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111(2), 021102 (2017).
[Crossref]

2016 (2)

S. Asghar-Ziauddin, S. Qamar, and S. Qamar, “Electromagnetically induced grating with Rydberg atoms,” Phys. Rev. A 94(3), 033823 (2016).
[Crossref]

S. P. Liu, W. X. yang, Z. H. Zhu, and R.-K. Lee, “Effective terahertz signal detection via electromagnetically induced transparency in graphene,” J. Opt. Soc. Am. B 33(2), 279 (2016).
[Crossref]

2015 (2)

T. H. Qiu, “Electromagnetically induced holographic imaging in hybrid artificial molecule,” Opt. Express 23(19), 24537 (2015).
[Crossref]

H. R. Hamedi and S. H. Asadpour, “Realization of optical bistability and multistability in Landau-quantized graphene,” J. Appl. Phys. 117(18), 183101 (2015).
[Crossref]

2014 (2)

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Matched infrared soliton pairs in graphene under Landau quantization via four-wave mixing,” Phys. Rev. A 90(4), 043819 (2014).
[Crossref]

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Formation and ultraslow propagation of infrared solitons in graphene under an external magnetic field,” J. Appl. Phys. 115(23), 234301 (2014).
[Crossref]

2013 (2)

M. Tokman, X. Yao, and A. Belyanin, “Generation of entangled photons in graphene in a strong magnetic field,” Phys. Rev. Lett. 110(7), 077404 (2013).
[Crossref]

X. Yao and A. Belyanin, “Nonlinear optics of graphene in a strong magnetic field,” J. Phys.: Condens. Matter 25(5), 054203 (2013).
[Crossref]

2012 (1)

X. Yao and A. Belyanin, “Giant optical nonlinearity of graphene in a strong magnetic field,” Phys. Rev. Lett. 108(25), 255503 (2012).
[Crossref]

2010 (2)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

2009 (2)

A. H. Castro Neto, F. Guinea, N. M.-R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
[Crossref]

2008 (2)

A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Tewelde-brhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref]

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref]

2007 (3)

Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared spectroscopy of Landau Levels of graphene,” Phys. Rev. Lett. 98(19), 197403 (2007).
[Crossref]

T. Ando, “Magnetic Oscillation of Optical Phonon in Graphene,” J. Phys. Soc. Jpn. 76(2), 024712 (2007).
[Crossref]

D. S. L. Abergel and V. I. Fal’ko, “Optical and magneto-optical far-infrared properties of bilayer graphene,” Phys. Rev. B 75(15), 155430 (2007).
[Crossref]

2006 (3)

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

M. L. Sadowski, G. Martinez, M. Potemski, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett. 97(26), 266405 (2006).
[Crossref]

J. H. Li, X. Y. La, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74(3), 035801 (2006).
[Crossref]

2005 (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

T. Ando, “Theory of Electronic States and Transport in Carbon Nanotubes,” J. Phys. Soc. Jpn. 74(3), 777–817 (2005).
[Crossref]

2004 (1)

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
[Crossref]

2003 (2)

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91(14), 143904 (2003).
[Crossref]

2002 (1)

Y. Zheng and T. Ando, “Hall conductivity of a two-dimensional graphite system,” Phys. Rev. B 65(24), 245420 (2002).
[Crossref]

1999 (1)

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

1998 (2)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[Crossref]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

1995 (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Science 34(26), 6012 (1995).
[Crossref]

Abbas, M.

S. Asghar, M. Abbas, S. Qamar, and S. Qamar, “Electromagnetically induced holographic imaging with Rydberg atoms,” Opt. Commun. 437, 290–296 (2019).
[Crossref]

Abergel, D. S. L.

D. S. L. Abergel and V. I. Fal’ko, “Optical and magneto-optical far-infrared properties of bilayer graphene,” Phys. Rev. B 75(15), 155430 (2007).
[Crossref]

Agrawal, G. P.

F. R. Arteaga-Sierra, A. Antikainen, and G. P. Agrawal, “Soliton dynamics in photonic-crystal fibers with frequency-dependent Kerr nonlinearity,” Phys. Rev. A 98(1), 013830 (2018).
[Crossref]

Ahn, J. H.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Andersson, M.

X. Yanga, A. Vorobiev, A. Generalov, M. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111(2), 021102 (2017).
[Crossref]

Ando, T.

T. Ando, “Magnetic Oscillation of Optical Phonon in Graphene,” J. Phys. Soc. Jpn. 76(2), 024712 (2007).
[Crossref]

T. Ando, “Theory of Electronic States and Transport in Carbon Nanotubes,” J. Phys. Soc. Jpn. 74(3), 777–817 (2005).
[Crossref]

Y. Zheng and T. Ando, “Hall conductivity of a two-dimensional graphite system,” Phys. Rev. B 65(24), 245420 (2002).
[Crossref]

Antikainen, A.

F. R. Arteaga-Sierra, A. Antikainen, and G. P. Agrawal, “Soliton dynamics in photonic-crystal fibers with frequency-dependent Kerr nonlinearity,” Phys. Rev. A 98(1), 013830 (2018).
[Crossref]

Arteaga-Sierra, F. R.

F. R. Arteaga-Sierra, A. Antikainen, and G. P. Agrawal, “Soliton dynamics in photonic-crystal fibers with frequency-dependent Kerr nonlinearity,” Phys. Rev. A 98(1), 013830 (2018).
[Crossref]

Asadpour, S. H.

H. R. Hamedi and S. H. Asadpour, “Realization of optical bistability and multistability in Landau-quantized graphene,” J. Appl. Phys. 117(18), 183101 (2015).
[Crossref]

Asghar, S.

S. Asghar, M. Abbas, S. Qamar, and S. Qamar, “Electromagnetically induced holographic imaging with Rydberg atoms,” Opt. Commun. 437, 290–296 (2019).
[Crossref]

Asghar-Ziauddin, S.

S. Asghar-Ziauddin, S. Qamar, and S. Qamar, “Electromagnetically induced grating with Rydberg atoms,” Phys. Rev. A 94(3), 033823 (2016).
[Crossref]

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Balandin, A.

A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Tewelde-brhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref]

Bao, W. Z.

A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Tewelde-brhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref]

Barnett, S. M.

S. M. Barnett and P. M. Radmore, Methods in theoretical quantum optics (Oxford. Univ. Press, 2002).

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Science 34(26), 6012 (1995).
[Crossref]

Belyanin, A.

M. Tokman, X. Yao, and A. Belyanin, “Generation of entangled photons in graphene in a strong magnetic field,” Phys. Rev. Lett. 110(7), 077404 (2013).
[Crossref]

X. Yao and A. Belyanin, “Nonlinear optics of graphene in a strong magnetic field,” J. Phys.: Condens. Matter 25(5), 054203 (2013).
[Crossref]

X. Yao and A. Belyanin, “Giant optical nonlinearity of graphene in a strong magnetic field,” Phys. Rev. Lett. 108(25), 255503 (2012).
[Crossref]

Berger, C.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

Binder, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Brown, N.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

Calizo, I.

A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Tewelde-brhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref]

Cao, J. C.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
[Crossref]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M.-R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Conrad, E. H.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

Dasgupta, A.

A. Dasgupta, J. Gao, and X. Yang, “Atomically Thin Nonlinear Transition Metal Dichalcogenide Holograms,” Nano Lett. 19(9), 6511–6516 (2019).
[Crossref]

de Heer, W. A.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

M. L. Sadowski, G. Martinez, M. Potemski, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett. 97(26), 266405 (2006).
[Crossref]

Ding, C.

C. Ding, X. Hao, D. Zhang, and J. Li, “Nonlinear dynamic instability of Landau quantized graphene inside an optical ring cavity,” Laser Phys. Lett. 16(2), 025202 (2019).
[Crossref]

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Matched infrared soliton pairs in graphene under Landau quantization via four-wave mixing,” Phys. Rev. A 90(4), 043819 (2014).
[Crossref]

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Formation and ultraslow propagation of infrared solitons in graphene under an external magnetic field,” J. Appl. Phys. 115(23), 234301 (2014).
[Crossref]

Dufresne, E. R.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[Crossref]

Fal’ko, V. I.

D. S. L. Abergel and V. I. Fal’ko, “Optical and magneto-optical far-infrared properties of bilayer graphene,” Phys. Rev. B 75(15), 155430 (2007).
[Crossref]

Fan, S.

F. Xu, J. Zhu, S. Fan, and Y. Qi, “Control of slow light in three- and four level graphene nanostructures,” Mod. Phys. Lett. B 33(20), 1950226 (2019).
[Crossref]

First, P. N.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Gao, J.

A. Dasgupta, J. Gao, and X. Yang, “Atomically Thin Nonlinear Transition Metal Dichalcogenide Holograms,” Nano Lett. 19(9), 6511–6516 (2019).
[Crossref]

Geim, A. K.

A. H. Castro Neto, F. Guinea, N. M.-R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Generalov, A.

X. Yanga, A. Vorobiev, A. Generalov, M. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111(2), 021102 (2017).
[Crossref]

Ghosh, S.

A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Tewelde-brhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref]

Grier, D. G.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[Crossref]

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Guinea, F.

A. H. Castro Neto, F. Guinea, N. M.-R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Hamedi, H. R.

H. R. Hamedi and S. H. Asadpour, “Realization of optical bistability and multistability in Landau-quantized graphene,” J. Appl. Phys. 117(18), 183101 (2015).
[Crossref]

Han, M. Y.

Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared spectroscopy of Landau Levels of graphene,” Phys. Rev. Lett. 98(19), 197403 (2007).
[Crossref]

Hao, X.

C. Ding, X. Hao, D. Zhang, and J. Li, “Nonlinear dynamic instability of Landau quantized graphene inside an optical ring cavity,” Laser Phys. Lett. 16(2), 025202 (2019).
[Crossref]

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Matched infrared soliton pairs in graphene under Landau quantization via four-wave mixing,” Phys. Rev. A 90(4), 043819 (2014).
[Crossref]

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Formation and ultraslow propagation of infrared solitons in graphene under an external magnetic field,” J. Appl. Phys. 115(23), 234301 (2014).
[Crossref]

Harris, S. E.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

Hass, J.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

Hau, L. V.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Science 34(26), 6012 (1995).
[Crossref]

Henriksen, E. A.

Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared spectroscopy of Landau Levels of graphene,” Phys. Rev. Lett. 98(19), 197403 (2007).
[Crossref]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Science 34(26), 6012 (1995).
[Crossref]

Hone, J.

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref]

Hong, B. H.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Huang, Q. J.

J. H. Li, X. Y. La, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74(3), 035801 (2006).
[Crossref]

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Javidi, B.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
[Crossref]

Jiang, Z.

Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared spectroscopy of Landau Levels of graphene,” Phys. Rev. Lett. 98(19), 197403 (2007).
[Crossref]

Joshi, A.

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91(14), 143904 (2003).
[Crossref]

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Kim, P.

Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared spectroscopy of Landau Levels of graphene,” Phys. Rev. Lett. 98(19), 197403 (2007).
[Crossref]

Kim, Y. J.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Kwong, N. H.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

Kysar, J. W.

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref]

La, X. Y.

J. H. Li, X. Y. La, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74(3), 035801 (2006).
[Crossref]

Lau, C. N.

A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Tewelde-brhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref]

Lee, C.

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref]

Lee, R.-K.

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Li, J.

C. Ding, X. Hao, D. Zhang, and J. Li, “Nonlinear dynamic instability of Landau quantized graphene inside an optical ring cavity,” Laser Phys. Lett. 16(2), 025202 (2019).
[Crossref]

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Matched infrared soliton pairs in graphene under Landau quantization via four-wave mixing,” Phys. Rev. A 90(4), 043819 (2014).
[Crossref]

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Formation and ultraslow propagation of infrared solitons in graphene under an external magnetic field,” J. Appl. Phys. 115(23), 234301 (2014).
[Crossref]

Li, J. H.

J. H. Li, X. Y. La, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74(3), 035801 (2006).
[Crossref]

Li, T. B.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

Li, X. B.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

Li, Y. Q.

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Ling, H. Y.

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

Liu, H. C.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
[Crossref]

Liu, S. P.

Liu, X.

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

Luo, J. M.

J. H. Li, X. Y. La, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74(3), 035801 (2006).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Marchenkov, A. N.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

Martinez, G.

M. L. Sadowski, G. Martinez, M. Potemski, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett. 97(26), 266405 (2006).
[Crossref]

Matoba, O.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
[Crossref]

Mayou, D.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

Miao, F.

A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Tewelde-brhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref]

Millan, M. S.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
[Crossref]

Moradi, R.

T. Naseri and R. Moradi, “Realization of electromagnetically induced phase grating and Kerr nonlinearity in graphene ensemble under Raman excitation,” Superlattices Microstruct. 101, 592–601 (2017).
[Crossref]

Naseri, T.

T. Naseri and R. Moradi, “Realization of electromagnetically induced phase grating and Kerr nonlinearity in graphene ensemble under Raman excitation,” Superlattices Microstruct. 101, 592–601 (2017).
[Crossref]

Naud, C.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

Nomura, T.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
[Crossref]

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Novoselov, K. S.

A. H. Castro Neto, F. Guinea, N. M.-R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Ozyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Park, J. S.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Peres, N. M.-R.

A. H. Castro Neto, F. Guinea, N. M.-R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Perez-Cabre, E.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
[Crossref]

Peyghambarian, N.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Phillips, M. C.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

Potemski, M.

M. L. Sadowski, G. Martinez, M. Potemski, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett. 97(26), 266405 (2006).
[Crossref]

Qamar, S.

S. Asghar, M. Abbas, S. Qamar, and S. Qamar, “Electromagnetically induced holographic imaging with Rydberg atoms,” Opt. Commun. 437, 290–296 (2019).
[Crossref]

S. Asghar, M. Abbas, S. Qamar, and S. Qamar, “Electromagnetically induced holographic imaging with Rydberg atoms,” Opt. Commun. 437, 290–296 (2019).
[Crossref]

S. Asghar-Ziauddin, S. Qamar, and S. Qamar, “Electromagnetically induced grating with Rydberg atoms,” Phys. Rev. A 94(3), 033823 (2016).
[Crossref]

S. Asghar-Ziauddin, S. Qamar, and S. Qamar, “Electromagnetically induced grating with Rydberg atoms,” Phys. Rev. A 94(3), 033823 (2016).
[Crossref]

Qi, Y.

F. Xu, J. Zhu, S. Fan, and Y. Qi, “Control of slow light in three- and four level graphene nanostructures,” Mod. Phys. Lett. B 33(20), 1950226 (2019).
[Crossref]

Qiu, T. H.

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Radmore, P. M.

S. M. Barnett and P. M. Radmore, Methods in theoretical quantum optics (Oxford. Univ. Press, 2002).

Rumyantsev, I.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

Sadowski, M. L.

M. L. Sadowski, G. Martinez, M. Potemski, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett. 97(26), 266405 (2006).
[Crossref]

Schwartz, M. E.

Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared spectroscopy of Landau Levels of graphene,” Phys. Rev. Lett. 98(19), 197403 (2007).
[Crossref]

Sheng, J.

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Song, C. Y.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
[Crossref]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Song, Z. M.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

SpringThorpe, A. J.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
[Crossref]

Stake, J.

X. Yanga, A. Vorobiev, A. Generalov, M. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111(2), 021102 (2017).
[Crossref]

Stormer, H. L.

Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared spectroscopy of Landau Levels of graphene,” Phys. Rev. Lett. 98(19), 197403 (2007).
[Crossref]

Takayama, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

Tewelde-brhan, D.

A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Tewelde-brhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref]

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Tokman, M.

M. Tokman, X. Yao, and A. Belyanin, “Generation of entangled photons in graphene in a strong magnetic field,” Phys. Rev. Lett. 110(7), 077404 (2013).
[Crossref]

Tung, L. C.

Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared spectroscopy of Landau Levels of graphene,” Phys. Rev. Lett. 98(19), 197403 (2007).
[Crossref]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Vorobiev, A.

X. Yanga, A. Vorobiev, A. Generalov, M. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111(2), 021102 (2017).
[Crossref]

Wang, H.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Wang, Y. J.

Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared spectroscopy of Landau Levels of graphene,” Phys. Rev. Lett. 98(19), 197403 (2007).
[Crossref]

Wei, X. D.

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref]

Wu, X. S.

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

Wu, Y.

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Formation and ultraslow propagation of infrared solitons in graphene under an external magnetic field,” J. Appl. Phys. 115(23), 234301 (2014).
[Crossref]

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Matched infrared soliton pairs in graphene under Landau quantization via four-wave mixing,” Phys. Rev. A 90(4), 043819 (2014).
[Crossref]

Xiao, M.

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91(14), 143904 (2003).
[Crossref]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

Xu, F.

F. Xu, J. Zhu, S. Fan, and Y. Qi, “Control of slow light in three- and four level graphene nanostructures,” Mod. Phys. Lett. B 33(20), 1950226 (2019).
[Crossref]

Xu, X. F.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

yang, W. X.

Yang, X.

A. Dasgupta, J. Gao, and X. Yang, “Atomically Thin Nonlinear Transition Metal Dichalcogenide Holograms,” Nano Lett. 19(9), 6511–6516 (2019).
[Crossref]

Yanga, X.

X. Yanga, A. Vorobiev, A. Generalov, M. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111(2), 021102 (2017).
[Crossref]

Yao, X.

M. Tokman, X. Yao, and A. Belyanin, “Generation of entangled photons in graphene in a strong magnetic field,” Phys. Rev. Lett. 110(7), 077404 (2013).
[Crossref]

X. Yao and A. Belyanin, “Nonlinear optics of graphene in a strong magnetic field,” J. Phys.: Condens. Matter 25(5), 054203 (2013).
[Crossref]

X. Yao and A. Belyanin, “Giant optical nonlinearity of graphene in a strong magnetic field,” Phys. Rev. Lett. 108(25), 255503 (2012).
[Crossref]

Yu, R.

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Matched infrared soliton pairs in graphene under Landau quantization via four-wave mixing,” Phys. Rev. A 90(4), 043819 (2014).
[Crossref]

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Formation and ultraslow propagation of infrared solitons in graphene under an external magnetic field,” J. Appl. Phys. 115(23), 234301 (2014).
[Crossref]

Zhang, D.

C. Ding, X. Hao, D. Zhang, and J. Li, “Nonlinear dynamic instability of Landau quantized graphene inside an optical ring cavity,” Laser Phys. Lett. 16(2), 025202 (2019).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

Zhang, Y.

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

Zhang, Z.

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

Zhao, L.

L. Zhao, “Electromagnetically induced polarization grating,” Sci. Rep. 8(1), 3073 (2018).
[Crossref]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Y. Zheng and T. Ando, “Hall conductivity of a two-dimensional graphite system,” Phys. Rev. B 65(24), 245420 (2002).
[Crossref]

Zhu, J.

F. Xu, J. Zhu, S. Fan, and Y. Qi, “Control of slow light in three- and four level graphene nanostructures,” Mod. Phys. Lett. B 33(20), 1950226 (2019).
[Crossref]

Zhu, Z. H.

Appl. Phys. Lett. (2)

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84(20), 4068–4070 (2004).
[Crossref]

X. Yanga, A. Vorobiev, A. Generalov, M. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111(2), 021102 (2017).
[Crossref]

J. Appl. Phys. (2)

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Formation and ultraslow propagation of infrared solitons in graphene under an external magnetic field,” J. Appl. Phys. 115(23), 234301 (2014).
[Crossref]

H. R. Hamedi and S. H. Asadpour, “Realization of optical bistability and multistability in Landau-quantized graphene,” J. Appl. Phys. 117(18), 183101 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (2)

T. Ando, “Theory of Electronic States and Transport in Carbon Nanotubes,” J. Phys. Soc. Jpn. 74(3), 777–817 (2005).
[Crossref]

T. Ando, “Magnetic Oscillation of Optical Phonon in Graphene,” J. Phys. Soc. Jpn. 76(2), 024712 (2007).
[Crossref]

J. Phys.: Condens. Matter (1)

X. Yao and A. Belyanin, “Nonlinear optics of graphene in a strong magnetic field,” J. Phys.: Condens. Matter 25(5), 054203 (2013).
[Crossref]

Laser Phys. Lett. (1)

C. Ding, X. Hao, D. Zhang, and J. Li, “Nonlinear dynamic instability of Landau quantized graphene inside an optical ring cavity,” Laser Phys. Lett. 16(2), 025202 (2019).
[Crossref]

Mod. Phys. Lett. B (1)

F. Xu, J. Zhu, S. Fan, and Y. Qi, “Control of slow light in three- and four level graphene nanostructures,” Mod. Phys. Lett. B 33(20), 1950226 (2019).
[Crossref]

Nano Lett. (2)

A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Tewelde-brhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref]

A. Dasgupta, J. Gao, and X. Yang, “Atomically Thin Nonlinear Transition Metal Dichalcogenide Holograms,” Nano Lett. 19(9), 6511–6516 (2019).
[Crossref]

Nat. Nanotechnol. (1)

S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref]

Nature (1)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Opt. Commun. (1)

S. Asghar, M. Abbas, S. Qamar, and S. Qamar, “Electromagnetically induced holographic imaging with Rydberg atoms,” Opt. Commun. 437, 290–296 (2019).
[Crossref]

Opt. Express (1)

Phys. Rev. A (6)

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

C. Ding, R. Yu, J. Li, X. Hao, and Y. Wu, “Matched infrared soliton pairs in graphene under Landau quantization via four-wave mixing,” Phys. Rev. A 90(4), 043819 (2014).
[Crossref]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

S. Asghar-Ziauddin, S. Qamar, and S. Qamar, “Electromagnetically induced grating with Rydberg atoms,” Phys. Rev. A 94(3), 033823 (2016).
[Crossref]

F. R. Arteaga-Sierra, A. Antikainen, and G. P. Agrawal, “Soliton dynamics in photonic-crystal fibers with frequency-dependent Kerr nonlinearity,” Phys. Rev. A 98(1), 013830 (2018).
[Crossref]

J. H. Li, X. Y. La, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74(3), 035801 (2006).
[Crossref]

Phys. Rev. B (2)

D. S. L. Abergel and V. I. Fal’ko, “Optical and magneto-optical far-infrared properties of bilayer graphene,” Phys. Rev. B 75(15), 155430 (2007).
[Crossref]

Y. Zheng and T. Ando, “Hall conductivity of a two-dimensional graphite system,” Phys. Rev. B 65(24), 245420 (2002).
[Crossref]

Phys. Rev. Lett. (7)

Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, “Infrared spectroscopy of Landau Levels of graphene,” Phys. Rev. Lett. 98(19), 197403 (2007).
[Crossref]

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91(14), 143904 (2003).
[Crossref]

M. Tokman, X. Yao, and A. Belyanin, “Generation of entangled photons in graphene in a strong magnetic field,” Phys. Rev. Lett. 110(7), 077404 (2013).
[Crossref]

X. Yao and A. Belyanin, “Giant optical nonlinearity of graphene in a strong magnetic field,” Phys. Rev. Lett. 108(25), 255503 (2012).
[Crossref]

M. L. Sadowski, G. Martinez, M. Potemski, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett. 97(26), 266405 (2006).
[Crossref]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

Proc. IEEE (1)

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
[Crossref]

Rev. Mod. Phys. (2)

A. H. Castro Neto, F. Guinea, N. M.-R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
[Crossref]

Sci. Rep. (1)

L. Zhao, “Electromagnetically induced polarization grating,” Sci. Rep. 8(1), 3073 (2018).
[Crossref]

Science (3)

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref]

C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 1191–1196 (2006).
[Crossref]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Science 34(26), 6012 (1995).
[Crossref]

Superlattices Microstruct. (1)

T. Naseri and R. Moradi, “Realization of electromagnetically induced phase grating and Kerr nonlinearity in graphene ensemble under Raman excitation,” Superlattices Microstruct. 101, 592–601 (2017).
[Crossref]

Other (1)

S. M. Barnett and P. M. Radmore, Methods in theoretical quantum optics (Oxford. Univ. Press, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Quantized Energy levels (LLs) near the Dirac point as a result of the magnetic field incident perpendicularly on the monolayer of graphene (b) Schematic of energy level configuration corresponding to the magnetized graphene of length $L$ driven by a strong control terahertz standing-wave $\omega _{TH}$ and a weak probe field $\omega _p$, while inset shows the three level system for which LLs numbers are $n=-1,+1$ and $+2$ represent levels $\vert {1}\rangle$, $\vert {2}\rangle$ and $\vert {3}\rangle$, respectively.
Fig. 2.
Fig. 2. Density plot of normalized diffraction intensity $I_p(\theta )$ as a function of sin($\theta$), and magnetic field $B$. Other parameters are $\Omega _{TH}=8 \gamma _3$, $|\Delta _{TH}|=0$, $\gamma _3=3$THz, $\gamma _2=0.05\gamma _3$, $L=5$ and $N=5$.
Fig. 3.
Fig. 3. Schematics of EICHI; QWPs represent quarter wave plates, GL represents graphene monolayer, $B$ is the magnetic field applied, $D$ stands for detector or CCD, $BS$ stands for beam splitter and $M$ for mirror.
Fig. 4.
Fig. 4. Density plots of (a) Transmitted field $E_o(x,L)$ from magnetized graphene layer across transverse position $x$. (b) Imaging obtained in the EICHI technique for the self imaging number $m=1$ and (c) $m = 2$. Other parameters are same as in Fig. 2.
Fig. 5.
Fig. 5. Schematics of EIQHI; QWP represents quarter wave plates, GL represents graphene monolayer, $B$ is the magnetic field applied, $D_i$ and $D_s$ stand for detectors or CCD cameras, $BS$ stands for beam splitter and $M$ for mirror.
Fig. 6.
Fig. 6. Density plots of imaging obtained in the EIQHI technique for scanning detector $D_i$ and $D_s$ at $x_s=0$ for (a) $u_i=6$cm (b) $u_i=11$cm, (c) $u_i=26$cm, whereas fixed parameters are $u_{so1}=4$cm, $u_{so2}=10$cm. All the other parameters are same as in Fig. 2.
Fig. 7.
Fig. 7. Density plots of imaging obtained in the EIQHI technique for scanning both detector $D_i$ and $D_s$ in the way (a) $x_s=x_i$ (b) $x_s=0$ and (c) $x_s=-x_i$, whereas fixed parameters are $u_{so1}=4$cm, $u_{so2}=10$cm and $u_i=26$cm. All the other parameters are same as in Fig. 2.

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

E p ( z , t ) = 1 2 e E o exp ( i ω p t + i k p . z ) + c . c ,
E T H ( z , t ) = 1 2 e E T H sin [ n π x a x ] exp ( i ω T H t + i k T H . z ) + c . c ,
H ^ 0 = ν f [ 0 π ^ x i π ^ y 0 0 π ^ x + i π ^ y 0 0 0 0 0 0 π ^ x + i π ^ y 0 0 π ^ x i π ^ y 0 ] ,
Ψ n , k y ( r ) = C n L exp ( i k y y ) ( sgn [ n ] i | n | 1 φ | n | 1 i | n | φ | n | ) ,
C n = { 1 ,   n = 0 , 1 2 , n 0 ,
φ | n | = H | n | [ ( x l c 2 k y l c ) ] 2 | n | | n | π l c exp [ 1 2 ( x l c 2 k y l c ) 2 ] ,
H ^ 0 = n = 1 n ( ε n | n n | )
H ^ i n t = ν f σ . e c ( A o p t ) .
H ^ i n t = I . ν f σ . e c ( A o p t ) . I .
H ^ = H ^ 0 + H ^ i n t = n = 1 n ( E n | n n | ) + I . ν f σ . e c ( A o p t ) . I .
H I = Δ p | 3 3 | + ( Δ p Δ T H ) | 2 2 | ( Ω p | 3 1 | + Ω T H | 3 2 | + H . c . ) ,
E o ( x , L ) / E o ( x , z = 0 ) = exp ( α L + i β L ) ,
χ = n c μ 31 2 ϵ 0 ϵ r ρ 31 Ω p = η i A 21 A 21 A 31 + Ω T H 2 .
I p ( θ ) = | E ( θ ) | 2 × sin 2 [ N π a x sin ( θ ) / λ ] N 2 sin 2 [ π a x sin ( θ ) / λ ] ,
E ( θ ) = 0 1 E o ( x , L ) exp ( 2 π i a x x sin ( θ ) / λ ) d x .
E o ( x , L ) = + c n exp ( i 2 n x π a x ) ,
E r ( x ) E o ( x , L ) + c n exp ( i u s o 2 n 2 π λ a x 2 ) exp ( i 2 n x π a x ) ,
I ( x s , x i ) + c n exp i 2 π 2 n 2 a x 2 k s ( u s o 2 ( u s o 1 + ζ u i ) u s o 1 + u s o 2 + ζ u i ) exp ( i u s o 2 x i + ( u s o 1 + ζ u i ) x s u s o 1 + u s o 2 + ζ u i ) 2 π n a x ,
X q = u s o 2 ( u s o 1 + ζ u i ) u s o 1 + u s o 2 + ζ u i = 2 m a x 2 λ
X q = m x T
x T = 2 a x 2 λ
I ( x i , x i ) + c n exp ( i m n 2 π ) exp ( i 2 n π x i a x ) ,
I ( x s = 0 , x i ) + c n exp [ i 2 π 2 n 2 a x 2 k s ( u s o 2 ( u s o 1 + ζ u i ) u s o 1 + u s o 2 + ζ u i ) ] exp ( i u s o 2 x i u s o 1 + u s o 2 + ζ u i ) 2 π n a x .
I ( x s = x i , x i ) + c n exp [ i 2 π 2 n 2 a x 2 k s ( u s o 2 ( u s o 1 + ζ u i ) u s o 1 + u s o 2 + ζ u i ) ] exp ( i x i 2 π n a x ) ,
2 E p + 1 v f 2 2 E p t 2 = 1 ϵ o ϵ r v f 2 2 P t 2 .
( z + v f t ) ( z + 1 v f t ) E p = 1 ϵ o ϵ r v f 2 2 P t 2 ,
E o t << ω E o , z E o << k E o , t << ω , z << k .
i k z E o + i k v f E o t = i ω 1 ϵ o ϵ r v f 2 2 ( P t i ω P ) .
i k z E o = i ω 2 ϵ o ϵ r v f 2 ( i ω P ) ,
z E o = i π λ ϵ 0 ϵ r ( P ) ,
z E o = [ α + i β ] E o ,
E o ( x , L ) = E o ( x , z = 0 ) exp ( α + i β ) L .
E r ( x ) E o ( x , L ) = d x o ´ d x o h r ( x , x o ´ ) h o ( x , x o ) E o ( x 0 ´ ) E o ( x o ) ,
h o ( x , x o ) d x ´ E o ( x ´ , L ) exp ( i k ( x o x ´ ) 2 2 u s o 1 + i k ( x ´ x ) 2 2 u s o 2 ) ,
h r ( x , x o ) exp ( i k ( x x o ) 2 2 u r ) .
E r ( x ) E o ( x , L ) d x ´ E o ( x o ´ , L ) exp [ i k 2 u s o 2 ( x ´ x ) 2 ] ,
R ( x s , x i ) E i ( ) ( x i ) E s ( ) ( x s ) E s ( + ) ( x s ) E i ( + ) ( x i ) ,
R ( x s , x i ) = | 0 | E s ( + ) ( x s ) E i ( + ) ( x i ) | ψ | 2 ,
I ( x s , x i ) = E i ( ) ( x i ) E s r ( ) ( x s ) E s o ( + ) ( x s ) E i ( + ) ( x i ) + c . c .
I ( x s , x i ) = ψ | E i ( ) ( x i ) E s r ( ) ( x s ) | 0 × 0 | E s o ( + ) ( x s ) E i ( + ) ( x i ) | ψ + c . c .
| 0 | E j ( + ) ( x s ) E i ( + ) ( x i ) | ψ | d x o h j ( x s , x o ) h i ( x i , x o ) ,
h s o ( x s , x o ) d x ´ E o ( x ´ , L ) exp ( i k s ( x o x ´ ) 2 2 u s o 1 + i k s ( x ´ x s ) 2 2 u s o 2 ) ,
h s r ( x s , x o , u s r ) exp ( i k s u s r ) exp ( i k s ( x s x o ) 2 2 u s r ) ,
h i ( x i , x o , u i ) exp ( i k i u i ) exp ( i k i ( x i x o ) 2 2 u i ) ,
I ( x s , x i ) d x ´ E o ( x ´ , L ) exp [ i k s ( x i x ´ ) 2 ( 2 u s o 1 + ζ u i ) + i k s ( x ´ x s ) 2 2 u s o 2 ] .