Abstract

We report on a new image gating mechanism for intracavity nonlinear image upconversion systems that uses sum-frequency mixing of an external infrared image and a pump laser beam. Fast and flexible time duration gating of the upconverted image is achieved through transient electro-optic frustration of the phase-matching condition in a nonlinear crystal placed inside the cavity of the pump beam. The phase-matching condition is controlled by altering the polarization state of the laser cavity beam without interrupting laser oscillation, using a Pockels cell in one arm of an L-folded standing-wave resonator. In this way, an external image shutter mechanism is added to an image upconverter system that allows for using low shutter-speed EMCCDs (Electron Multiplying CCD) in range-gated imaging systems across the whole IR and potentially in the THz range.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact self-illuminated image upconversion system based on intracavity second-harmonic generation

A. J. Torregrosa, H. Maestre, M. L. Rico, and J. Capmany
Opt. Lett. 43(20) 5050-5053 (2018)

Polarization-modulated three-dimensional imaging using a large-aperture electro-optic modulator

Zhen Chen, Bo Liu, Shengjie Wang, and Enhai Liu
Appl. Opt. 57(27) 7750-7757 (2018)

Parametric upconversion imaging and its applications

Ajanta Barh, Peter John Rodrigo, Lichun Meng, Christian Pedersen, and Peter Tidemand-Lichtenberg
Adv. Opt. Photon. 11(4) 952-1019 (2019)

References

  • View by:
  • |
  • |
  • |

  1. O. David, N. S. Kopeika, and B. Weizer, “Range gated active night vision system for automobiles,” Appl. Opt. 45(28), 7248–7254 (2006).
    [Crossref]
  2. M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32(21), 3146–3148 (2007).
    [Crossref]
  3. See for example ON SEMICONDUCTOR KAE-02150 EMCCD sensor at https://www.onsemi.com/pub/Collateral/KAE02150-D.PDF .
  4. E. Repasi, P. Lutzmann, O. Steinvall, M. Elmqvist, B. Göhler, and G. Anstett, “Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configuration,” Appl. Opt. 48(31), 5956–5969 (2009).
    [Crossref]
  5. There is in fact an electron bombardment image intensifier tube developed by INTEVAC Inc., based on an InGaAs photocathode that operates in the SWIR up to 1.6 µm. It is of very restricted availability, and has not been considered in this work, aimed at a widespread potential use. ( https://www.intevac.com/intevacphotonics/livar-506/ ).
  6. J. H. Taylor and H. W. Yates, “Atmospheric Transmission in the Infrared,” J. Opt. Soc. Am. 47(3), 223–226 (1957).
    [Crossref]
  7. J. E. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–70 (1968).
    [Crossref]
  8. C. Pedersen, E. Karamehmedović, J. S. Dam, and P. Tidemand-Lichtenberg, “Enhanced 2D-image upconversion using solid-state lasers,” Opt. Express 17(23), 20885–20890 (2009).
    [Crossref]
  9. A. J. Torregrosa, H. Maestre, and J. Capmany, “Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm,” Opt. Lett. 40(22), 5315–5318 (2015).
    [Crossref]
  10. R. Demur, R. Garioud, A. Grisard, E. Lallier, L. Leviandier, L. Morvan, N. Treps, and C. Fabre, “Near-infrared to visible upconversion imaging using a broadband pump laser,” Opt. Express 26(10), 13252–13263 (2018).
    [Crossref]
  11. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  12. A. J. Torregrosa, H. Maestre, M. L. Rico, and J. Capmany, “Compact self-illuminated image upconversion system based on intracavity second-harmonic generation,” Opt. Lett. 43(20), 5050–5053 (2018).
    [Crossref]
  13. S. Junaid, J. Tomko, M. P. Semtsiv, J. Kischkat, W. T. Masselink, C. Pedersen, and P. Tidemand-Lichtenberg, “Mid-infrared upconversion based hyperspectral imaging,” Opt. Express 26(3), 2203–2211 (2018).
    [Crossref]
  14. Y. P. Tseng, P. Bouzy, C. Pedersen, N. Stone, and P. Tidemand-Lichtenberg, “Upconversion raster scanning microscope for long-wavelength infrared imaging of breast cancer .microcalcifications,” Biomed. Opt. Express 9(10), 4979–4987 (2018).
    [Crossref]
  15. S. Fan, F. Qi, T. Notake, K. Nawata, Y. Takida, T. Matsukawa, and H. Minamide, “Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal,” Opt. Express 23(6), 7611–7618 (2015).
    [Crossref]
  16. J. E. Midwinter, “Parametric Infrared Image Converters,” IEEE J. Quantum Electron. 4(11), 716–720 (1968).
    [Crossref]
  17. J. W. Goodman, in Introduction to Fourier Optics (Roberts & Co., 2005).
  18. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  19. R. G. Smith, “Theory of intracavity optical second-harmoinc generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
    [Crossref]
  20. J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Utert, “Continuous 0.532 µ solid-state source using Ba2NaNb5O15,” Appl. Phys. Lett. 12(9), 306–308 (1968).
    [Crossref]
  21. M. Born and E. Wolf, in Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th Edition, (Pergamon, 1993).
  22. Z. Song, L. Liub, Y. Zhoub, D. Liub, and H. Renb, “Electro-optic modulation of light propagating near the optic axis with any polarization in uniaxial crystals,” Optik 117(9), 418–422 (2006).
    [Crossref]
  23. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNb O3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
    [Crossref]
  24. Z. Chen, B. Liu, S. Wang, and E. Liu, “Polarization-modulated three-dimensional imaging using a large-aperture electro-optic modulator,” Appl. Opt. 57(27), 7750–7756 (2018).
    [Crossref]
  25. J. Warner, “Phase-Matching for Optical Up-Conversion with Maximum Angular Aperture-Theory and Practice,” Opt. Quantum Electron. 1(1), 25–28 (1969).
    [Crossref]
  26. H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, and J. Capmany, “IR-to-visible image upconverter under nonlinear crystal thermal gradient operation,” Opt. Express 26(2), 1133–1144 (2018).
    [Crossref]
  27. H. Suchowski, B. D. Bruner, A. Arie, and Y. Silberberg, “Broadband frequency conversion,” Opt. Photonics News 21(10), 36–41 (2010).
    [Crossref]
  28. Y. R. Shen, in The Principles of Nonlinear Optics, (Wiley, 1984).
  29. PPST free software from St. Andrews University, Scotland, available at: https://www.st-andrews.ac.uk/∼psst/
  30. L. Friob, P. Mandel, and E. A. Viktorov, “Intracavity second harmonic generation in a Fabry–Perot resonator: I. Polarization effects,” Quantum Semiclassical Opt. 10(1), 1–17 (1998).
    [Crossref]
  31. A. E. Siegman, Lasers, (Universiy Science Books, 1896).
  32. Otsuka in Nonlinear Dynamics in Optical Complex Systems. Series: Advances in Opto-Electronics (Kluwer, 1999). Also, (Springer, 2000).
  33. T. Baer, “Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. B 3(9), 1175–1180 (1986).
    [Crossref]
  34. G. P. Agrawal, in Fiber-Optic Communication Systems, Third Edition (Wiley, 2002).
  35. A. V. Smith, SNLO software AS-Photonics, free download available at: http://www.as-photonics.com/snlo .
  36. P. P. Yaney and L. G. DeShazer, “Spectroscopic studies and analysis of the laser states of Nd3+ in YVO4,” J. Opt. Soc. Am. B 66(12), 1405–1414 (1976).
    [Crossref]
  37. C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19(16), 14883–14891 (2011).
    [Crossref]
  38. T. J. Kane, “Intensity-Noise in Diode-Pumped Single-Frequency Nd:YAG Lasers and its Control by Electronic Feedback,” IEEE Photonics Technol. Lett. 2(4), 244–245 (1990).
    [Crossref]
  39. N. Dokhane and G. L. Lippi, “Improved direct modulation technique for faster switching of diode lasers,” IEE Proc.: Optoelectron. 149(1), 7–16 (2002).
    [Crossref]
  40. J. Zondy, M. Abed, and S. Khodja, “Twin-crystal walk-off-compensated type-II second-harmonic generation: single-pass and cavity-enhanced experiments in KTiOPO4,” J. Opt. Soc. Am. B 11(12), 2368–2379 (1994).
    [Crossref]
  41. Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity PPLN crystals for ultra-low-voltage laser Q-switching and high-efficiency wavelength conversion,” Appl. Phys. B 80(7), 889–896 (2005).
    [Crossref]
  42. T. Taira, “Q-Switching and Frequency Doubling of Solid-state Lasers by a Single Intracavity KTP Crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
    [Crossref]

2018 (6)

2015 (2)

2012 (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

2011 (1)

2010 (1)

H. Suchowski, B. D. Bruner, A. Arie, and Y. Silberberg, “Broadband frequency conversion,” Opt. Photonics News 21(10), 36–41 (2010).
[Crossref]

2009 (2)

2007 (1)

2006 (2)

O. David, N. S. Kopeika, and B. Weizer, “Range gated active night vision system for automobiles,” Appl. Opt. 45(28), 7248–7254 (2006).
[Crossref]

Z. Song, L. Liub, Y. Zhoub, D. Liub, and H. Renb, “Electro-optic modulation of light propagating near the optic axis with any polarization in uniaxial crystals,” Optik 117(9), 418–422 (2006).
[Crossref]

2005 (1)

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity PPLN crystals for ultra-low-voltage laser Q-switching and high-efficiency wavelength conversion,” Appl. Phys. B 80(7), 889–896 (2005).
[Crossref]

2002 (1)

N. Dokhane and G. L. Lippi, “Improved direct modulation technique for faster switching of diode lasers,” IEE Proc.: Optoelectron. 149(1), 7–16 (2002).
[Crossref]

1998 (1)

L. Friob, P. Mandel, and E. A. Viktorov, “Intracavity second harmonic generation in a Fabry–Perot resonator: I. Polarization effects,” Quantum Semiclassical Opt. 10(1), 1–17 (1998).
[Crossref]

1994 (2)

J. Zondy, M. Abed, and S. Khodja, “Twin-crystal walk-off-compensated type-II second-harmonic generation: single-pass and cavity-enhanced experiments in KTiOPO4,” J. Opt. Soc. Am. B 11(12), 2368–2379 (1994).
[Crossref]

T. Taira, “Q-Switching and Frequency Doubling of Solid-state Lasers by a Single Intracavity KTP Crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[Crossref]

1990 (2)

T. J. Kane, “Intensity-Noise in Diode-Pumped Single-Frequency Nd:YAG Lasers and its Control by Electronic Feedback,” IEEE Photonics Technol. Lett. 2(4), 244–245 (1990).
[Crossref]

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNb O3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

1986 (1)

1976 (1)

P. P. Yaney and L. G. DeShazer, “Spectroscopic studies and analysis of the laser states of Nd3+ in YVO4,” J. Opt. Soc. Am. B 66(12), 1405–1414 (1976).
[Crossref]

1970 (1)

R. G. Smith, “Theory of intracavity optical second-harmoinc generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[Crossref]

1969 (1)

J. Warner, “Phase-Matching for Optical Up-Conversion with Maximum Angular Aperture-Theory and Practice,” Opt. Quantum Electron. 1(1), 25–28 (1969).
[Crossref]

1968 (4)

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Utert, “Continuous 0.532 µ solid-state source using Ba2NaNb5O15,” Appl. Phys. Lett. 12(9), 306–308 (1968).
[Crossref]

J. E. Midwinter, “Parametric Infrared Image Converters,” IEEE J. Quantum Electron. 4(11), 716–720 (1968).
[Crossref]

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. E. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–70 (1968).
[Crossref]

1957 (1)

Abed, M.

Agrawal, G. P.

G. P. Agrawal, in Fiber-Optic Communication Systems, Third Edition (Wiley, 2002).

Anstett, G.

Arie, A.

H. Suchowski, B. D. Bruner, A. Arie, and Y. Silberberg, “Broadband frequency conversion,” Opt. Photonics News 21(10), 36–41 (2010).
[Crossref]

Baer, T.

Bang, O.

Born, M.

M. Born and E. Wolf, in Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th Edition, (Pergamon, 1993).

Bouzy, P.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Bruner, B. D.

H. Suchowski, B. D. Bruner, A. Arie, and Y. Silberberg, “Broadband frequency conversion,” Opt. Photonics News 21(10), 36–41 (2010).
[Crossref]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNb O3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Capmany, J.

Chen, Y. F.

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity PPLN crystals for ultra-low-voltage laser Q-switching and high-efficiency wavelength conversion,” Appl. Phys. B 80(7), 889–896 (2005).
[Crossref]

Chen, Y. H.

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity PPLN crystals for ultra-low-voltage laser Q-switching and high-efficiency wavelength conversion,” Appl. Phys. B 80(7), 889–896 (2005).
[Crossref]

Chen, Z.

Christnacher, F.

Dam, J. S.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

C. Pedersen, E. Karamehmedović, J. S. Dam, and P. Tidemand-Lichtenberg, “Enhanced 2D-image upconversion using solid-state lasers,” Opt. Express 17(23), 20885–20890 (2009).
[Crossref]

David, O.

Demur, R.

DeShazer, L. G.

P. P. Yaney and L. G. DeShazer, “Spectroscopic studies and analysis of the laser states of Nd3+ in YVO4,” J. Opt. Soc. Am. B 66(12), 1405–1414 (1976).
[Crossref]

Dokhane, N.

N. Dokhane and G. L. Lippi, “Improved direct modulation technique for faster switching of diode lasers,” IEE Proc.: Optoelectron. 149(1), 7–16 (2002).
[Crossref]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNb O3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Elmqvist, M.

Fabre, C.

Fan, S.

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNb O3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Fernández-Pousa, C. R.

Friob, L.

L. Friob, P. Mandel, and E. A. Viktorov, “Intracavity second harmonic generation in a Fabry–Perot resonator: I. Polarization effects,” Quantum Semiclassical Opt. 10(1), 1–17 (1998).
[Crossref]

Garioud, R.

Geusic, J. E.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Utert, “Continuous 0.532 µ solid-state source using Ba2NaNb5O15,” Appl. Phys. Lett. 12(9), 306–308 (1968).
[Crossref]

Göhler, B.

Goodman, J. W.

J. W. Goodman, in Introduction to Fourier Optics (Roberts & Co., 2005).

Grisard, A.

Hansen, K. P.

Huang, Y. C.

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity PPLN crystals for ultra-low-voltage laser Q-switching and high-efficiency wavelength conversion,” Appl. Phys. B 80(7), 889–896 (2005).
[Crossref]

Junaid, S.

Kane, T. J.

T. J. Kane, “Intensity-Noise in Diode-Pumped Single-Frequency Nd:YAG Lasers and its Control by Electronic Feedback,” IEEE Photonics Technol. Lett. 2(4), 244–245 (1990).
[Crossref]

Karamehmedovic, E.

Khodja, S.

Kischkat, J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Kopeika, N. S.

Lallier, E.

Larsen, C.

Laurenzis, M.

Leviandier, L.

Levinstein, H. J.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Utert, “Continuous 0.532 µ solid-state source using Ba2NaNb5O15,” Appl. Phys. Lett. 12(9), 306–308 (1968).
[Crossref]

Lin, Y. Y.

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity PPLN crystals for ultra-low-voltage laser Q-switching and high-efficiency wavelength conversion,” Appl. Phys. B 80(7), 889–896 (2005).
[Crossref]

Lippi, G. L.

N. Dokhane and G. L. Lippi, “Improved direct modulation technique for faster switching of diode lasers,” IEE Proc.: Optoelectron. 149(1), 7–16 (2002).
[Crossref]

Liu, B.

Liu, E.

Liub, D.

Z. Song, L. Liub, Y. Zhoub, D. Liub, and H. Renb, “Electro-optic modulation of light propagating near the optic axis with any polarization in uniaxial crystals,” Optik 117(9), 418–422 (2006).
[Crossref]

Liub, L.

Z. Song, L. Liub, Y. Zhoub, D. Liub, and H. Renb, “Electro-optic modulation of light propagating near the optic axis with any polarization in uniaxial crystals,” Optik 117(9), 418–422 (2006).
[Crossref]

Lutzmann, P.

Maestre, H.

Mandel, P.

L. Friob, P. Mandel, and E. A. Viktorov, “Intracavity second harmonic generation in a Fabry–Perot resonator: I. Polarization effects,” Quantum Semiclassical Opt. 10(1), 1–17 (1998).
[Crossref]

Masselink, W. T.

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNb O3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

Matsukawa, T.

Mattsson, K. E.

Midwinter, J. E.

J. E. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–70 (1968).
[Crossref]

J. E. Midwinter, “Parametric Infrared Image Converters,” IEEE J. Quantum Electron. 4(11), 716–720 (1968).
[Crossref]

Minamide, H.

Monnin, D.

Morvan, L.

Nawata, K.

Noordegraaf, D.

Notake, T.

Pedersen, C.

Qi, F.

Renb, H.

Z. Song, L. Liub, Y. Zhoub, D. Liub, and H. Renb, “Electro-optic modulation of light propagating near the optic axis with any polarization in uniaxial crystals,” Optik 117(9), 418–422 (2006).
[Crossref]

Repasi, E.

Rico, M. L.

Semtsiv, M. P.

Shen, Y. R.

Y. R. Shen, in The Principles of Nonlinear Optics, (Wiley, 1984).

Siegman, A. E.

A. E. Siegman, Lasers, (Universiy Science Books, 1896).

Silberberg, Y.

H. Suchowski, B. D. Bruner, A. Arie, and Y. Silberberg, “Broadband frequency conversion,” Opt. Photonics News 21(10), 36–41 (2010).
[Crossref]

Singh, S.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Utert, “Continuous 0.532 µ solid-state source using Ba2NaNb5O15,” Appl. Phys. Lett. 12(9), 306–308 (1968).
[Crossref]

Skovgaard, P. M. W.

Smith, A. V.

A. V. Smith, SNLO software AS-Photonics, free download available at: http://www.as-photonics.com/snlo .

Smith, R. G.

R. G. Smith, “Theory of intracavity optical second-harmoinc generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[Crossref]

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Utert, “Continuous 0.532 µ solid-state source using Ba2NaNb5O15,” Appl. Phys. Lett. 12(9), 306–308 (1968).
[Crossref]

Song, Z.

Z. Song, L. Liub, Y. Zhoub, D. Liub, and H. Renb, “Electro-optic modulation of light propagating near the optic axis with any polarization in uniaxial crystals,” Optik 117(9), 418–422 (2006).
[Crossref]

Steinvall, O.

Stone, N.

Suchowski, H.

H. Suchowski, B. D. Bruner, A. Arie, and Y. Silberberg, “Broadband frequency conversion,” Opt. Photonics News 21(10), 36–41 (2010).
[Crossref]

Taira, T.

T. Taira, “Q-Switching and Frequency Doubling of Solid-state Lasers by a Single Intracavity KTP Crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[Crossref]

Takida, Y.

Taylor, J. H.

Tidemand-Lichtenberg, P.

Tomko, J.

Torregrosa, A. J.

Treps, N.

Tseng, Y. P.

Van Utert, L. G.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Utert, “Continuous 0.532 µ solid-state source using Ba2NaNb5O15,” Appl. Phys. Lett. 12(9), 306–308 (1968).
[Crossref]

Viktorov, E. A.

L. Friob, P. Mandel, and E. A. Viktorov, “Intracavity second harmonic generation in a Fabry–Perot resonator: I. Polarization effects,” Quantum Semiclassical Opt. 10(1), 1–17 (1998).
[Crossref]

Wang, S.

Warner, J.

J. Warner, “Phase-Matching for Optical Up-Conversion with Maximum Angular Aperture-Theory and Practice,” Opt. Quantum Electron. 1(1), 25–28 (1969).
[Crossref]

Weizer, B.

Wolf, E.

M. Born and E. Wolf, in Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th Edition, (Pergamon, 1993).

Yaney, P. P.

P. P. Yaney and L. G. DeShazer, “Spectroscopic studies and analysis of the laser states of Nd3+ in YVO4,” J. Opt. Soc. Am. B 66(12), 1405–1414 (1976).
[Crossref]

Yates, H. W.

Zhoub, Y.

Z. Song, L. Liub, Y. Zhoub, D. Liub, and H. Renb, “Electro-optic modulation of light propagating near the optic axis with any polarization in uniaxial crystals,” Optik 117(9), 418–422 (2006).
[Crossref]

Zondy, J.

Appl. Opt. (3)

Appl. Phys. B (1)

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, “Intracavity PPLN crystals for ultra-low-voltage laser Q-switching and high-efficiency wavelength conversion,” Appl. Phys. B 80(7), 889–896 (2005).
[Crossref]

Appl. Phys. Lett. (2)

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, and L. G. Van Utert, “Continuous 0.532 µ solid-state source using Ba2NaNb5O15,” Appl. Phys. Lett. 12(9), 306–308 (1968).
[Crossref]

J. E. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett. 12(3), 68–70 (1968).
[Crossref]

Biomed. Opt. Express (1)

IEE Proc.: Optoelectron. (1)

N. Dokhane and G. L. Lippi, “Improved direct modulation technique for faster switching of diode lasers,” IEE Proc.: Optoelectron. 149(1), 7–16 (2002).
[Crossref]

IEEE J. Quantum Electron. (4)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNb O3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26(5), 922–933 (1990).
[Crossref]

T. Taira, “Q-Switching and Frequency Doubling of Solid-state Lasers by a Single Intracavity KTP Crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[Crossref]

J. E. Midwinter, “Parametric Infrared Image Converters,” IEEE J. Quantum Electron. 4(11), 716–720 (1968).
[Crossref]

R. G. Smith, “Theory of intracavity optical second-harmoinc generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. J. Kane, “Intensity-Noise in Diode-Pumped Single-Frequency Nd:YAG Lasers and its Control by Electronic Feedback,” IEEE Photonics Technol. Lett. 2(4), 244–245 (1990).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

Nat. Photonics (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Opt. Photonics News (1)

H. Suchowski, B. D. Bruner, A. Arie, and Y. Silberberg, “Broadband frequency conversion,” Opt. Photonics News 21(10), 36–41 (2010).
[Crossref]

Opt. Quantum Electron. (1)

J. Warner, “Phase-Matching for Optical Up-Conversion with Maximum Angular Aperture-Theory and Practice,” Opt. Quantum Electron. 1(1), 25–28 (1969).
[Crossref]

Optik (1)

Z. Song, L. Liub, Y. Zhoub, D. Liub, and H. Renb, “Electro-optic modulation of light propagating near the optic axis with any polarization in uniaxial crystals,” Optik 117(9), 418–422 (2006).
[Crossref]

Quantum Semiclassical Opt. (1)

L. Friob, P. Mandel, and E. A. Viktorov, “Intracavity second harmonic generation in a Fabry–Perot resonator: I. Polarization effects,” Quantum Semiclassical Opt. 10(1), 1–17 (1998).
[Crossref]

Other (10)

A. E. Siegman, Lasers, (Universiy Science Books, 1896).

Otsuka in Nonlinear Dynamics in Optical Complex Systems. Series: Advances in Opto-Electronics (Kluwer, 1999). Also, (Springer, 2000).

G. P. Agrawal, in Fiber-Optic Communication Systems, Third Edition (Wiley, 2002).

A. V. Smith, SNLO software AS-Photonics, free download available at: http://www.as-photonics.com/snlo .

M. Born and E. Wolf, in Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th Edition, (Pergamon, 1993).

Y. R. Shen, in The Principles of Nonlinear Optics, (Wiley, 1984).

PPST free software from St. Andrews University, Scotland, available at: https://www.st-andrews.ac.uk/∼psst/

J. W. Goodman, in Introduction to Fourier Optics (Roberts & Co., 2005).

See for example ON SEMICONDUCTOR KAE-02150 EMCCD sensor at https://www.onsemi.com/pub/Collateral/KAE02150-D.PDF .

There is in fact an electron bombardment image intensifier tube developed by INTEVAC Inc., based on an InGaAs photocathode that operates in the SWIR up to 1.6 µm. It is of very restricted availability, and has not been considered in this work, aimed at a widespread potential use. ( https://www.intevac.com/intevacphotonics/livar-506/ ).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic representation of a 2D range-gated system showing the characteristic times and distances involved. The associated system optics and synchronism control are not shown.
Fig. 2.
Fig. 2. a) Non-collinear SFM process inside the nonlinear crystal. b) The 4-f Fourier processor setup.
Fig. 3.
Fig. 3. Different EO image gating schemes. a) External, single-pass. b) Intracavity in an L-folded cavity.
Fig. 4.
Fig. 4. Conoscopic interference patterns realized with a 405 nm laser to show the effect. a) without biasing the Pockels cell. b) with biasing optimized to leave a useful aperture close to the center of the pattern. c) and d) are the same as a) and b), but convolved with a target image before traversing the Pockels cell shutter.
Fig. 5.
Fig. 5. Schematic representation of the complete image upconversion experimental setup. The CCD camera is not represented. The inset shows an upconverted image of the IR illumination beam with no target. The distortions observed in the upconverted image are due to malfunction of our yellow band-pass filter.
Fig. 6.
Fig. 6. Fundamental mode profile in the cavity (red dotted lines).
Fig. 7.
Fig. 7. a) Relative output laser power in the vertical and horizontal polarizations, total (added) laser output power, and simulated total roundtrip cavity relative transmittance with (curved) and without (flat line) intracavity polarization-dependent loss. The ∼ 8:1 low polarization extinction ratio is due to a slight orientation misalignment in the s and f polarization axes of KTP with respect to the vertical in Fig. 5. b) Same as a), but with fine adjustment of the KTP crystal orientation. The polarization extinction ratio increases up to ∼ 100:1. The insets in b) represent the KTP crystal cross sectional area, with the brown and red arrows indicating the polarization direction of the IR image and pump beam respectively, for 0 and half-wave voltages in the Pockels cell.
Fig. 8.
Fig. 8. Upconverted image for increased static biasing of the Pockels cell, from top to bottom and left to right. Top left corresponds to V = 0 V. Bottom right corresponds to upconverted image full extinction, which takes place at V ∼5.5 kV, near the 6 kV nominal half-wave voltage of the cell.
Fig. 9.
Fig. 9. a) Upconverted signal for a periodic bias of the Pockels cell. b) Electric pulse applied to the Pockels cell. c) Pockels cell bias (yellow trace using a 1:10 probe divider) and transient photocurrent in the photodetector (blue trace, AC coupled to the oscilloscope) showing the relaxation oscillations in the upconverted wavelength.
Fig. 10.
Fig. 10. a) Cavity roundtrip path with only one combiner for a) V = 0 and b) V = Vπ applied to the Pockels cell. In c), a polarization independent loss configuration is shown, using two similiar commerical dichroic combiners, and adding a half-wave plate (HWP).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

k I R sin θ I R = k u sin θ u
k sin θ = 2 π ν
sin θ I R = 1 n I R λ I R ν I R
sin θ u = 1 n u λ u ν u
ν I R ν u = 1
ν I R ν u × n u n I R = 1 ν I R ν u
M u λ u λ I R × ( f 1 f 2 )
P S F ( r ) exp ( π ω r λ u f 1 ) 2
I u ( x , y ) = 16 π d e f f 2 λ I R 2 l 2 n I R n p n u c ε 0 λ u 4 × f 1 2 f 2 2 × P p ω 2 × I I R ( x , y )
I 2 I 1 = sin 2 ( 2 α ) × sin 2 [ π λ Δ n ( V ) × L ]