Abstract

The advancement of modern lighting technologies has led to many revolutions in lighting efficiency and presentation. The progression from filament bulbs, to CFL, and now LED technologies have produced a bounty of energy-efficient lighting options for design engineers and consumers. As the light-producing elements of a lighting fixture improve, the limiting factor in efficient illumination is no longer the light source, but the optical system itself. There are many characterization methods and standards for defining light for illumination in terms of color and human response. With concerns of how things like light pollution and energy requirements impact our society and the world around us, it is critical to understand how well a lighting fixture can illuminate a desired area while minimizing light lost to the environment and maximizing the total radiative intensity (radiance) of a space. This work presents two figures of merit, one for over-illumination and another for under-illumination, to characterize the optics of a lighting system based on a ray tracing methodology. Five common simplified optical design, with four varying beam angles, were simulated to present these new figures of merit. Results showed that common imaging optical systems such as parabolic and ellipse reflectors struggled to produce a well-lit area without over illumination, while nonimaging alternatives like the compound parabolic and compound elliptical reflectors were able to reach the thermodynamic ideal of a fully illuminated area without light lost to the environment. This work hopes to inform illumination engineers and lighting designers to help improve their optical design to maximize performance and minimize waste.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-output LED-based light engine for profile lighting fixtures with high color uniformity using freeform reflectors

Jesper Gadegaard, Thøger Kari Jensen, Dennis Thykjær Jørgensen, Peter Kjær Kristensen, Thomas Søndergaard, Thomas Garm Pedersen, and Kjeld Pedersen
Appl. Opt. 55(6) 1356-1365 (2016)

Thermodynamic efficiency of solar concentrators

Narkis Shatz, John Bortz, and Roland Winston
Opt. Express 18(S1) A5-A16 (2010)

Nonimaging reflectors for efficient uniform illumination

Jeff M. Gordon, Peter Kashin, and Ari Rabl
Appl. Opt. 31(28) 6027-6035 (1992)

References

  • View by:
  • |
  • |
  • |

  1. D. L. DiLaura, K. W. Houser, and R. G. Mistrick, The Lighting Handbook Reference and Application (2011).
  2. H. W. Bodmann, “Quality of Interior Lighting Based on Luminance,” Light. Res. Technol. 32(1 IEStrans), 22–40 (1967).
    [Crossref]
  3. A. R. Bean and R. I. Bell, “The CSP index: A practical measure of office lighting quality as perceived by the office worker,” Light. Res. Technol. 24(4), 215–225 (1992).
    [Crossref]
  4. I. Moreno, “Illumination uniformity assessment based on human vision,” Opt. Lett. 35(23), 4030 (2010).
    [Crossref]
  5. K. M. Rebec and M. K. Gunde, “High-performance lighting evaluated by photobiological parameters,” Appl. Opt. 53(23), 5147 (2014).
    [Crossref]
  6. Q. Dai, W. Cai, L. Hao, W. Shi, and Z. Wang, “Spectral optimisation and a novel lighting-design space based on circadian stimulus,” Light. Res. Technol. 50(8), 1198–1211 (2018).
    [Crossref]
  7. J. Hye Oh, S. Ji Yang, and Y. Rag Do, “Healthy, natural, efficient and tunable lighting: Four-package white LEDs for optimizing the circadian effect, color quality and vision performance,” Light: Sci. Appl. 3(2), e141 (2014).
    [Crossref]
  8. G. E. Fernandes, J. Bohar, and J. Xu, “Spectral-Temporal LED Lighting Modules for Reproducing Daily and Seasonal Solar Circadian Rhythmicities,” 2017 IEEE Int. Conf. Smart Comput. SMARTCOMP 2017 (1430007), 1–6 (2017).
  9. Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
    [Crossref]
  10. A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of optical systems for LED spot lights concerning the color uniformity,” Thirteen. Int. Conf. Solid State Light.9190(September 2014), 91900J (2014).
  11. A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of a merit function for the visual perception of color uniformity in spot lights,” Color Res. Appl. 40(3), 287–296 (2015).
    [Crossref]
  12. A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Merit function for the evaluation of color uniformity in the far field of LED spot lights,” Proc. SPIE 9003, 900303 (2014).
    [Crossref]
  13. D. K. Son, E. B. Cho, I. Moon, Y. Park, and C. G. Lee, “Development of an illumination measurement device for color distribution based on a CIE 1931 XYZ sensor,” J. Opt. Soc. Korea 15(1), 44–51 (2011).
    [Crossref]
  14. Y. Ding, X. Liu, Z. Zheng, and P. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958 (2008).
    [Crossref]
  15. Z. Zhenrong, H. Xiang, and L. Xu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48(35), 6627 (2009).
    [Crossref]
  16. Z. Su, D. Xue, and Z. Ji, “Designing LED array for uniform illumination distribution by simulated annealing algorithm,” Opt. Express 20(S6), A843 (2012).
    [Crossref]
  17. R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Munich, Ger.) 124(19), 3895–3897 (2013).
    [Crossref]
  18. R. Hu, X. Luo, H. Zheng, Z. Qin, Z. Gan, B. Wu, and S. Liu, “Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating,” Opt. Express 20(13), 13727 (2012).
    [Crossref]
  19. J. Muñoz, “Uniform illumination of distant targets using a spherical light-emitting diode array,” Opt. Eng. 46(3), 033001 (2007).
    [Crossref]
  20. J. M. Gordon, “Tailored edge-ray designs for uniform illumination of distant targets,” Opt. Eng. 34(6), 1726 (1995).
    [Crossref]
  21. J. M. Gordon, P. Kashin, and A. Rabl, “Nonimaging reflectors for efficient uniform illumination: errata,” Appl. Opt. 32(13), 2303 (1993).
    [Crossref]
  22. N. Shatz, J. Bortz, and R. Winston, “Thermodynamic efficiency of nonimaging concentrators,” Proc. SPIE 7423, 742308 (2009).
    [Crossref]
  23. F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
    [Crossref]
  24. F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
    [Crossref]
  25. C. D. Galatanu, M. Husch, L. Canale, and D. Lucache, “Targeting the Light Pollution: A Study Case,” 2019 IEEE Int. Conf. Environ. Electr. Eng. 2019 IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur.)1–6 (2019).
  26. T. Gallaway, R. N. Olsen, and D. M. Mitchell, “The economics of global light pollution,” Ecol. Econ. 69(3), 658–665 (2010).
    [Crossref]
  27. F. Falchi, R. Furgoni, T. A. Gallaway, N. A. Rybnikova, B. A. Portnov, K. Baugh, P. Cinzano, and C. D. Elvidge, “Light pollution in USA and Europe: The good, the bad and the ugly,” J. Environ. Manage. 248(February), 109227 (2019).
    [Crossref]
  28. B. Widyolar, L. Jiang, and R. Winston, “Thermodynamics and the segmented compound parabolic concentrator,” J. Photonics Energy 7(2), 028002 (2017).
    [Crossref]

2019 (1)

F. Falchi, R. Furgoni, T. A. Gallaway, N. A. Rybnikova, B. A. Portnov, K. Baugh, P. Cinzano, and C. D. Elvidge, “Light pollution in USA and Europe: The good, the bad and the ugly,” J. Environ. Manage. 248(February), 109227 (2019).
[Crossref]

2018 (1)

Q. Dai, W. Cai, L. Hao, W. Shi, and Z. Wang, “Spectral optimisation and a novel lighting-design space based on circadian stimulus,” Light. Res. Technol. 50(8), 1198–1211 (2018).
[Crossref]

2017 (1)

B. Widyolar, L. Jiang, and R. Winston, “Thermodynamics and the segmented compound parabolic concentrator,” J. Photonics Energy 7(2), 028002 (2017).
[Crossref]

2015 (1)

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of a merit function for the visual perception of color uniformity in spot lights,” Color Res. Appl. 40(3), 287–296 (2015).
[Crossref]

2014 (3)

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Merit function for the evaluation of color uniformity in the far field of LED spot lights,” Proc. SPIE 9003, 900303 (2014).
[Crossref]

K. M. Rebec and M. K. Gunde, “High-performance lighting evaluated by photobiological parameters,” Appl. Opt. 53(23), 5147 (2014).
[Crossref]

J. Hye Oh, S. Ji Yang, and Y. Rag Do, “Healthy, natural, efficient and tunable lighting: Four-package white LEDs for optimizing the circadian effect, color quality and vision performance,” Light: Sci. Appl. 3(2), e141 (2014).
[Crossref]

2013 (1)

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Munich, Ger.) 124(19), 3895–3897 (2013).
[Crossref]

2012 (2)

2011 (3)

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
[Crossref]

D. K. Son, E. B. Cho, I. Moon, Y. Park, and C. G. Lee, “Development of an illumination measurement device for color distribution based on a CIE 1931 XYZ sensor,” J. Opt. Soc. Korea 15(1), 44–51 (2011).
[Crossref]

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref]

2010 (3)

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

T. Gallaway, R. N. Olsen, and D. M. Mitchell, “The economics of global light pollution,” Ecol. Econ. 69(3), 658–665 (2010).
[Crossref]

I. Moreno, “Illumination uniformity assessment based on human vision,” Opt. Lett. 35(23), 4030 (2010).
[Crossref]

2009 (2)

Z. Zhenrong, H. Xiang, and L. Xu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48(35), 6627 (2009).
[Crossref]

N. Shatz, J. Bortz, and R. Winston, “Thermodynamic efficiency of nonimaging concentrators,” Proc. SPIE 7423, 742308 (2009).
[Crossref]

2008 (1)

2007 (1)

J. Muñoz, “Uniform illumination of distant targets using a spherical light-emitting diode array,” Opt. Eng. 46(3), 033001 (2007).
[Crossref]

1995 (1)

J. M. Gordon, “Tailored edge-ray designs for uniform illumination of distant targets,” Opt. Eng. 34(6), 1726 (1995).
[Crossref]

1993 (1)

1992 (1)

A. R. Bean and R. I. Bell, “The CSP index: A practical measure of office lighting quality as perceived by the office worker,” Light. Res. Technol. 24(4), 215–225 (1992).
[Crossref]

1967 (1)

H. W. Bodmann, “Quality of Interior Lighting Based on Luminance,” Light. Res. Technol. 32(1 IEStrans), 22–40 (1967).
[Crossref]

Baugh, K.

F. Falchi, R. Furgoni, T. A. Gallaway, N. A. Rybnikova, B. A. Portnov, K. Baugh, P. Cinzano, and C. D. Elvidge, “Light pollution in USA and Europe: The good, the bad and the ugly,” J. Environ. Manage. 248(February), 109227 (2019).
[Crossref]

Bean, A. R.

A. R. Bean and R. I. Bell, “The CSP index: A practical measure of office lighting quality as perceived by the office worker,” Light. Res. Technol. 24(4), 215–225 (1992).
[Crossref]

Bell, R. I.

A. R. Bean and R. I. Bell, “The CSP index: A practical measure of office lighting quality as perceived by the office worker,” Light. Res. Technol. 24(4), 215–225 (1992).
[Crossref]

Benítez, P.

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of a merit function for the visual perception of color uniformity in spot lights,” Color Res. Appl. 40(3), 287–296 (2015).
[Crossref]

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Merit function for the evaluation of color uniformity in the far field of LED spot lights,” Proc. SPIE 9003, 900303 (2014).
[Crossref]

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of optical systems for LED spot lights concerning the color uniformity,” Thirteen. Int. Conf. Solid State Light.9190(September 2014), 91900J (2014).

Bergenek, K.

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of a merit function for the visual perception of color uniformity in spot lights,” Color Res. Appl. 40(3), 287–296 (2015).
[Crossref]

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Merit function for the evaluation of color uniformity in the far field of LED spot lights,” Proc. SPIE 9003, 900303 (2014).
[Crossref]

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of optical systems for LED spot lights concerning the color uniformity,” Thirteen. Int. Conf. Solid State Light.9190(September 2014), 91900J (2014).

Bodmann, H. W.

H. W. Bodmann, “Quality of Interior Lighting Based on Luminance,” Light. Res. Technol. 32(1 IEStrans), 22–40 (1967).
[Crossref]

Bohar, J.

G. E. Fernandes, J. Bohar, and J. Xu, “Spectral-Temporal LED Lighting Modules for Reproducing Daily and Seasonal Solar Circadian Rhythmicities,” 2017 IEEE Int. Conf. Smart Comput. SMARTCOMP 2017 (1430007), 1–6 (2017).

Bortz, J.

N. Shatz, J. Bortz, and R. Winston, “Thermodynamic efficiency of nonimaging concentrators,” Proc. SPIE 7423, 742308 (2009).
[Crossref]

Cai, W.

Q. Dai, W. Cai, L. Hao, W. Shi, and Z. Wang, “Spectral optimisation and a novel lighting-design space based on circadian stimulus,” Light. Res. Technol. 50(8), 1198–1211 (2018).
[Crossref]

Canale, L.

C. D. Galatanu, M. Husch, L. Canale, and D. Lucache, “Targeting the Light Pollution: A Study Case,” 2019 IEEE Int. Conf. Environ. Electr. Eng. 2019 IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur.)1–6 (2019).

Cho, E. B.

Cinzano, P.

F. Falchi, R. Furgoni, T. A. Gallaway, N. A. Rybnikova, B. A. Portnov, K. Baugh, P. Cinzano, and C. D. Elvidge, “Light pollution in USA and Europe: The good, the bad and the ugly,” J. Environ. Manage. 248(February), 109227 (2019).
[Crossref]

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref]

Dai, Q.

Q. Dai, W. Cai, L. Hao, W. Shi, and Z. Wang, “Spectral optimisation and a novel lighting-design space based on circadian stimulus,” Light. Res. Technol. 50(8), 1198–1211 (2018).
[Crossref]

DiLaura, D. L.

D. L. DiLaura, K. W. Houser, and R. G. Mistrick, The Lighting Handbook Reference and Application (2011).

Ding, Y.

Elvidge, C. D.

F. Falchi, R. Furgoni, T. A. Gallaway, N. A. Rybnikova, B. A. Portnov, K. Baugh, P. Cinzano, and C. D. Elvidge, “Light pollution in USA and Europe: The good, the bad and the ugly,” J. Environ. Manage. 248(February), 109227 (2019).
[Crossref]

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref]

Falchi, F.

F. Falchi, R. Furgoni, T. A. Gallaway, N. A. Rybnikova, B. A. Portnov, K. Baugh, P. Cinzano, and C. D. Elvidge, “Light pollution in USA and Europe: The good, the bad and the ugly,” J. Environ. Manage. 248(February), 109227 (2019).
[Crossref]

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref]

Fernandes, G. E.

G. E. Fernandes, J. Bohar, and J. Xu, “Spectral-Temporal LED Lighting Modules for Reproducing Daily and Seasonal Solar Circadian Rhythmicities,” 2017 IEEE Int. Conf. Smart Comput. SMARTCOMP 2017 (1430007), 1–6 (2017).

Fischer, J.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Franke, S.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Furgoni, R.

F. Falchi, R. Furgoni, T. A. Gallaway, N. A. Rybnikova, B. A. Portnov, K. Baugh, P. Cinzano, and C. D. Elvidge, “Light pollution in USA and Europe: The good, the bad and the ugly,” J. Environ. Manage. 248(February), 109227 (2019).
[Crossref]

Galatanu, C. D.

C. D. Galatanu, M. Husch, L. Canale, and D. Lucache, “Targeting the Light Pollution: A Study Case,” 2019 IEEE Int. Conf. Environ. Electr. Eng. 2019 IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur.)1–6 (2019).

Gallaway, T.

T. Gallaway, R. N. Olsen, and D. M. Mitchell, “The economics of global light pollution,” Ecol. Econ. 69(3), 658–665 (2010).
[Crossref]

Gallaway, T. A.

F. Falchi, R. Furgoni, T. A. Gallaway, N. A. Rybnikova, B. A. Portnov, K. Baugh, P. Cinzano, and C. D. Elvidge, “Light pollution in USA and Europe: The good, the bad and the ugly,” J. Environ. Manage. 248(February), 109227 (2019).
[Crossref]

Gan, Z.

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Munich, Ger.) 124(19), 3895–3897 (2013).
[Crossref]

R. Hu, X. Luo, H. Zheng, Z. Qin, Z. Gan, B. Wu, and S. Liu, “Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating,” Opt. Express 20(13), 13727 (2012).
[Crossref]

Gordon, J. M.

J. M. Gordon, “Tailored edge-ray designs for uniform illumination of distant targets,” Opt. Eng. 34(6), 1726 (1995).
[Crossref]

J. M. Gordon, P. Kashin, and A. Rabl, “Nonimaging reflectors for efficient uniform illumination: errata,” Appl. Opt. 32(13), 2303 (1993).
[Crossref]

Griefahn, B.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Gu, P.

Gunde, M. K.

Haim, A.

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref]

Hänel, A.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Hao, L.

Q. Dai, W. Cai, L. Hao, W. Shi, and Z. Wang, “Spectral optimisation and a novel lighting-design space based on circadian stimulus,” Light. Res. Technol. 50(8), 1198–1211 (2018).
[Crossref]

Henckel, D.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Hölker, F.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Houser, K. W.

D. L. DiLaura, K. W. Houser, and R. G. Mistrick, The Lighting Handbook Reference and Application (2011).

Hu, R.

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Munich, Ger.) 124(19), 3895–3897 (2013).
[Crossref]

R. Hu, X. Luo, H. Zheng, Z. Qin, Z. Gan, B. Wu, and S. Liu, “Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating,” Opt. Express 20(13), 13727 (2012).
[Crossref]

Husch, M.

C. D. Galatanu, M. Husch, L. Canale, and D. Lucache, “Targeting the Light Pollution: A Study Case,” 2019 IEEE Int. Conf. Environ. Electr. Eng. 2019 IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur.)1–6 (2019).

Hye Oh, J.

J. Hye Oh, S. Ji Yang, and Y. Rag Do, “Healthy, natural, efficient and tunable lighting: Four-package white LEDs for optimizing the circadian effect, color quality and vision performance,” Light: Sci. Appl. 3(2), e141 (2014).
[Crossref]

Ji, Z.

Ji Yang, S.

J. Hye Oh, S. Ji Yang, and Y. Rag Do, “Healthy, natural, efficient and tunable lighting: Four-package white LEDs for optimizing the circadian effect, color quality and vision performance,” Light: Sci. Appl. 3(2), e141 (2014).
[Crossref]

Jia, G. X.

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
[Crossref]

Jiang, L.

B. Widyolar, L. Jiang, and R. Winston, “Thermodynamics and the segmented compound parabolic concentrator,” J. Photonics Energy 7(2), 028002 (2017).
[Crossref]

Kappeler, P. M.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Kashin, P.

Keith, D. M.

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref]

Klenke, R.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Kloas, W.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Lee, C. G.

Liu, S.

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Munich, Ger.) 124(19), 3895–3897 (2013).
[Crossref]

R. Hu, X. Luo, H. Zheng, Z. Qin, Z. Gan, B. Wu, and S. Liu, “Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating,” Opt. Express 20(13), 13727 (2012).
[Crossref]

Liu, X.

Lucache, D.

C. D. Galatanu, M. Husch, L. Canale, and D. Lucache, “Targeting the Light Pollution: A Study Case,” 2019 IEEE Int. Conf. Environ. Electr. Eng. 2019 IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur.)1–6 (2019).

Luo, X.

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Munich, Ger.) 124(19), 3895–3897 (2013).
[Crossref]

R. Hu, X. Luo, H. Zheng, Z. Qin, Z. Gan, B. Wu, and S. Liu, “Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating,” Opt. Express 20(13), 13727 (2012).
[Crossref]

Miñano, J. C.

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of a merit function for the visual perception of color uniformity in spot lights,” Color Res. Appl. 40(3), 287–296 (2015).
[Crossref]

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Merit function for the evaluation of color uniformity in the far field of LED spot lights,” Proc. SPIE 9003, 900303 (2014).
[Crossref]

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of optical systems for LED spot lights concerning the color uniformity,” Thirteen. Int. Conf. Solid State Light.9190(September 2014), 91900J (2014).

Mistrick, R. G.

D. L. DiLaura, K. W. Houser, and R. G. Mistrick, The Lighting Handbook Reference and Application (2011).

Mitchell, D. M.

T. Gallaway, R. N. Olsen, and D. M. Mitchell, “The economics of global light pollution,” Ecol. Econ. 69(3), 658–665 (2010).
[Crossref]

Moon, I.

Moreno, I.

Moss, T.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Muñoz, J.

J. Muñoz, “Uniform illumination of distant targets using a spherical light-emitting diode array,” Opt. Eng. 46(3), 033001 (2007).
[Crossref]

Olsen, R. N.

T. Gallaway, R. N. Olsen, and D. M. Mitchell, “The economics of global light pollution,” Ecol. Econ. 69(3), 658–665 (2010).
[Crossref]

Ouyang, J. F.

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
[Crossref]

Park, Y.

Portnov, B. A.

F. Falchi, R. Furgoni, T. A. Gallaway, N. A. Rybnikova, B. A. Portnov, K. Baugh, P. Cinzano, and C. D. Elvidge, “Light pollution in USA and Europe: The good, the bad and the ugly,” J. Environ. Manage. 248(February), 109227 (2019).
[Crossref]

Qin, Z.

Qu, X. H.

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
[Crossref]

Rabl, A.

Rag Do, Y.

J. Hye Oh, S. Ji Yang, and Y. Rag Do, “Healthy, natural, efficient and tunable lighting: Four-package white LEDs for optimizing the circadian effect, color quality and vision performance,” Light: Sci. Appl. 3(2), e141 (2014).
[Crossref]

Rebec, K. M.

Rybnikova, N. A.

F. Falchi, R. Furgoni, T. A. Gallaway, N. A. Rybnikova, B. A. Portnov, K. Baugh, P. Cinzano, and C. D. Elvidge, “Light pollution in USA and Europe: The good, the bad and the ugly,” J. Environ. Manage. 248(February), 109227 (2019).
[Crossref]

Schwope, A.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Shatz, N.

N. Shatz, J. Bortz, and R. Winston, “Thermodynamic efficiency of nonimaging concentrators,” Proc. SPIE 7423, 742308 (2009).
[Crossref]

Shi, W.

Q. Dai, W. Cai, L. Hao, W. Shi, and Z. Wang, “Spectral optimisation and a novel lighting-design space based on circadian stimulus,” Light. Res. Technol. 50(8), 1198–1211 (2018).
[Crossref]

Son, D. K.

Su, Z.

Teupner, A.

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of a merit function for the visual perception of color uniformity in spot lights,” Color Res. Appl. 40(3), 287–296 (2015).
[Crossref]

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Merit function for the evaluation of color uniformity in the far field of LED spot lights,” Proc. SPIE 9003, 900303 (2014).
[Crossref]

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of optical systems for LED spot lights concerning the color uniformity,” Thirteen. Int. Conf. Solid State Light.9190(September 2014), 91900J (2014).

Tockner, K.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Uhrlandt, D.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Voigt, C. C.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Völker, S.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Wang, Z.

Q. Dai, W. Cai, L. Hao, W. Shi, and Z. Wang, “Spectral optimisation and a novel lighting-design space based on circadian stimulus,” Light. Res. Technol. 50(8), 1198–1211 (2018).
[Crossref]

Widyolar, B.

B. Widyolar, L. Jiang, and R. Winston, “Thermodynamics and the segmented compound parabolic concentrator,” J. Photonics Energy 7(2), 028002 (2017).
[Crossref]

Winston, R.

B. Widyolar, L. Jiang, and R. Winston, “Thermodynamics and the segmented compound parabolic concentrator,” J. Photonics Energy 7(2), 028002 (2017).
[Crossref]

N. Shatz, J. Bortz, and R. Winston, “Thermodynamic efficiency of nonimaging concentrators,” Proc. SPIE 7423, 742308 (2009).
[Crossref]

Wirth, R.

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of a merit function for the visual perception of color uniformity in spot lights,” Color Res. Appl. 40(3), 287–296 (2015).
[Crossref]

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Merit function for the evaluation of color uniformity in the far field of LED spot lights,” Proc. SPIE 9003, 900303 (2014).
[Crossref]

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of optical systems for LED spot lights concerning the color uniformity,” Thirteen. Int. Conf. Solid State Light.9190(September 2014), 91900J (2014).

Wolter, C.

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

Wu, B.

Xiang, H.

Xu, J.

G. E. Fernandes, J. Bohar, and J. Xu, “Spectral-Temporal LED Lighting Modules for Reproducing Daily and Seasonal Solar Circadian Rhythmicities,” 2017 IEEE Int. Conf. Smart Comput. SMARTCOMP 2017 (1430007), 1–6 (2017).

Xu, L.

Xue, D.

Zheng, H.

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Munich, Ger.) 124(19), 3895–3897 (2013).
[Crossref]

R. Hu, X. Luo, H. Zheng, Z. Qin, Z. Gan, B. Wu, and S. Liu, “Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating,” Opt. Express 20(13), 13727 (2012).
[Crossref]

Zheng, Z.

Zhenrong, Z.

Zhu, Z. M.

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
[Crossref]

Appl. Opt. (3)

Color Res. Appl. (1)

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of a merit function for the visual perception of color uniformity in spot lights,” Color Res. Appl. 40(3), 287–296 (2015).
[Crossref]

Ecol. Econ. (1)

T. Gallaway, R. N. Olsen, and D. M. Mitchell, “The economics of global light pollution,” Ecol. Econ. 69(3), 658–665 (2010).
[Crossref]

Ecol. Soc. (1)

F. Hölker, T. Moss, B. Griefahn, W. Kloas, C. C. Voigt, D. Henckel, A. Hänel, P. M. Kappeler, S. Völker, A. Schwope, S. Franke, D. Uhrlandt, J. Fischer, R. Klenke, C. Wolter, and K. Tockner, “The dark side of light: A transdisciplinary research agenda for light pollution policy,” Ecol. Soc. 15(4), art13 (2010).
[Crossref]

J. Disp. Technol. (1)

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7(2), 84–89 (2011).
[Crossref]

J. Environ. Manage. (2)

F. Falchi, R. Furgoni, T. A. Gallaway, N. A. Rybnikova, B. A. Portnov, K. Baugh, P. Cinzano, and C. D. Elvidge, “Light pollution in USA and Europe: The good, the bad and the ugly,” J. Environ. Manage. 248(February), 109227 (2019).
[Crossref]

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref]

J. Opt. Soc. Korea (1)

J. Photonics Energy (1)

B. Widyolar, L. Jiang, and R. Winston, “Thermodynamics and the segmented compound parabolic concentrator,” J. Photonics Energy 7(2), 028002 (2017).
[Crossref]

Light. Res. Technol. (3)

H. W. Bodmann, “Quality of Interior Lighting Based on Luminance,” Light. Res. Technol. 32(1 IEStrans), 22–40 (1967).
[Crossref]

A. R. Bean and R. I. Bell, “The CSP index: A practical measure of office lighting quality as perceived by the office worker,” Light. Res. Technol. 24(4), 215–225 (1992).
[Crossref]

Q. Dai, W. Cai, L. Hao, W. Shi, and Z. Wang, “Spectral optimisation and a novel lighting-design space based on circadian stimulus,” Light. Res. Technol. 50(8), 1198–1211 (2018).
[Crossref]

Light: Sci. Appl. (1)

J. Hye Oh, S. Ji Yang, and Y. Rag Do, “Healthy, natural, efficient and tunable lighting: Four-package white LEDs for optimizing the circadian effect, color quality and vision performance,” Light: Sci. Appl. 3(2), e141 (2014).
[Crossref]

Opt. Eng. (2)

J. Muñoz, “Uniform illumination of distant targets using a spherical light-emitting diode array,” Opt. Eng. 46(3), 033001 (2007).
[Crossref]

J. M. Gordon, “Tailored edge-ray designs for uniform illumination of distant targets,” Opt. Eng. 34(6), 1726 (1995).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optik (Munich, Ger.) (1)

R. Hu, Z. Gan, X. Luo, H. Zheng, and S. Liu, “Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses,” Optik (Munich, Ger.) 124(19), 3895–3897 (2013).
[Crossref]

Proc. SPIE (2)

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Merit function for the evaluation of color uniformity in the far field of LED spot lights,” Proc. SPIE 9003, 900303 (2014).
[Crossref]

N. Shatz, J. Bortz, and R. Winston, “Thermodynamic efficiency of nonimaging concentrators,” Proc. SPIE 7423, 742308 (2009).
[Crossref]

Other (4)

C. D. Galatanu, M. Husch, L. Canale, and D. Lucache, “Targeting the Light Pollution: A Study Case,” 2019 IEEE Int. Conf. Environ. Electr. Eng. 2019 IEEE Ind. Commer. Power Syst. Eur. (EEEIC / I&CPS Eur.)1–6 (2019).

D. L. DiLaura, K. W. Houser, and R. G. Mistrick, The Lighting Handbook Reference and Application (2011).

A. Teupner, K. Bergenek, R. Wirth, J. C. Miñano, and P. Benítez, “Optimization of optical systems for LED spot lights concerning the color uniformity,” Thirteen. Int. Conf. Solid State Light.9190(September 2014), 91900J (2014).

G. E. Fernandes, J. Bohar, and J. Xu, “Spectral-Temporal LED Lighting Modules for Reproducing Daily and Seasonal Solar Circadian Rhythmicities,” 2017 IEEE Int. Conf. Smart Comput. SMARTCOMP 2017 (1430007), 1–6 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Diagram of (a) the concepts of ideal, over, and under illumination for a desired illumination area, and (b) an illumination setup with (1) the target illumination area (red), (2) the aperture of a lighting fixture (green), and (3) the light source plane (blue).
Fig. 2.
Fig. 2. Diagram of the physical significance of the radiative probabilities ${P_{12}}$ (red dashed line) and ${P_{13}}$ (blue dashed line) and how they relate to under illumination.
Fig. 3.
Fig. 3. ${P_{31}}$ vs ${P_{13}}/{P_{12}}$ showing the bounding limits of illumination with the ideal located at ${P_{31}} = 1$ and ${P_{13}}/{P_{12}} = 1$
Fig. 4.
Fig. 4. Diagrams of the five simple reflector profiles used in benchmark raytracing simulations testing the ${P_{31}}$ and ${P_{13}}/{P_{12}}$ figures of merit. (a) tapered/conical, (b) elliptical, (c) parabolic, (d) CPC, and (e) CEC reflectors. Blue depicts the light source area, green depicts the aperture area, gray depicts the reflector profile, red depicts the ray path, and the dotted arrow shows the beam angle for each design. Two-dimensional designs were used as shown in the figure, and three-dimensional designs were developed by revolving the profiles about a central axis.
Fig. 5.
Fig. 5. Results of the raytracing simulations for the 2D reflector profiles calculating P31 and P13/P12 by varying the target distance L from the aperture. The first column shows P31 in dashed lines and P13/P12 in solid lines with the blue, green, red, and purple representing the 15, 30, 45, and 60 degree beam half-angles respectively. Figures 5(a)–5(e) correspond to the reflector designs depicted in Figs. 4(a)–4(e). The second column shows P31 vs P13/P12 for each design.
Fig. 6.
Fig. 6. Results of P31 vs P13/P12 for all (a) 2D and (b) 3D reflector designs. The points plotted are the values calculated from raytracing simulations for a target distance of 1 m from the aperture of each luminary. Colors distinguish the reflector profile and the symbols distinguish each beam half-angle.
Fig. 7.
Fig. 7. Trends seen in the P31 and P13/P12 data as a function of distance from the aperture to target illumination area for an ideal illumination lighting fixture.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Q 31 = A 3 E 3 P 31 ,
P 31 1.
Q 21 = A 2 E s P 21
Q 31 = A 3 E s P 31
Q 21 = A 1 E s P 12 ,
Q 31 = A 1 E s P 13 .
P 13 P 12 1.
P i j = T o t a l n u m b e r o f r a y s i n c i d e n t o n s u r f a c e j T o t a l n u m b e r o f r a y s e m i t t e d b y s u r f a c e i