T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing [review article],” IEEE Comput. Intell. Mag. 13(3), 55–75 (2018).

[Crossref]

E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. B. ery, “Deep learning methods for improved decoding of linear codes,” IEEE J. Sel. Top. Signal Process. 12(1), 119–131 (2018).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, C. Li, Y. Zhang, T. Huang, and W. Hu, “Performance investigation of the polar coded FSO communication system over turbulence channel,” Appl. Opt. 57(25), 7378–7384 (2018).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, L. Liu, Y. Zhang, and W. Hu, “Polar-coded MIMO FSO communication system over gamma-gamma turbulence channel with spatially correlated fading,” J. Opt. Commun. Netw. 10(11), 915–923 (2018).

[Crossref]

T. Wang, C. K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities and challenges,” China Commun. 14(11), 92–111 (2017).

[Crossref]

I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory 61(5), 2213–2226 (2015).

[Crossref]

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Commun. Surv. Tutorials 16(4), 2231–2258 (2014).

[Crossref]

E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009).

[Crossref]

X. Zhu and J. Kahn, “Free-space optical communication through atomospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).

[Crossref]

J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and polynomials over the binary n-cube,” IEEE Trans. Inf. Theory 35(5), 976–987 (1989).

[Crossref]

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media, (SPIE Press, 1998).

E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, C. Li, Y. Zhang, T. Huang, and W. Hu, “Performance investigation of the polar coded FSO communication system over turbulence channel,” Appl. Opt. 57(25), 7378–7384 (2018).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, L. Liu, Y. Zhang, and W. Hu, “Polar-coded MIMO FSO communication system over gamma-gamma turbulence channel with spatially correlated fading,” J. Opt. Commun. Netw. 10(11), 915–923 (2018).

[Crossref]

J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and polynomials over the binary n-cube,” IEEE Trans. Inf. Theory 35(5), 976–987 (1989).

[Crossref]

T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brind, “On deep learning-based channel decoding,” in Proc. Annual Conference on Information Sciences and Systems 2017 IEEE 51st1–6 (2017).

S. Cammerer, T. Gruber, J. Hoydis, and S. t. Brind, “Scaling deep learning-based decoding of polar codes via partitioning,” in Proc. IEEE Global Commun. Conf. (GLOBECOM)1–6 (2017).

J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and polynomials over the binary n-cube,” IEEE Trans. Inf. Theory 35(5), 976–987 (1989).

[Crossref]

E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. B. ery, “Deep learning methods for improved decoding of linear codes,” IEEE J. Sel. Top. Signal Process. 12(1), 119–131 (2018).

[Crossref]

T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing [review article],” IEEE Comput. Intell. Mag. 13(3), 55–75 (2018).

[Crossref]

S. Cammerer, T. Gruber, J. Hoydis, and S. t. Brind, “Scaling deep learning-based decoding of polar codes via partitioning,” in Proc. IEEE Global Commun. Conf. (GLOBECOM)1–6 (2017).

T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brind, “On deep learning-based channel decoding,” in Proc. Annual Conference on Information Sciences and Systems 2017 IEEE 51st1–6 (2017).

N. Doan, S. A. Hashemi, and W. J. Gross, “Neural successive cancellation decoding of polar codes,” in Proc. International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 2018 IEEE 19th1–5 (2018).

A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for computer vision: A brief review,” Computational intelligence and neuroscience, (2018).

A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for computer vision: A brief review,” Computational intelligence and neuroscience, (2018).

E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. B. ery, “Deep learning methods for improved decoding of linear codes,” IEEE J. Sel. Top. Signal Process. 12(1), 119–131 (2018).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, C. Li, Y. Zhang, T. Huang, and W. Hu, “Performance investigation of the polar coded FSO communication system over turbulence channel,” Appl. Opt. 57(25), 7378–7384 (2018).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, L. Liu, Y. Zhang, and W. Hu, “Polar-coded MIMO FSO communication system over gamma-gamma turbulence channel with spatially correlated fading,” J. Opt. Commun. Netw. 10(11), 915–923 (2018).

[Crossref]

T. Wang, C. K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities and challenges,” China Commun. 14(11), 92–111 (2017).

[Crossref]

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC Press, 2012).

E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. B. ery, “Deep learning methods for improved decoding of linear codes,” IEEE J. Sel. Top. Signal Process. 12(1), 119–131 (2018).

[Crossref]

N. Doan, S. A. Hashemi, and W. J. Gross, “Neural successive cancellation decoding of polar codes,” in Proc. International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 2018 IEEE 19th1–5 (2018).

T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brind, “On deep learning-based channel decoding,” in Proc. Annual Conference on Information Sciences and Systems 2017 IEEE 51st1–6 (2017).

S. Cammerer, T. Gruber, J. Hoydis, and S. t. Brind, “Scaling deep learning-based decoding of polar codes via partitioning,” in Proc. IEEE Global Commun. Conf. (GLOBECOM)1–6 (2017).

N. Doan, S. A. Hashemi, and W. J. Gross, “Neural successive cancellation decoding of polar codes,” in Proc. International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 2018 IEEE 19th1–5 (2018).

T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing [review article],” IEEE Comput. Intell. Mag. 13(3), 55–75 (2018).

[Crossref]

T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brind, “On deep learning-based channel decoding,” in Proc. Annual Conference on Information Sciences and Systems 2017 IEEE 51st1–6 (2017).

S. Cammerer, T. Gruber, J. Hoydis, and S. t. Brind, “Scaling deep learning-based decoding of polar codes via partitioning,” in Proc. IEEE Global Commun. Conf. (GLOBECOM)1–6 (2017).

J. Fang, M. Bi, S. Xiao, G. Yang, C. Li, Y. Zhang, T. Huang, and W. Hu, “Performance investigation of the polar coded FSO communication system over turbulence channel,” Appl. Opt. 57(25), 7378–7384 (2018).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, L. Liu, Y. Zhang, and W. Hu, “Polar-coded MIMO FSO communication system over gamma-gamma turbulence channel with spatially correlated fading,” J. Opt. Commun. Netw. 10(11), 915–923 (2018).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, C. Li, Y. Zhang, T. Huang, and W. Hu, “Performance investigation of the polar coded FSO communication system over turbulence channel,” Appl. Opt. 57(25), 7378–7384 (2018).

[Crossref]

T. Wang, C. K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities and challenges,” China Commun. 14(11), 92–111 (2017).

[Crossref]

T. Wang, C. K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities and challenges,” China Commun. 14(11), 92–111 (2017).

[Crossref]

X. Zhu and J. Kahn, “Free-space optical communication through atomospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).

[Crossref]

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Commun. Surv. Tutorials 16(4), 2231–2258 (2014).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, C. Li, Y. Zhang, T. Huang, and W. Hu, “Performance investigation of the polar coded FSO communication system over turbulence channel,” Appl. Opt. 57(25), 7378–7384 (2018).

[Crossref]

J. Li and M. Uysal, “Optical wireless communications: system model, capacity and coding,” in Proc. VTC 2003- Fall Vehicular Technology Conference 2003 IEEE 58th, 168–172 (2003).

E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. B. ery, “Deep learning methods for improved decoding of linear codes,” IEEE J. Sel. Top. Signal Process. 12(1), 119–131 (2018).

[Crossref]

E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. B. ery, “Deep learning methods for improved decoding of linear codes,” IEEE J. Sel. Top. Signal Process. 12(1), 119–131 (2018).

[Crossref]

E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. B. ery, “Deep learning methods for improved decoding of linear codes,” IEEE J. Sel. Top. Signal Process. 12(1), 119–131 (2018).

[Crossref]

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media, (SPIE Press, 1998).

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC Press, 2012).

T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing [review article],” IEEE Comput. Intell. Mag. 13(3), 55–75 (2018).

[Crossref]

A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for computer vision: A brief review,” Computational intelligence and neuroscience, (2018).

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC Press, 2012).

I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory 61(5), 2213–2226 (2015).

[Crossref]

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Commun. Surv. Tutorials 16(4), 2231–2258 (2014).

[Crossref]

J. Li and M. Uysal, “Optical wireless communications: system model, capacity and coding,” in Proc. VTC 2003- Fall Vehicular Technology Conference 2003 IEEE 58th, 168–172 (2003).

I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory 61(5), 2213–2226 (2015).

[Crossref]

A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for computer vision: A brief review,” Computational intelligence and neuroscience, (2018).

T. Wang, C. K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities and challenges,” China Commun. 14(11), 92–111 (2017).

[Crossref]

T. Wang, C. K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities and challenges,” China Commun. 14(11), 92–111 (2017).

[Crossref]

T. Wang, C. K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities and challenges,” China Commun. 14(11), 92–111 (2017).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, L. Liu, Y. Zhang, and W. Hu, “Polar-coded MIMO FSO communication system over gamma-gamma turbulence channel with spatially correlated fading,” J. Opt. Commun. Netw. 10(11), 915–923 (2018).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, C. Li, Y. Zhang, T. Huang, and W. Hu, “Performance investigation of the polar coded FSO communication system over turbulence channel,” Appl. Opt. 57(25), 7378–7384 (2018).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, C. Li, Y. Zhang, T. Huang, and W. Hu, “Performance investigation of the polar coded FSO communication system over turbulence channel,” Appl. Opt. 57(25), 7378–7384 (2018).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, L. Liu, Y. Zhang, and W. Hu, “Polar-coded MIMO FSO communication system over gamma-gamma turbulence channel with spatially correlated fading,” J. Opt. Commun. Netw. 10(11), 915–923 (2018).

[Crossref]

T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing [review article],” IEEE Comput. Intell. Mag. 13(3), 55–75 (2018).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, L. Liu, Y. Zhang, and W. Hu, “Polar-coded MIMO FSO communication system over gamma-gamma turbulence channel with spatially correlated fading,” J. Opt. Commun. Netw. 10(11), 915–923 (2018).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, C. Li, Y. Zhang, T. Huang, and W. Hu, “Performance investigation of the polar coded FSO communication system over turbulence channel,” Appl. Opt. 57(25), 7378–7384 (2018).

[Crossref]

X. Zhu and J. Kahn, “Free-space optical communication through atomospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).

[Crossref]

J. Fang, M. Bi, S. Xiao, G. Yang, C. Li, Y. Zhang, T. Huang, and W. Hu, “Performance investigation of the polar coded FSO communication system over turbulence channel,” Appl. Opt. 57(25), 7378–7384 (2018).

[Crossref]

T. Wang, C. K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities and challenges,” China Commun. 14(11), 92–111 (2017).

[Crossref]

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Commun. Surv. Tutorials 16(4), 2231–2258 (2014).

[Crossref]

T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing [review article],” IEEE Comput. Intell. Mag. 13(3), 55–75 (2018).

[Crossref]

E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. B. ery, “Deep learning methods for improved decoding of linear codes,” IEEE J. Sel. Top. Signal Process. 12(1), 119–131 (2018).

[Crossref]

X. Zhu and J. Kahn, “Free-space optical communication through atomospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).

[Crossref]

I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory 61(5), 2213–2226 (2015).

[Crossref]

E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009).

[Crossref]

J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and polynomials over the binary n-cube,” IEEE Trans. Inf. Theory 35(5), 976–987 (1989).

[Crossref]

A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for computer vision: A brief review,” Computational intelligence and neuroscience, (2018).

3GPP TS 38.212 Technical Specification Group Radio Access Network, NR, Multiplexing and Channel Coding, 2017.

T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brind, “On deep learning-based channel decoding,” in Proc. Annual Conference on Information Sciences and Systems 2017 IEEE 51st1–6 (2017).

S. Cammerer, T. Gruber, J. Hoydis, and S. t. Brind, “Scaling deep learning-based decoding of polar codes via partitioning,” in Proc. IEEE Global Commun. Conf. (GLOBECOM)1–6 (2017).

N. Doan, S. A. Hashemi, and W. J. Gross, “Neural successive cancellation decoding of polar codes,” in Proc. International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 2018 IEEE 19th1–5 (2018).

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media, (SPIE Press, 1998).

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC Press, 2012).

J. Li and M. Uysal, “Optical wireless communications: system model, capacity and coding,” in Proc. VTC 2003- Fall Vehicular Technology Conference 2003 IEEE 58th, 168–172 (2003).