Abstract

This paper presents a theory of size quantization and intersubband optical transitions in bilayer semiconductor quantum wells with asymmetric profile. We show that, in contrast to single-layer quantum wells, the size-quantized subbands of bilayer quantum wells are nonparabolic and characterized by effective masses that depend on the electron wave number and the subband number. It is found that the effective masses are related to the localization of the electron wave function in the layers of the quantum well and can be controlled by varying the chemical composition or geometric parameters of the structure. We also derive an analytical expression for the probability of optical transitions between the subbands of the bilayer quantum well. Our results are useful for the development of laser systems and photodetectors based on colloidal nanoplates and epitaxial layers of semiconductor materials with heterojunctions.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Exciton absorption in semiconductor quantum wells driven by a strong intersubband pump field

Ansheng Liu and Cun-Zheng Ning
J. Opt. Soc. Am. B 17(3) 433-439 (2000)

References

  • View by:
  • |
  • |
  • |

  1. R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures,” Phys. Rev. Lett. 33(14), 827–830 (1974).
    [Crossref]
  2. N. V. Tepliakov, I. O. Ponomareva, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Field-induced broadening of electroabsorption spectra of semiconductor nanorods and nanoplatelets,” J. Phys. Chem. C 120(4), 2379–2385 (2016).
    [Crossref]
  3. N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral optical properties of tapered semiconductor nanoscrolls,” ACS Nano 11(7), 7508–7515 (2017).
    [Crossref]
  4. D. Liu, J. Jiang, Y. Cheng, and J. He, “Effect of delta doping on mid-infrared intersubband absorption in AlGaN/GaN step quantum well structures,” Phys. E (Amsterdam, Neth.) 54, 253–256 (2013).
    [Crossref]
  5. N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of semiconductor gammadions beyond planar chirality,” J. Phys. Chem. Lett. 9(11), 2941–2945 (2018).
    [Crossref]
  6. I. A. Vovk, N. Tepliakov, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Excitonic phenomena in perovskite quantum-dot supercrystals,” Phys. Chem. Chem. Phys. 20(38), 25023–25030 (2018).
    [Crossref]
  7. M. P. Touse, G. Karunasiri, K. R. Lantz, H. Li, and T. Mei, “Near- and mid-infrared detection using GaAs/InxGa1−xAs/InyGa1−yAs multiple step quantum wells,” Appl. Phys. Lett. 86(9), 093501 (2005).
    [Crossref]
  8. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [Crossref]
  9. B. T. Diroll, M. Chen, I. Coropceanu, K. R. Williams, D. V. Talapin, P. Guyot-Sionnest, and R. D. Schaller, “Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells,” Nat. Commun. 10(1), 4511 (2019).
    [Crossref]
  10. D. Liu and C. He, “Theoretical study of optical absorption in nonpolar AlGaN/GaN step quantum well structures,” J. Comput. Electron. 18(1), 251–259 (2019).
    [Crossref]
  11. D. Liu, Y. Cheng, and J. He, “Nanogroove control of intersubband absorption in AlGaAs/GaAs step quantum wells,” Semicond. Sci. Technol. 31(3), 035006 (2016).
    [Crossref]
  12. H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, “Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well,” Appl. Phys. Lett. 113(17), 171107 (2018).
    [Crossref]
  13. H. Dakhlaoui, “The effects of doping layer location on the electronic and optical properties of GaN step quantum well,” Superlattices Microstruct. 97, 439–447 (2016).
    [Crossref]
  14. E. Ozturk, “Linear and total intersubband transitions in the step-like GaAs/GaAlAs asymmetric quantum well as dependent on intense laser field,” Eur. Phys. J. Plus 130(11), 237 (2015).
    [Crossref]
  15. E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, “Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells,” Phys. Rev. B 55(24), 16293–16299 (1997).
    [Crossref]
  16. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science Int’l Ltd., 2005).
  17. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 1996).
  18. A. I. Anselm, Introduction to the Theory of Semiconductors (Nauka, 1978).
  19. E. Vorobiev, L. E. Golub, L. E. Danilov, and S. N. Ivchenko, Optical Phenomena in Semiconductor Quantum-dimensional Structures (SPbGTU, 2000).
  20. The Ioffe Institute, “NSM Archive - Aluminium Gallium Arsenide (AlGaAs),” http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs .

2019 (2)

B. T. Diroll, M. Chen, I. Coropceanu, K. R. Williams, D. V. Talapin, P. Guyot-Sionnest, and R. D. Schaller, “Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells,” Nat. Commun. 10(1), 4511 (2019).
[Crossref]

D. Liu and C. He, “Theoretical study of optical absorption in nonpolar AlGaN/GaN step quantum well structures,” J. Comput. Electron. 18(1), 251–259 (2019).
[Crossref]

2018 (3)

H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, “Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well,” Appl. Phys. Lett. 113(17), 171107 (2018).
[Crossref]

N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of semiconductor gammadions beyond planar chirality,” J. Phys. Chem. Lett. 9(11), 2941–2945 (2018).
[Crossref]

I. A. Vovk, N. Tepliakov, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Excitonic phenomena in perovskite quantum-dot supercrystals,” Phys. Chem. Chem. Phys. 20(38), 25023–25030 (2018).
[Crossref]

2017 (1)

N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral optical properties of tapered semiconductor nanoscrolls,” ACS Nano 11(7), 7508–7515 (2017).
[Crossref]

2016 (3)

N. V. Tepliakov, I. O. Ponomareva, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Field-induced broadening of electroabsorption spectra of semiconductor nanorods and nanoplatelets,” J. Phys. Chem. C 120(4), 2379–2385 (2016).
[Crossref]

H. Dakhlaoui, “The effects of doping layer location on the electronic and optical properties of GaN step quantum well,” Superlattices Microstruct. 97, 439–447 (2016).
[Crossref]

D. Liu, Y. Cheng, and J. He, “Nanogroove control of intersubband absorption in AlGaAs/GaAs step quantum wells,” Semicond. Sci. Technol. 31(3), 035006 (2016).
[Crossref]

2015 (1)

E. Ozturk, “Linear and total intersubband transitions in the step-like GaAs/GaAlAs asymmetric quantum well as dependent on intense laser field,” Eur. Phys. J. Plus 130(11), 237 (2015).
[Crossref]

2013 (1)

D. Liu, J. Jiang, Y. Cheng, and J. He, “Effect of delta doping on mid-infrared intersubband absorption in AlGaN/GaN step quantum well structures,” Phys. E (Amsterdam, Neth.) 54, 253–256 (2013).
[Crossref]

2005 (1)

M. P. Touse, G. Karunasiri, K. R. Lantz, H. Li, and T. Mei, “Near- and mid-infrared detection using GaAs/InxGa1−xAs/InyGa1−yAs multiple step quantum wells,” Appl. Phys. Lett. 86(9), 093501 (2005).
[Crossref]

1997 (1)

E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, “Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells,” Phys. Rev. B 55(24), 16293–16299 (1997).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

1974 (1)

R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures,” Phys. Rev. Lett. 33(14), 827–830 (1974).
[Crossref]

Anselm, A. I.

A. I. Anselm, Introduction to the Theory of Semiconductors (Nauka, 1978).

Baimuratov, A. S.

N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of semiconductor gammadions beyond planar chirality,” J. Phys. Chem. Lett. 9(11), 2941–2945 (2018).
[Crossref]

I. A. Vovk, N. Tepliakov, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Excitonic phenomena in perovskite quantum-dot supercrystals,” Phys. Chem. Chem. Phys. 20(38), 25023–25030 (2018).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral optical properties of tapered semiconductor nanoscrolls,” ACS Nano 11(7), 7508–7515 (2017).
[Crossref]

Baranov, A. V.

I. A. Vovk, N. Tepliakov, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Excitonic phenomena in perovskite quantum-dot supercrystals,” Phys. Chem. Chem. Phys. 20(38), 25023–25030 (2018).
[Crossref]

N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of semiconductor gammadions beyond planar chirality,” J. Phys. Chem. Lett. 9(11), 2941–2945 (2018).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral optical properties of tapered semiconductor nanoscrolls,” ACS Nano 11(7), 7508–7515 (2017).
[Crossref]

N. V. Tepliakov, I. O. Ponomareva, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Field-induced broadening of electroabsorption spectra of semiconductor nanorods and nanoplatelets,” J. Phys. Chem. C 120(4), 2379–2385 (2016).
[Crossref]

Bassani, F.

E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, “Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells,” Phys. Rev. B 55(24), 16293–16299 (1997).
[Crossref]

Cao, J. C.

H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, “Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well,” Appl. Phys. Lett. 113(17), 171107 (2018).
[Crossref]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Cardona, M.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 1996).

Chen, M.

B. T. Diroll, M. Chen, I. Coropceanu, K. R. Williams, D. V. Talapin, P. Guyot-Sionnest, and R. D. Schaller, “Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells,” Nat. Commun. 10(1), 4511 (2019).
[Crossref]

Cheng, Y.

D. Liu, Y. Cheng, and J. He, “Nanogroove control of intersubband absorption in AlGaAs/GaAs step quantum wells,” Semicond. Sci. Technol. 31(3), 035006 (2016).
[Crossref]

D. Liu, J. Jiang, Y. Cheng, and J. He, “Effect of delta doping on mid-infrared intersubband absorption in AlGaN/GaN step quantum well structures,” Phys. E (Amsterdam, Neth.) 54, 253–256 (2013).
[Crossref]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Coropceanu, I.

B. T. Diroll, M. Chen, I. Coropceanu, K. R. Williams, D. V. Talapin, P. Guyot-Sionnest, and R. D. Schaller, “Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells,” Nat. Commun. 10(1), 4511 (2019).
[Crossref]

Dakhlaoui, H.

H. Dakhlaoui, “The effects of doping layer location on the electronic and optical properties of GaN step quantum well,” Superlattices Microstruct. 97, 439–447 (2016).
[Crossref]

Danilov, L. E.

E. Vorobiev, L. E. Golub, L. E. Danilov, and S. N. Ivchenko, Optical Phenomena in Semiconductor Quantum-dimensional Structures (SPbGTU, 2000).

de Andrada e Silva, E. A.

E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, “Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells,” Phys. Rev. B 55(24), 16293–16299 (1997).
[Crossref]

Dingle, R.

R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures,” Phys. Rev. Lett. 33(14), 827–830 (1974).
[Crossref]

Diroll, B. T.

B. T. Diroll, M. Chen, I. Coropceanu, K. R. Williams, D. V. Talapin, P. Guyot-Sionnest, and R. D. Schaller, “Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells,” Nat. Commun. 10(1), 4511 (2019).
[Crossref]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Fedorov, A. V.

N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of semiconductor gammadions beyond planar chirality,” J. Phys. Chem. Lett. 9(11), 2941–2945 (2018).
[Crossref]

I. A. Vovk, N. Tepliakov, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Excitonic phenomena in perovskite quantum-dot supercrystals,” Phys. Chem. Chem. Phys. 20(38), 25023–25030 (2018).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral optical properties of tapered semiconductor nanoscrolls,” ACS Nano 11(7), 7508–7515 (2017).
[Crossref]

N. V. Tepliakov, I. O. Ponomareva, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Field-induced broadening of electroabsorption spectra of semiconductor nanorods and nanoplatelets,” J. Phys. Chem. C 120(4), 2379–2385 (2016).
[Crossref]

Fu, Z. L.

H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, “Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well,” Appl. Phys. Lett. 113(17), 171107 (2018).
[Crossref]

Golub, L. E.

E. Vorobiev, L. E. Golub, L. E. Danilov, and S. N. Ivchenko, Optical Phenomena in Semiconductor Quantum-dimensional Structures (SPbGTU, 2000).

Guo, X. G.

H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, “Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well,” Appl. Phys. Lett. 113(17), 171107 (2018).
[Crossref]

Guyot-Sionnest, P.

B. T. Diroll, M. Chen, I. Coropceanu, K. R. Williams, D. V. Talapin, P. Guyot-Sionnest, and R. D. Schaller, “Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells,” Nat. Commun. 10(1), 4511 (2019).
[Crossref]

He, C.

D. Liu and C. He, “Theoretical study of optical absorption in nonpolar AlGaN/GaN step quantum well structures,” J. Comput. Electron. 18(1), 251–259 (2019).
[Crossref]

He, J.

D. Liu, Y. Cheng, and J. He, “Nanogroove control of intersubband absorption in AlGaAs/GaAs step quantum wells,” Semicond. Sci. Technol. 31(3), 035006 (2016).
[Crossref]

D. Liu, J. Jiang, Y. Cheng, and J. He, “Effect of delta doping on mid-infrared intersubband absorption in AlGaN/GaN step quantum well structures,” Phys. E (Amsterdam, Neth.) 54, 253–256 (2013).
[Crossref]

Henry, C. H.

R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures,” Phys. Rev. Lett. 33(14), 827–830 (1974).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Ivchenko, E. L.

E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science Int’l Ltd., 2005).

Ivchenko, S. N.

E. Vorobiev, L. E. Golub, L. E. Danilov, and S. N. Ivchenko, Optical Phenomena in Semiconductor Quantum-dimensional Structures (SPbGTU, 2000).

Jiang, J.

D. Liu, J. Jiang, Y. Cheng, and J. He, “Effect of delta doping on mid-infrared intersubband absorption in AlGaN/GaN step quantum well structures,” Phys. E (Amsterdam, Neth.) 54, 253–256 (2013).
[Crossref]

Karunasiri, G.

M. P. Touse, G. Karunasiri, K. R. Lantz, H. Li, and T. Mei, “Near- and mid-infrared detection using GaAs/InxGa1−xAs/InyGa1−yAs multiple step quantum wells,” Appl. Phys. Lett. 86(9), 093501 (2005).
[Crossref]

La Rocca, G. C.

E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, “Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells,” Phys. Rev. B 55(24), 16293–16299 (1997).
[Crossref]

Lantz, K. R.

M. P. Touse, G. Karunasiri, K. R. Lantz, H. Li, and T. Mei, “Near- and mid-infrared detection using GaAs/InxGa1−xAs/InyGa1−yAs multiple step quantum wells,” Appl. Phys. Lett. 86(9), 093501 (2005).
[Crossref]

Leonov, M. Y.

I. A. Vovk, N. Tepliakov, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Excitonic phenomena in perovskite quantum-dot supercrystals,” Phys. Chem. Chem. Phys. 20(38), 25023–25030 (2018).
[Crossref]

N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of semiconductor gammadions beyond planar chirality,” J. Phys. Chem. Lett. 9(11), 2941–2945 (2018).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral optical properties of tapered semiconductor nanoscrolls,” ACS Nano 11(7), 7508–7515 (2017).
[Crossref]

N. V. Tepliakov, I. O. Ponomareva, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Field-induced broadening of electroabsorption spectra of semiconductor nanorods and nanoplatelets,” J. Phys. Chem. C 120(4), 2379–2385 (2016).
[Crossref]

Li, H.

M. P. Touse, G. Karunasiri, K. R. Lantz, H. Li, and T. Mei, “Near- and mid-infrared detection using GaAs/InxGa1−xAs/InyGa1−yAs multiple step quantum wells,” Appl. Phys. Lett. 86(9), 093501 (2005).
[Crossref]

Liu, D.

D. Liu and C. He, “Theoretical study of optical absorption in nonpolar AlGaN/GaN step quantum well structures,” J. Comput. Electron. 18(1), 251–259 (2019).
[Crossref]

D. Liu, Y. Cheng, and J. He, “Nanogroove control of intersubband absorption in AlGaAs/GaAs step quantum wells,” Semicond. Sci. Technol. 31(3), 035006 (2016).
[Crossref]

D. Liu, J. Jiang, Y. Cheng, and J. He, “Effect of delta doping on mid-infrared intersubband absorption in AlGaN/GaN step quantum well structures,” Phys. E (Amsterdam, Neth.) 54, 253–256 (2013).
[Crossref]

Mei, T.

M. P. Touse, G. Karunasiri, K. R. Lantz, H. Li, and T. Mei, “Near- and mid-infrared detection using GaAs/InxGa1−xAs/InyGa1−yAs multiple step quantum wells,” Appl. Phys. Lett. 86(9), 093501 (2005).
[Crossref]

Ozturk, E.

E. Ozturk, “Linear and total intersubband transitions in the step-like GaAs/GaAlAs asymmetric quantum well as dependent on intense laser field,” Eur. Phys. J. Plus 130(11), 237 (2015).
[Crossref]

Ponomareva, I. O.

N. V. Tepliakov, I. O. Ponomareva, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Field-induced broadening of electroabsorption spectra of semiconductor nanorods and nanoplatelets,” J. Phys. Chem. C 120(4), 2379–2385 (2016).
[Crossref]

Rukhlenko, I. D.

I. A. Vovk, N. Tepliakov, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Excitonic phenomena in perovskite quantum-dot supercrystals,” Phys. Chem. Chem. Phys. 20(38), 25023–25030 (2018).
[Crossref]

N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of semiconductor gammadions beyond planar chirality,” J. Phys. Chem. Lett. 9(11), 2941–2945 (2018).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral optical properties of tapered semiconductor nanoscrolls,” ACS Nano 11(7), 7508–7515 (2017).
[Crossref]

N. V. Tepliakov, I. O. Ponomareva, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Field-induced broadening of electroabsorption spectra of semiconductor nanorods and nanoplatelets,” J. Phys. Chem. C 120(4), 2379–2385 (2016).
[Crossref]

Schaller, R. D.

B. T. Diroll, M. Chen, I. Coropceanu, K. R. Williams, D. V. Talapin, P. Guyot-Sionnest, and R. D. Schaller, “Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells,” Nat. Commun. 10(1), 4511 (2019).
[Crossref]

Shao, D. X.

H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, “Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well,” Appl. Phys. Lett. 113(17), 171107 (2018).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Talapin, D. V.

B. T. Diroll, M. Chen, I. Coropceanu, K. R. Williams, D. V. Talapin, P. Guyot-Sionnest, and R. D. Schaller, “Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells,” Nat. Commun. 10(1), 4511 (2019).
[Crossref]

Tan, Z. Y.

H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, “Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well,” Appl. Phys. Lett. 113(17), 171107 (2018).
[Crossref]

Tepliakov, N.

I. A. Vovk, N. Tepliakov, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Excitonic phenomena in perovskite quantum-dot supercrystals,” Phys. Chem. Chem. Phys. 20(38), 25023–25030 (2018).
[Crossref]

Tepliakov, N. V.

N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of semiconductor gammadions beyond planar chirality,” J. Phys. Chem. Lett. 9(11), 2941–2945 (2018).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral optical properties of tapered semiconductor nanoscrolls,” ACS Nano 11(7), 7508–7515 (2017).
[Crossref]

N. V. Tepliakov, I. O. Ponomareva, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Field-induced broadening of electroabsorption spectra of semiconductor nanorods and nanoplatelets,” J. Phys. Chem. C 120(4), 2379–2385 (2016).
[Crossref]

Touse, M. P.

M. P. Touse, G. Karunasiri, K. R. Lantz, H. Li, and T. Mei, “Near- and mid-infrared detection using GaAs/InxGa1−xAs/InyGa1−yAs multiple step quantum wells,” Appl. Phys. Lett. 86(9), 093501 (2005).
[Crossref]

Vorobiev, E.

E. Vorobiev, L. E. Golub, L. E. Danilov, and S. N. Ivchenko, Optical Phenomena in Semiconductor Quantum-dimensional Structures (SPbGTU, 2000).

Vovk, I. A.

N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of semiconductor gammadions beyond planar chirality,” J. Phys. Chem. Lett. 9(11), 2941–2945 (2018).
[Crossref]

I. A. Vovk, N. Tepliakov, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Excitonic phenomena in perovskite quantum-dot supercrystals,” Phys. Chem. Chem. Phys. 20(38), 25023–25030 (2018).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral optical properties of tapered semiconductor nanoscrolls,” ACS Nano 11(7), 7508–7515 (2017).
[Crossref]

Wang, C.

H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, “Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well,” Appl. Phys. Lett. 113(17), 171107 (2018).
[Crossref]

Wang, H. X.

H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, “Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well,” Appl. Phys. Lett. 113(17), 171107 (2018).
[Crossref]

Wiegmann, W.

R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures,” Phys. Rev. Lett. 33(14), 827–830 (1974).
[Crossref]

Williams, K. R.

B. T. Diroll, M. Chen, I. Coropceanu, K. R. Williams, D. V. Talapin, P. Guyot-Sionnest, and R. D. Schaller, “Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells,” Nat. Commun. 10(1), 4511 (2019).
[Crossref]

Yu, P. Y.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 1996).

Zhang, Z. Z.

H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, “Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well,” Appl. Phys. Lett. 113(17), 171107 (2018).
[Crossref]

ACS Nano (1)

N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral optical properties of tapered semiconductor nanoscrolls,” ACS Nano 11(7), 7508–7515 (2017).
[Crossref]

Appl. Phys. Lett. (2)

M. P. Touse, G. Karunasiri, K. R. Lantz, H. Li, and T. Mei, “Near- and mid-infrared detection using GaAs/InxGa1−xAs/InyGa1−yAs multiple step quantum wells,” Appl. Phys. Lett. 86(9), 093501 (2005).
[Crossref]

H. X. Wang, Z. L. Fu, D. X. Shao, Z. Z. Zhang, C. Wang, Z. Y. Tan, X. G. Guo, and J. C. Cao, “Broadband bias-tunable terahertz photodetector using asymmetric GaAs/AlGaAs step multi-quantum well,” Appl. Phys. Lett. 113(17), 171107 (2018).
[Crossref]

Eur. Phys. J. Plus (1)

E. Ozturk, “Linear and total intersubband transitions in the step-like GaAs/GaAlAs asymmetric quantum well as dependent on intense laser field,” Eur. Phys. J. Plus 130(11), 237 (2015).
[Crossref]

J. Comput. Electron. (1)

D. Liu and C. He, “Theoretical study of optical absorption in nonpolar AlGaN/GaN step quantum well structures,” J. Comput. Electron. 18(1), 251–259 (2019).
[Crossref]

J. Phys. Chem. C (1)

N. V. Tepliakov, I. O. Ponomareva, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Field-induced broadening of electroabsorption spectra of semiconductor nanorods and nanoplatelets,” J. Phys. Chem. C 120(4), 2379–2385 (2016).
[Crossref]

J. Phys. Chem. Lett. (1)

N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of semiconductor gammadions beyond planar chirality,” J. Phys. Chem. Lett. 9(11), 2941–2945 (2018).
[Crossref]

Nat. Commun. (1)

B. T. Diroll, M. Chen, I. Coropceanu, K. R. Williams, D. V. Talapin, P. Guyot-Sionnest, and R. D. Schaller, “Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells,” Nat. Commun. 10(1), 4511 (2019).
[Crossref]

Phys. Chem. Chem. Phys. (1)

I. A. Vovk, N. Tepliakov, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Excitonic phenomena in perovskite quantum-dot supercrystals,” Phys. Chem. Chem. Phys. 20(38), 25023–25030 (2018).
[Crossref]

Phys. E (Amsterdam, Neth.) (1)

D. Liu, J. Jiang, Y. Cheng, and J. He, “Effect of delta doping on mid-infrared intersubband absorption in AlGaN/GaN step quantum well structures,” Phys. E (Amsterdam, Neth.) 54, 253–256 (2013).
[Crossref]

Phys. Rev. B (1)

E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, “Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells,” Phys. Rev. B 55(24), 16293–16299 (1997).
[Crossref]

Phys. Rev. Lett. (1)

R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures,” Phys. Rev. Lett. 33(14), 827–830 (1974).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Semicond. Sci. Technol. (1)

D. Liu, Y. Cheng, and J. He, “Nanogroove control of intersubband absorption in AlGaAs/GaAs step quantum wells,” Semicond. Sci. Technol. 31(3), 035006 (2016).
[Crossref]

Superlattices Microstruct. (1)

H. Dakhlaoui, “The effects of doping layer location on the electronic and optical properties of GaN step quantum well,” Superlattices Microstruct. 97, 439–447 (2016).
[Crossref]

Other (5)

E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science Int’l Ltd., 2005).

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 1996).

A. I. Anselm, Introduction to the Theory of Semiconductors (Nauka, 1978).

E. Vorobiev, L. E. Golub, L. E. Danilov, and S. N. Ivchenko, Optical Phenomena in Semiconductor Quantum-dimensional Structures (SPbGTU, 2000).

The Ioffe Institute, “NSM Archive - Aluminium Gallium Arsenide (AlGaAs),” http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Confining potential for conduction electrons inside a bilayer quantum well; $E_{\Gamma _6,\mathrm {A}}^0$ , $E_{\Gamma _6,\mathrm {B}}^0$ , $L_{\mathrm {A}}$ , and $L_{\mathrm {B}}$ are the lowest energies in the conduction bands of bulk materials and the layer thicknesses of materials A and B; $L=L_{\mathrm {A}}+L_{\mathrm {B}}$ .
Fig. 2.
Fig. 2. (a) The first four subbands (colour curves labelled by $n=1,\ 2,\ 3,\ \textrm {and}\ 4$ ) of the conduction band of a bilayer quantum well made from GaAs (layer A) and Al $_{0.35}$ Ga $_{0.65}$ As (layer B); $L_{\mathrm {A}}=L_{\mathrm {B}}=10\ \textrm {nm}$ ; dashed are the lines where $q_{\mathrm {A}}$ and $q_{\mathrm {B}}$ vanish. (b) Effective masses of electrons in the four subbands $n=1,\ 2,\ 3,\ \textrm {and}\ 4$ as functions of wave number of electrons; dashed are the effective masses of bulk GaAs $(m_{\mathrm {c,A}}^\ast )$ and bulk Al $_{0.35}$ Ga $_{0.65}$ As $(m_{\mathrm {c,B}}^\ast )$ . All the material parameters are taken from Ref. [20].
Fig. 3.
Fig. 3. Probability $\left |f_{\Gamma _6,n}(0;z)\right |^2$ of finding an electron with $q=0$ inside a bilayer Al $_{0.35}$ Ga $_{0.65}$ As/GaAs quantum well for the first four subbands $(n=1,\ 2,\ 3,\ \textrm {and}\ 4)$ . All the parameters are the same as in Fig. 2.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

H ^ c f Γ 6 ( r ) = E Γ 6 f Γ 6 ( r ) , H ^ c = { E Γ 6 , A 0 + 2 k ^ 2 / ( 2 m c , A ) , 0 z L A , E Γ 6 , B 0 + 2 k ^ 2 / ( 2 m c , B ) , L A z L ,
f Γ 6 ( r ) = 1 S e i q r f Γ 6 ( z ) ,
d 2 f Γ 6 ( z ) d z 2 + q z 2 ( z ) f Γ 6 ( z ) = 0 , q z 2 ( z ) = { q A 2 , 0 z L A , q B 2 , L A z L ,
q A 2 = 2 m c , A 2 ( E Γ 6 E Γ 6 , A 0 2 q 2 2 m c , A ) , q B 2 = 2 m c , B 2 ( E Γ 6 E Γ 6 , B 0 2 q 2 2 m c , B ) .
f Γ 6 ( z ) = { A A e i q A z + B A e i q A z f Γ 6 A ( z ) , 0 z L A , A B e i q B z + B B e i q B z f Γ 6 B ( z ) , L A z L .
1 m c , A d f Γ 6 A ( z ) d z | z = L A = 1 m c , B d f Γ 6 B ( z ) d z | z = L A .
q B m c , B tan ( q A L A ) = q A m c , A tan ( q B L B ) .
f Γ 6 , n ( q ; z ) = 2 i A A , n { sin ( q A , n z ) , 0 z L A , b n sin [ q B , n ( L z ) ] , L A z L ,
A A , n = s i g n ( q A , n ) [ 2 L A ( 1 sin ( 2 q A , n L A ) 2 q A , n L A ) + 2 L B b n 2 ( 1 sin ( 2 q B , n L B ) 2 q B , n L B ) ] 1 / 2 ,
Ψ Γ 6 , s z ; n , q ( r ) = 1 S e i q r f Γ 6 , n ( q ; z ) u Γ 6 , s z ( r ) .
M f i = Ψ Γ 6 , α f ; n f , q f | H ^ e R | Ψ Γ 6 , α i ; n i , q i , H ^ e R = e m c A p ^ ,
M f i = e m c 0 L d z A ( z ) S d r Ψ Γ 6 , α f ; n f , q f ( r ) p ^ Ψ Γ 6 , α i ; n i , q i ( r ) .
M f i = δ α f , α i e m c S 0 L d z U f i ( z ) f Γ 6 , n f ( q f ; z ) [ A ( z ) q i + A z ( z ) p ^ z ] f Γ 6 , n i ( q i ; z ) ,
U f i ( z ) = S d r u Γ 6 , α f ( r ) u Γ 6 , α i ( r ) e i ( q i q f ) r .
M f i A δ α f , α i e m c S m J f i A ( b m ) e i ( q i q f ) b m Ω A d r | u Γ 6 , α i A ( r ) | 2 e i ( q i q f ) r ,
J f i A ( ζ ) = f Γ 6 , n f ( q f ; ζ ) ( ( A A q i ) f Γ 6 , n i ( q i ; ζ ) i A z A d f Γ 6 , n i ( q i ; z ) d z | z = ζ )
M f i A δ α f , α i δ q f , q i e m c 0 L A J f i A ( z ) d z ,
M f i δ α f , α i δ q f , q i e m c ( 0 L A J f i A ( z ) d z + L A L J f i B ( z ) d z ) ,
M f i = δ α f , α i δ q f , q i M n f , n i ( 0 ) ( q i ) , M n f , n i ( 0 ) ( q ) = i e m c ( A z A Θ f i A + A z B Θ f i B ) ,
Θ f i A = 0 L A d ζ f Γ 6 , n f ( q ; ζ ) d f Γ 6 , n i ( q ; z ) d z | z = ζ ,
Θ f i B = L A L d ζ f Γ 6 , n f ( q ; ζ ) d f Γ 6 , n i ( q ; z ) d z | z = ζ .
Θ f i A = A A , n f A A , n i 4 q A , n i q A , n f 2 q A , n i 2 [ q A , n f ( 1 c A , f i ) q A , n i s A , f i ] ,
Θ f i B = A A , n f A A , n i 4 q B , n i q B , n f 2 q B , n i 2 [ q B , n f ( 1 c B , f i ) b n f b n i q B , n i s A , f i ] ,
W = 2 n f , n i 0 | M n f , n i ( 0 ) ( q ) | 2 [ F n i ( q ) F n f ( q ) ] δ [ E Γ 6 , n f ( q ) E Γ 6 , n i ( q ) ω ] q d q ,
M n f , n i ( 0 ) | L B = 0 = i e m c A z L 2 n f n i n f 2 n i 2 [ 1 ( 1 ) n f + n i ] ,
E Γ 6 > min ( E Γ 6 , A 0 + 2 q 2 2 m c , A , E Γ 6 , B 0 + 2 q 2 2 m c , B ) ,
E Γ 6 , A 0 + 2 q 2 2 m c , A < E Γ 6 < E Γ 6 , B 0 + 2 q 2 2 m c , B .
E Γ 6 , B 0 + 2 q 2 2 m c , B < E Γ 6 < E Γ 6 , A 0 + 2 q 2 2 m c , A ,
E Γ 6 > max ( E Γ 6 , A 0 + 2 q 2 2 m c , A , E Γ 6 , B 0 + 2 q 2 2 m c , B ) ,

Metrics