Abstract

In this work, laser-induced breakdown spectroscopy (LIBS) of gaseous ammonia (NH3) molecules on- and off-resonant vibrational excitation was studied in open air. A wavelength-tunable, continuous wave (CW), carbon dioxide (CO2) laser tuned at a resonant absorption peak (9.219 µm) within the infrared radiation (IR) range was used to resonantly excite the vibration of the N-H wagging mode of ammonia molecules. A pulsed Nd:YAG laser (1064 nm, 15 ns) was used to break down the ammonia gas for plasma imaging and spectral measurements. In this study, plasmas generated with the ammonia molecules without additional CO2 laser beam irradiation and with additional CO2 laser beam irradiation with the wavelengths on- and off-resonant vibrational excitation of ammonia molecules were investigated and referred as LIBS, LIBS-RE-ON and LIBS-RE-OFF, respectively. The experimental results showed that the temporal and spatial evolution as well as electron temperature and density of plasmas induced with LIBS and LIBS-RE-OFF were consistent but differed from LIBS-RE-ON. Compared with LIBS and LIBS-RE-OFF, plasmas in LIBS-RE-ON showed larger spatial expansion and enhanced emission after a delay time of 1 µs in this study, as well as significantly enhanced electron temperature by ∼ 64%. Time-resolved electron temperatures and densities showed that the emission signal enhancement in LIBS-RE-ON can be primarily attributed to the electron temperature enhancement. Signal enhancement in LIBS indicated improved detection sensitivity. This study could inspire future works on LIBS for gas detection with improved sensitivity and selectivity probably by using ultrafast/intense laser-induced molecular breakdown/ionization with resonant vibrational excitation of molecules.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions

Ani Khachatrian and Paul J. Dagdigian
Appl. Opt. 49(13) C1-C7 (2010)

Flame-enhanced laser-induced breakdown spectroscopy

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu
Opt. Express 22(7) 7686-7693 (2014)

In situ chemical analysis of geology samples by a rapid simultaneous ultraviolet/visible/near-infrared (UVN) + longwave-infrared laser induced breakdown spectroscopy detection system at standoff distance

Clayton S. C. Yang, Feng Jin, Sudhir Trivedi, Ei Brown, Uwe Hömmerich, Laszlo Nemes, and Alan C. Samuels
Opt. Express 27(14) 19596-19614 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Noll and SpringerLink (Online service), Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (2012), pp. 1 online resource (XII, 544 p.).
  2. J. P. Singh and S. N. Thakur, Laser-induced breakdown spectroscopy, 1st ed. (Elsevier, 2007), pp. xxiv, 429 p.
  3. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (LIBS) : fundamentals and applications (Cambridge University Press, 2006), pp. xvii, 620 p.
  4. Y. L. Chen and J. W. L. Lewis, “Visualization of laser-induced breakdown and ignition,” Opt. Express 9(7), 360–372 (2001).
    [Crossref]
  5. P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta, Part B 60(7-8), 1092–1097 (2005).
    [Crossref]
  6. J. Kiefer, J. W. Troger, Z. S. Li, T. Seeger, M. Alden, and A. Leipertz, “Laser-induced breakdown flame thermometry,” Combust. Flame 159(12), 3576–3582 (2012).
    [Crossref]
  7. J. Kiefer, B. Zhou, Z. S. Li, and M. Alden, “Impact of plasma dynamics on equivalence ratio measurements by laser-induced breakdown spectroscopy,” Appl. Opt. 54(13), 4221–4226 (2015).
    [Crossref]
  8. P. S. Hsu, M. Gragston, Y. Wu, Z. L. Zhang, A. K. Patnaik, J. Kiefer, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar,” Appl. Opt. 55(28), 8042–8048 (2016).
    [Crossref]
  9. Y. Wu, M. Gragston, Z. L. Zhang, P. S. Hsu, N. B. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
    [Crossref]
  10. D. Babankova, S. Civis, and L. Juha, “Chemical consequences of laser-induced dielectric breakdown in molecular gases,” Chem Listy 99, 109–115 (2005).
  11. D. Babankova, S. Civis, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30(2-3), 75–88 (2006).
    [Crossref]
  12. L. S. Fan, Y. S. Zhou, M. X. Wang, Y. Gao, L. Liu, J. F. Silvain, and Y. F. Lu, “Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition,” Laser Phys. Lett. 11(7), 076002 (2014).
    [Crossref]
  13. H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
    [Crossref]
  14. J. Sneddon, T. L. Thiem, and Y.-I. Lee, Lasers in analytical atomic spectroscopy (John Wiley & Sons, 1996).
  15. X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
    [Crossref]
  16. H. D. Vora and N. B. Dahotre, “Surface topography in three-dimensional laser machining of structural alumina,” J. Manuf. Process. 19, 49–58 (2015).
    [Crossref]
  17. J. Ashkenazy, R. Kipper, and M. Caner, “Spectroscopic Measurements of Electron-Density of Capillary Plasma Based on Stark-Broadening of Hydrogen Lines,” Phys. Rev. A 43(10), 5568–5574 (1991).
    [Crossref]
  18. C. Colon, M. I. de Andres-Garcia, C. Moreno-Diaz, A. Alonso-Medina, J. A. Porro, I. Angulo, and J. L. Ocana, “Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing,” Metals (Basel, Switz.) 9(7), 808 (2019).
    [Crossref]
  19. H. Griem, Spectral line broadening by plasmas (Elsevier, 2012).
  20. P. Kepple and H. R. Griem, “Improved Stark profile calculations for the hydrogen lines H α, H β, H γ, and H δ,” Phys. Rev. 173(1), 317–325 (1968).
    [Crossref]
  21. D. Surmick and C. Parigger, “Empirical formulae for electron density diagnostics from Hα and Hβ line profiles,” Int. Rev. At. Mol. Phys. 5, 73–81 (2014).
  22. A. K. Patnaik, Y. Wu, P. S. Hsu, M. Gragston, Z. L. Zhang, J. R. Gord, and S. Roy, “Simultaneous LIBS signal and plasma density measurement for quantitative insight into signal instability at elevated pressure,” Opt. Express 26(20), 25750–25760 (2018).
    [Crossref]
  23. A. Rao, M. Gragston, A. K. Patnaik, P. S. Hsu, and M. B. Shattan, “Measurement of electron density and temperature from laser-induced nitrogen plasma at elevated pressure (1-6 bar),” Opt. Express 27(23), 33779–33788 (2019).
    [Crossref]
  24. L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
    [Crossref]
  25. L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23(11), 15047–15056 (2015).
    [Crossref]
  26. S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy : Theory and Applications, Springer Series in Optical Sciences, (Springer, 2014), pp. 1 online resource (XXII, 565 p.).
  27. P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
    [Crossref]
  28. K. Ostrikov, F. Beg, and A. Ng, “Colloquium: Nanoplasmas generated by intense radiation,” Rev. Mod. Phys. 88(1), 011001 (2016).
    [Crossref]
  29. J. Muth-Bohm, A. Becker, and F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85(11), 2280–2283 (2000).
    [Crossref]

2019 (2)

C. Colon, M. I. de Andres-Garcia, C. Moreno-Diaz, A. Alonso-Medina, J. A. Porro, I. Angulo, and J. L. Ocana, “Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing,” Metals (Basel, Switz.) 9(7), 808 (2019).
[Crossref]

A. Rao, M. Gragston, A. K. Patnaik, P. S. Hsu, and M. B. Shattan, “Measurement of electron density and temperature from laser-induced nitrogen plasma at elevated pressure (1-6 bar),” Opt. Express 27(23), 33779–33788 (2019).
[Crossref]

2018 (3)

A. K. Patnaik, Y. Wu, P. S. Hsu, M. Gragston, Z. L. Zhang, J. R. Gord, and S. Roy, “Simultaneous LIBS signal and plasma density measurement for quantitative insight into signal instability at elevated pressure,” Opt. Express 26(20), 25750–25760 (2018).
[Crossref]

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

Y. Wu, M. Gragston, Z. L. Zhang, P. S. Hsu, N. B. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

2016 (3)

P. S. Hsu, M. Gragston, Y. Wu, Z. L. Zhang, A. K. Patnaik, J. Kiefer, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar,” Appl. Opt. 55(28), 8042–8048 (2016).
[Crossref]

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

K. Ostrikov, F. Beg, and A. Ng, “Colloquium: Nanoplasmas generated by intense radiation,” Rev. Mod. Phys. 88(1), 011001 (2016).
[Crossref]

2015 (3)

2014 (3)

L. S. Fan, Y. S. Zhou, M. X. Wang, Y. Gao, L. Liu, J. F. Silvain, and Y. F. Lu, “Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition,” Laser Phys. Lett. 11(7), 076002 (2014).
[Crossref]

D. Surmick and C. Parigger, “Empirical formulae for electron density diagnostics from Hα and Hβ line profiles,” Int. Rev. At. Mol. Phys. 5, 73–81 (2014).

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
[Crossref]

2012 (1)

J. Kiefer, J. W. Troger, Z. S. Li, T. Seeger, M. Alden, and A. Leipertz, “Laser-induced breakdown flame thermometry,” Combust. Flame 159(12), 3576–3582 (2012).
[Crossref]

2011 (1)

2006 (1)

D. Babankova, S. Civis, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30(2-3), 75–88 (2006).
[Crossref]

2005 (2)

D. Babankova, S. Civis, and L. Juha, “Chemical consequences of laser-induced dielectric breakdown in molecular gases,” Chem Listy 99, 109–115 (2005).

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta, Part B 60(7-8), 1092–1097 (2005).
[Crossref]

2001 (1)

2000 (1)

J. Muth-Bohm, A. Becker, and F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85(11), 2280–2283 (2000).
[Crossref]

1991 (1)

J. Ashkenazy, R. Kipper, and M. Caner, “Spectroscopic Measurements of Electron-Density of Capillary Plasma Based on Stark-Broadening of Hydrogen Lines,” Phys. Rev. A 43(10), 5568–5574 (1991).
[Crossref]

1968 (1)

P. Kepple and H. R. Griem, “Improved Stark profile calculations for the hydrogen lines H α, H β, H γ, and H δ,” Phys. Rev. 173(1), 317–325 (1968).
[Crossref]

Alden, M.

J. Kiefer, B. Zhou, Z. S. Li, and M. Alden, “Impact of plasma dynamics on equivalence ratio measurements by laser-induced breakdown spectroscopy,” Appl. Opt. 54(13), 4221–4226 (2015).
[Crossref]

J. Kiefer, J. W. Troger, Z. S. Li, T. Seeger, M. Alden, and A. Leipertz, “Laser-induced breakdown flame thermometry,” Combust. Flame 159(12), 3576–3582 (2012).
[Crossref]

Alonso-Medina, A.

C. Colon, M. I. de Andres-Garcia, C. Moreno-Diaz, A. Alonso-Medina, J. A. Porro, I. Angulo, and J. L. Ocana, “Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing,” Metals (Basel, Switz.) 9(7), 808 (2019).
[Crossref]

Angulo, I.

C. Colon, M. I. de Andres-Garcia, C. Moreno-Diaz, A. Alonso-Medina, J. A. Porro, I. Angulo, and J. L. Ocana, “Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing,” Metals (Basel, Switz.) 9(7), 808 (2019).
[Crossref]

Ashkenazy, J.

J. Ashkenazy, R. Kipper, and M. Caner, “Spectroscopic Measurements of Electron-Density of Capillary Plasma Based on Stark-Broadening of Hydrogen Lines,” Phys. Rev. A 43(10), 5568–5574 (1991).
[Crossref]

Babankova, D.

D. Babankova, S. Civis, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30(2-3), 75–88 (2006).
[Crossref]

D. Babankova, S. Civis, and L. Juha, “Chemical consequences of laser-induced dielectric breakdown in molecular gases,” Chem Listy 99, 109–115 (2005).

Becker, A.

J. Muth-Bohm, A. Becker, and F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85(11), 2280–2283 (2000).
[Crossref]

Beg, F.

K. Ostrikov, F. Beg, and A. Ng, “Colloquium: Nanoplasmas generated by intense radiation,” Rev. Mod. Phys. 88(1), 011001 (2016).
[Crossref]

Caner, M.

J. Ashkenazy, R. Kipper, and M. Caner, “Spectroscopic Measurements of Electron-Density of Capillary Plasma Based on Stark-Broadening of Hydrogen Lines,” Phys. Rev. A 43(10), 5568–5574 (1991).
[Crossref]

Chen, K.

Chen, Y. L.

Civis, S.

D. Babankova, S. Civis, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30(2-3), 75–88 (2006).
[Crossref]

D. Babankova, S. Civis, and L. Juha, “Chemical consequences of laser-induced dielectric breakdown in molecular gases,” Chem Listy 99, 109–115 (2005).

Colon, C.

C. Colon, M. I. de Andres-Garcia, C. Moreno-Diaz, A. Alonso-Medina, J. A. Porro, I. Angulo, and J. L. Ocana, “Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing,” Metals (Basel, Switz.) 9(7), 808 (2019).
[Crossref]

Couris, S.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta, Part B 60(7-8), 1092–1097 (2005).
[Crossref]

Dahotre, N. B.

H. D. Vora and N. B. Dahotre, “Surface topography in three-dimensional laser machining of structural alumina,” J. Manuf. Process. 19, 49–58 (2015).
[Crossref]

de Andres-Garcia, M. I.

C. Colon, M. I. de Andres-Garcia, C. Moreno-Diaz, A. Alonso-Medina, J. A. Porro, I. Angulo, and J. L. Ocana, “Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing,” Metals (Basel, Switz.) 9(7), 808 (2019).
[Crossref]

Estevadeordal, J.

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

Faisal, F. H. M.

J. Muth-Bohm, A. Becker, and F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85(11), 2280–2283 (2000).
[Crossref]

Fan, L. S.

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
[Crossref]

L. S. Fan, Y. S. Zhou, M. X. Wang, Y. Gao, L. Liu, J. F. Silvain, and Y. F. Lu, “Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition,” Laser Phys. Lett. 11(7), 076002 (2014).
[Crossref]

Gao, Y.

L. S. Fan, Y. S. Zhou, M. X. Wang, Y. Gao, L. Liu, J. F. Silvain, and Y. F. Lu, “Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition,” Laser Phys. Lett. 11(7), 076002 (2014).
[Crossref]

Golgir, H. R.

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

Gord, J. R.

Y. Wu, M. Gragston, Z. L. Zhang, P. S. Hsu, N. B. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

A. K. Patnaik, Y. Wu, P. S. Hsu, M. Gragston, Z. L. Zhang, J. R. Gord, and S. Roy, “Simultaneous LIBS signal and plasma density measurement for quantitative insight into signal instability at elevated pressure,” Opt. Express 26(20), 25750–25760 (2018).
[Crossref]

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

P. S. Hsu, M. Gragston, Y. Wu, Z. L. Zhang, A. K. Patnaik, J. Kiefer, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar,” Appl. Opt. 55(28), 8042–8048 (2016).
[Crossref]

Gragston, M.

Griem, H.

H. Griem, Spectral line broadening by plasmas (Elsevier, 2012).

Griem, H. R.

P. Kepple and H. R. Griem, “Improved Stark profile calculations for the hydrogen lines H α, H β, H γ, and H δ,” Phys. Rev. 173(1), 317–325 (1968).
[Crossref]

Guo, L. B.

He, X. N.

Hsu, P. S.

Hu, W.

Huang, X.

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23(11), 15047–15056 (2015).
[Crossref]

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
[Crossref]

Jiang, L.

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23(11), 15047–15056 (2015).
[Crossref]

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
[Crossref]

Jiang, L. J.

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

Jiang, N. B.

Y. Wu, M. Gragston, Z. L. Zhang, P. S. Hsu, N. B. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

Juha, L.

D. Babankova, S. Civis, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30(2-3), 75–88 (2006).
[Crossref]

D. Babankova, S. Civis, and L. Juha, “Chemical consequences of laser-induced dielectric breakdown in molecular gases,” Chem Listy 99, 109–115 (2005).

Kepple, P.

P. Kepple and H. R. Griem, “Improved Stark profile calculations for the hydrogen lines H α, H β, H γ, and H δ,” Phys. Rev. 173(1), 317–325 (1968).
[Crossref]

Keramatnejad, K.

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

Kiefer, J.

Kipper, R.

J. Ashkenazy, R. Kipper, and M. Caner, “Spectroscopic Measurements of Electron-Density of Capillary Plasma Based on Stark-Broadening of Hydrogen Lines,” Phys. Rev. A 43(10), 5568–5574 (1991).
[Crossref]

Lee, Y.-I.

J. Sneddon, T. L. Thiem, and Y.-I. Lee, Lasers in analytical atomic spectroscopy (John Wiley & Sons, 1996).

Leipertz, A.

J. Kiefer, J. W. Troger, Z. S. Li, T. Seeger, M. Alden, and A. Leipertz, “Laser-induced breakdown flame thermometry,” Combust. Flame 159(12), 3576–3582 (2012).
[Crossref]

Lewis, J. W. L.

Li, C. M.

Li, D. W.

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

Li, S.

Li, Z. S.

J. Kiefer, B. Zhou, Z. S. Li, and M. Alden, “Impact of plasma dynamics on equivalence ratio measurements by laser-induced breakdown spectroscopy,” Appl. Opt. 54(13), 4221–4226 (2015).
[Crossref]

J. Kiefer, J. W. Troger, Z. S. Li, T. Seeger, M. Alden, and A. Leipertz, “Laser-induced breakdown flame thermometry,” Combust. Flame 159(12), 3576–3582 (2012).
[Crossref]

Liu, L.

Lu, Y.

Lu, Y. F.

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23(11), 15047–15056 (2015).
[Crossref]

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
[Crossref]

L. S. Fan, Y. S. Zhou, M. X. Wang, Y. Gao, L. Liu, J. F. Silvain, and Y. F. Lu, “Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition,” Laser Phys. Lett. 11(7), 076002 (2014).
[Crossref]

X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011).
[Crossref]

Michalakou, A.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta, Part B 60(7-8), 1092–1097 (2005).
[Crossref]

Miziolek, A. W.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (LIBS) : fundamentals and applications (Cambridge University Press, 2006), pp. xvii, 620 p.

Moreno-Diaz, C.

C. Colon, M. I. de Andres-Garcia, C. Moreno-Diaz, A. Alonso-Medina, J. A. Porro, I. Angulo, and J. L. Ocana, “Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing,” Metals (Basel, Switz.) 9(7), 808 (2019).
[Crossref]

Musazzi, S.

S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy : Theory and Applications, Springer Series in Optical Sciences, (Springer, 2014), pp. 1 online resource (XXII, 565 p.).

Muth-Bohm, J.

J. Muth-Bohm, A. Becker, and F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85(11), 2280–2283 (2000).
[Crossref]

Ng, A.

K. Ostrikov, F. Beg, and A. Ng, “Colloquium: Nanoplasmas generated by intense radiation,” Rev. Mod. Phys. 88(1), 011001 (2016).
[Crossref]

Noll, R.

R. Noll and SpringerLink (Online service), Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (2012), pp. 1 online resource (XII, 544 p.).

Ocana, J. L.

C. Colon, M. I. de Andres-Garcia, C. Moreno-Diaz, A. Alonso-Medina, J. A. Porro, I. Angulo, and J. L. Ocana, “Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing,” Metals (Basel, Switz.) 9(7), 808 (2019).
[Crossref]

Ostrikov, K.

K. Ostrikov, F. Beg, and A. Ng, “Colloquium: Nanoplasmas generated by intense radiation,” Rev. Mod. Phys. 88(1), 011001 (2016).
[Crossref]

Palleschi, V.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (LIBS) : fundamentals and applications (Cambridge University Press, 2006), pp. xvii, 620 p.

Parigger, C.

D. Surmick and C. Parigger, “Empirical formulae for electron density diagnostics from Hα and Hβ line profiles,” Int. Rev. At. Mol. Phys. 5, 73–81 (2014).

Patnaik, A. K.

Perini, U.

S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy : Theory and Applications, Springer Series in Optical Sciences, (Springer, 2014), pp. 1 online resource (XXII, 565 p.).

Porro, J. A.

C. Colon, M. I. de Andres-Garcia, C. Moreno-Diaz, A. Alonso-Medina, J. A. Porro, I. Angulo, and J. L. Ocana, “Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing,” Metals (Basel, Switz.) 9(7), 808 (2019).
[Crossref]

Rao, A.

Roy, S.

A. K. Patnaik, Y. Wu, P. S. Hsu, M. Gragston, Z. L. Zhang, J. R. Gord, and S. Roy, “Simultaneous LIBS signal and plasma density measurement for quantitative insight into signal instability at elevated pressure,” Opt. Express 26(20), 25750–25760 (2018).
[Crossref]

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

Y. Wu, M. Gragston, Z. L. Zhang, P. S. Hsu, N. B. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

P. S. Hsu, M. Gragston, Y. Wu, Z. L. Zhang, A. K. Patnaik, J. Kiefer, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar,” Appl. Opt. 55(28), 8042–8048 (2016).
[Crossref]

Schechter, I.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (LIBS) : fundamentals and applications (Cambridge University Press, 2006), pp. xvii, 620 p.

Seeger, T.

J. Kiefer, J. W. Troger, Z. S. Li, T. Seeger, M. Alden, and A. Leipertz, “Laser-induced breakdown flame thermometry,” Combust. Flame 159(12), 3576–3582 (2012).
[Crossref]

Shattan, M. B.

Silvain, J. F.

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23(11), 15047–15056 (2015).
[Crossref]

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
[Crossref]

L. S. Fan, Y. S. Zhou, M. X. Wang, Y. Gao, L. Liu, J. F. Silvain, and Y. F. Lu, “Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition,” Laser Phys. Lett. 11(7), 076002 (2014).
[Crossref]

Singh, J. P.

J. P. Singh and S. N. Thakur, Laser-induced breakdown spectroscopy, 1st ed. (Elsevier, 2007), pp. xxiv, 429 p.

Skevis, G.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta, Part B 60(7-8), 1092–1097 (2005).
[Crossref]

Sneddon, J.

J. Sneddon, T. L. Thiem, and Y.-I. Lee, Lasers in analytical atomic spectroscopy (John Wiley & Sons, 1996).

Stavropoulos, P.

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta, Part B 60(7-8), 1092–1097 (2005).
[Crossref]

Stolt, A. J.

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

Surmick, D.

D. Surmick and C. Parigger, “Empirical formulae for electron density diagnostics from Hα and Hβ line profiles,” Int. Rev. At. Mol. Phys. 5, 73–81 (2014).

Thakur, S. N.

J. P. Singh and S. N. Thakur, Laser-induced breakdown spectroscopy, 1st ed. (Elsevier, 2007), pp. xxiv, 429 p.

Thiem, T. L.

J. Sneddon, T. L. Thiem, and Y.-I. Lee, Lasers in analytical atomic spectroscopy (John Wiley & Sons, 1996).

Troger, J. W.

J. Kiefer, J. W. Troger, Z. S. Li, T. Seeger, M. Alden, and A. Leipertz, “Laser-induced breakdown flame thermometry,” Combust. Flame 159(12), 3576–3582 (2012).
[Crossref]

Vora, H. D.

H. D. Vora and N. B. Dahotre, “Surface topography in three-dimensional laser machining of structural alumina,” J. Manuf. Process. 19, 49–58 (2015).
[Crossref]

Wang, M. M.

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

Wang, M. X.

L. S. Fan, Y. S. Zhou, M. X. Wang, Y. Gao, L. Liu, J. F. Silvain, and Y. F. Lu, “Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition,” Laser Phys. Lett. 11(7), 076002 (2014).
[Crossref]

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
[Crossref]

Wu, Y.

Xiong, W.

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

Zhang, C. F.

Zhang, Z. L.

Zhou, B.

Zhou, Y. S.

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

L. S. Fan, Y. S. Zhou, M. X. Wang, Y. Gao, L. Liu, J. F. Silvain, and Y. F. Lu, “Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition,” Laser Phys. Lett. 11(7), 076002 (2014).
[Crossref]

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22(7), 7686–7693 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

Chem Listy (1)

D. Babankova, S. Civis, and L. Juha, “Chemical consequences of laser-induced dielectric breakdown in molecular gases,” Chem Listy 99, 109–115 (2005).

Combust. Flame (2)

Y. Wu, M. Gragston, Z. L. Zhang, P. S. Hsu, N. B. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

J. Kiefer, J. W. Troger, Z. S. Li, T. Seeger, M. Alden, and A. Leipertz, “Laser-induced breakdown flame thermometry,” Combust. Flame 159(12), 3576–3582 (2012).
[Crossref]

Int. Rev. At. Mol. Phys. (1)

D. Surmick and C. Parigger, “Empirical formulae for electron density diagnostics from Hα and Hβ line profiles,” Int. Rev. At. Mol. Phys. 5, 73–81 (2014).

J. Appl. Phys. (1)

H. R. Golgir, Y. S. Zhou, D. W. Li, K. Keramatnejad, W. Xiong, M. M. Wang, L. J. Jiang, X. Huang, L. Jiang, J. F. Silvain, and Y. F. Lu, “Resonant and nonresonant vibrational excitation of ammonia molecules in the growth of gallium nitride using laser-assisted metal organic chemical vapour deposition,” J. Appl. Phys. 120(10), 105303 (2016).
[Crossref]

J. Manuf. Process. (1)

H. D. Vora and N. B. Dahotre, “Surface topography in three-dimensional laser machining of structural alumina,” J. Manuf. Process. 19, 49–58 (2015).
[Crossref]

Laser Phys. Lett. (1)

L. S. Fan, Y. S. Zhou, M. X. Wang, Y. Gao, L. Liu, J. F. Silvain, and Y. F. Lu, “Resonant vibrational excitation of ethylene molecules in laser-assisted diamond deposition,” Laser Phys. Lett. 11(7), 076002 (2014).
[Crossref]

Metals (Basel, Switz.) (1)

C. Colon, M. I. de Andres-Garcia, C. Moreno-Diaz, A. Alonso-Medina, J. A. Porro, I. Angulo, and J. L. Ocana, “Experimental Determination of Electronic Density and Temperature in Water-Confined Plasmas Generated by Laser Shock Processing,” Metals (Basel, Switz.) 9(7), 808 (2019).
[Crossref]

Opt. Express (6)

Phys. Rev. (1)

P. Kepple and H. R. Griem, “Improved Stark profile calculations for the hydrogen lines H α, H β, H γ, and H δ,” Phys. Rev. 173(1), 317–325 (1968).
[Crossref]

Phys. Rev. A (1)

J. Ashkenazy, R. Kipper, and M. Caner, “Spectroscopic Measurements of Electron-Density of Capillary Plasma Based on Stark-Broadening of Hydrogen Lines,” Phys. Rev. A 43(10), 5568–5574 (1991).
[Crossref]

Phys. Rev. Lett. (1)

J. Muth-Bohm, A. Becker, and F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85(11), 2280–2283 (2000).
[Crossref]

Prog. Quantum Electron. (1)

D. Babankova, S. Civis, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30(2-3), 75–88 (2006).
[Crossref]

Rev. Mod. Phys. (1)

K. Ostrikov, F. Beg, and A. Ng, “Colloquium: Nanoplasmas generated by intense radiation,” Rev. Mod. Phys. 88(1), 011001 (2016).
[Crossref]

Spectrochim. Acta, Part B (1)

P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta, Part B 60(7-8), 1092–1097 (2005).
[Crossref]

Other (6)

H. Griem, Spectral line broadening by plasmas (Elsevier, 2012).

R. Noll and SpringerLink (Online service), Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (2012), pp. 1 online resource (XII, 544 p.).

J. P. Singh and S. N. Thakur, Laser-induced breakdown spectroscopy, 1st ed. (Elsevier, 2007), pp. xxiv, 429 p.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (LIBS) : fundamentals and applications (Cambridge University Press, 2006), pp. xvii, 620 p.

J. Sneddon, T. L. Thiem, and Y.-I. Lee, Lasers in analytical atomic spectroscopy (John Wiley & Sons, 1996).

S. Musazzi and U. Perini, Laser-Induced Breakdown Spectroscopy : Theory and Applications, Springer Series in Optical Sciences, (Springer, 2014), pp. 1 online resource (XXII, 565 p.).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of the experiment setup for laser-induced breakdown spectroscopy of ammonia molecules as well as with on- and off-resonant vibrational excitation of ammonia molecules.
Fig. 2.
Fig. 2. (a) The relationship between the output wavelength and maximum power of the CO2 laser; (b) the absorption spectrum of the gaseous ammonia in open air at atmospheric pressure within the CO2 laser wavelength tunable range of 9.2–10.8 µm.
Fig. 3.
Fig. 3. Spectra of plasma optical emission in LIBS (black line), LIBS-RE-ON (red line), and LIBS-RE-OFF (blue line) measured at the delay time of 2 µs.
Fig. 4.
Fig. 4. Peak intensities of the atomic emission lines of (a) H I 656.3 nm and (b) N I 746. 8 nm at different delay times in LIBS (black squares), LIBS-RE-ON (red dots), and LIBS-RE-OFF (blue triangles).
Fig. 5.
Fig. 5. Images of plasmas generated in (a) LIBS, (b) LIBS-RE-OFF, and (c) LIBS-RE-ON, respectively, at the delay times of 1, 3, 5, and 7 µs.
Fig. 6.
Fig. 6. Temporal evolution of (a) electron temperature and (b) electron density of plasmas generated in LIBS (black squares), LIBS-RE-ON (red dots), and LIBS-RE-OFF (blue triangles).
Fig. 7.
Fig. 7. The sensor of a thermometer fixed 5 mm below the nozzle for measurements of the ammonia gas temperature.

Tables (1)

Tables Icon

Table 1. Parameters of atomic lines used for plasma temperature calculation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I 1 I 2 = ( g 1 A 1 g 2 A 2 ) ( λ 2 λ 1 ) e x p [ ( E 1 E 2 ) κ T e ]
N e = 8.02 × 10 12 ( Δ λ 1 / 2 / α 1 / 2 ) 3 / 2 c m 3

Metrics