Abstract

Conventional stereoscopic displays are subject to the well-known vergence-accommodation conflict (VAC) problem due to their lack of the ability to render correct focus cues of a 3D scene. A computational multilayer light field display has been explored as one of the approaches that can potentially overcome the VAC problem owing to the promise of rendering a true 3D scene by sampling the directions of the light rays apparently emitted by the 3D scene. Several pioneering works have demonstrated working prototypes of multilayer light field displays and the potential capability of rendering nearly correct focus cues. However, there is no systematic investigation upon methods for modeling and analyzing such a display, which is essential for further optimization and development of high-performance multilayer light field display systems. In this paper, we proposed a systemic analysis method for the multilayer light field displays by simulating the perceived retinal image which takes the display factors, the view-dependency of the reference light field, the diffraction effect, and the visual factors into consideration. Then we applied this model to investigate the accommodative response when observing the display engine.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Systematic characterization and optimization of 3D light field displays

Hekun Huang and Hong Hua
Opt. Express 25(16) 18508-18525 (2017)

Effects of ray position sampling on the visual responses of 3D light field displays

Hekun Huang and Hong Hua
Opt. Express 27(7) 9343-9360 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
    [Crossref]
  2. G. Westheimer, “The maxwellian view,” Vision Res. 6(11-12), 669–682 (1966).
    [Crossref]
  3. R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant Computational Near-eye Displays,” ACM Trans. Graph. 36, 1–12 (2017).
    [Crossref]
  4. S. Shinichi, O. Katsuyuki, and K. Fumio, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996).
    [Crossref]
  5. S. Takashi, K. Takashi, O. Keiji, O. Masaki, M. Nobuyuki, Y. Yoshihiro, and I. Tsuneto, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
    [Crossref]
  6. S. Liu, D. Cheng, and H. Hua,"An optical see-through head mounted display with addressable focal planes,” 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, 33–42(2008).
  7. J. P. Rolland, M. W. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
    [Crossref]
  8. S. Liu and H. Hua, “Time-multiplexed dual-focal plane head-mounted display with a liquid lens,” Opt. Lett. 34(11), 1642 (2009).
    [Crossref]
  9. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562 (2010).
    [Crossref]
  10. Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412 (2017).
    [Crossref]
  11. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
    [Crossref]
  12. H. Yeom, H. Kim, S. Kim, and J. Park, “Design of holographic Head Mounted Display using Holographic Optical Element,” in 2015 Conference on Lasers and Electro-Optics Pacific Rim, (Optical Society of America, 2015), paper 27P_105.
  13. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484 (2014).
    [Crossref]
  14. A. Maimone and H. Fuchs, “Computational augmented reality eyeglasses,” 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Adelaide, SA, 2013, pp. 29–38. (IEEE, Oct 2013).
  15. F. Huang, K. Chen, and G. Wetzstein, “The Light Field Stereoscope: Immersive Computer Graphics via Factored Near-eye Light Field Displays with Focus Cues,” ACM Trans. Graph. 34(4), 60–61 (2015).
    [Crossref]
  16. G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis Using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
    [Crossref]
  17. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824 (2010).
    [Crossref]
  18. D. Lanman and D. Luebke, “Near-eye Light Field Displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
    [Crossref]
  19. A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight Displays: Wide Field of View Augmented Reality Eyeglasses Using Defocused Point Light Sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
    [Crossref]
  20. H. Hua, “Advances in Head-Mounted Light-Field Displays for Virtual and Augmented Reality,” Inf. Disp. 32, 14–21 (2016).
    [Crossref]
  21. D. Lanman, G. Wetzstein, M. Hirsch, and R. Raskar, “Depth of Field Analysis for Multilayer Automultiscopic Displays,” J. Phys.: Conf. Ser. 415, 012036 (2013).
    [Crossref]
  22. G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D,” ACM Trans. Graph. 30(4), 1 (2011).
    [Crossref]
  23. J. Schwiegerling, Field guide to visual and ophthalmic optics (SPIE Press, 2004).
  24. H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
    [Crossref]
  25. H. Huang and H. Hua, “Effects of ray position sampling on the visual responses of 3D light field displays,” Opt. Express 27(7), 9343–9360 (2019).
    [Crossref]
  26. H. Hua, “Enabling Focus Cues in Head-Mounted Displays,” Proc. IEEE 105(5), 805–824 (2017).
    [Crossref]
  27. A. Maimone and H. Fuchs, “Computational augmented reality eyeglasses,” 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)29–38 (2013).

2019 (1)

2017 (5)

H. Hua, “Enabling Focus Cues in Head-Mounted Displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
[Crossref]

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant Computational Near-eye Displays,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412 (2017).
[Crossref]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

2016 (1)

H. Hua, “Advances in Head-Mounted Light-Field Displays for Virtual and Augmented Reality,” Inf. Disp. 32, 14–21 (2016).
[Crossref]

2015 (1)

F. Huang, K. Chen, and G. Wetzstein, “The Light Field Stereoscope: Immersive Computer Graphics via Factored Near-eye Light Field Displays with Focus Cues,” ACM Trans. Graph. 34(4), 60–61 (2015).
[Crossref]

2014 (2)

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484 (2014).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight Displays: Wide Field of View Augmented Reality Eyeglasses Using Defocused Point Light Sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

2013 (2)

D. Lanman and D. Luebke, “Near-eye Light Field Displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, and R. Raskar, “Depth of Field Analysis for Multilayer Automultiscopic Displays,” J. Phys.: Conf. Ser. 415, 012036 (2013).
[Crossref]

2012 (1)

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis Using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

2011 (1)

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D,” ACM Trans. Graph. 30(4), 1 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

2005 (1)

S. Takashi, K. Takashi, O. Keiji, O. Masaki, M. Nobuyuki, Y. Yoshihiro, and I. Tsuneto, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

2000 (1)

1996 (1)

S. Shinichi, O. Katsuyuki, and K. Fumio, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996).
[Crossref]

1966 (1)

G. Westheimer, “The maxwellian view,” Vision Res. 6(11-12), 669–682 (1966).
[Crossref]

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Banks, M. S.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Chen, K.

F. Huang, K. Chen, and G. Wetzstein, “The Light Field Stereoscope: Immersive Computer Graphics via Factored Near-eye Light Field Displays with Focus Cues,” ACM Trans. Graph. 34(4), 60–61 (2015).
[Crossref]

Cheng, D.

S. Liu, D. Cheng, and H. Hua,"An optical see-through head mounted display with addressable focal planes,” 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, 33–42(2008).

Cooper, E. A.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant Computational Near-eye Displays,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

Duan, X.

Fuchs, H.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight Displays: Wide Field of View Augmented Reality Eyeglasses Using Defocused Point Light Sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

A. Maimone and H. Fuchs, “Computational augmented reality eyeglasses,” 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Adelaide, SA, 2013, pp. 29–38. (IEEE, Oct 2013).

A. Maimone and H. Fuchs, “Computational augmented reality eyeglasses,” 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)29–38 (2013).

Fumio, K.

S. Shinichi, O. Katsuyuki, and K. Fumio, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996).
[Crossref]

Gao, Q.

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Goon, A.

Heidrich, W.

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D,” ACM Trans. Graph. 30(4), 1 (2011).
[Crossref]

Hirsch, M.

D. Lanman, G. Wetzstein, M. Hirsch, and R. Raskar, “Depth of Field Analysis for Multilayer Automultiscopic Displays,” J. Phys.: Conf. Ser. 415, 012036 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis Using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Hua, H.

Huang, F.

F. Huang, K. Chen, and G. Wetzstein, “The Light Field Stereoscope: Immersive Computer Graphics via Factored Near-eye Light Field Displays with Focus Cues,” ACM Trans. Graph. 34(4), 60–61 (2015).
[Crossref]

Huang, H.

Javidi, B.

Katsuyuki, O.

S. Shinichi, O. Katsuyuki, and K. Fumio, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996).
[Crossref]

Keiji, O.

S. Takashi, K. Takashi, O. Keiji, O. Masaki, M. Nobuyuki, Y. Yoshihiro, and I. Tsuneto, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Keller, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight Displays: Wide Field of View Augmented Reality Eyeglasses Using Defocused Point Light Sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Kim, H.

H. Yeom, H. Kim, S. Kim, and J. Park, “Design of holographic Head Mounted Display using Holographic Optical Element,” in 2015 Conference on Lasers and Electro-Optics Pacific Rim, (Optical Society of America, 2015), paper 27P_105.

Kim, S.

H. Yeom, H. Kim, S. Kim, and J. Park, “Design of holographic Head Mounted Display using Holographic Optical Element,” in 2015 Conference on Lasers and Electro-Optics Pacific Rim, (Optical Society of America, 2015), paper 27P_105.

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Konrad, R.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant Computational Near-eye Displays,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

Krueger, M. W.

Lanman, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight Displays: Wide Field of View Augmented Reality Eyeglasses Using Defocused Point Light Sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

D. Lanman and D. Luebke, “Near-eye Light Field Displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, and R. Raskar, “Depth of Field Analysis for Multilayer Automultiscopic Displays,” J. Phys.: Conf. Ser. 415, 012036 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis Using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D,” ACM Trans. Graph. 30(4), 1 (2011).
[Crossref]

Li, X.

Liu, J.

Liu, P.

Liu, S.

Luebke, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight Displays: Wide Field of View Augmented Reality Eyeglasses Using Defocused Point Light Sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

D. Lanman and D. Luebke, “Near-eye Light Field Displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight Displays: Wide Field of View Augmented Reality Eyeglasses Using Defocused Point Light Sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

A. Maimone and H. Fuchs, “Computational augmented reality eyeglasses,” 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)29–38 (2013).

A. Maimone and H. Fuchs, “Computational augmented reality eyeglasses,” 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Adelaide, SA, 2013, pp. 29–38. (IEEE, Oct 2013).

Masaki, O.

S. Takashi, K. Takashi, O. Keiji, O. Masaki, M. Nobuyuki, Y. Yoshihiro, and I. Tsuneto, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Molner, K.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant Computational Near-eye Displays,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

Nago, N.

Nobuyuki, M.

S. Takashi, K. Takashi, O. Keiji, O. Masaki, M. Nobuyuki, Y. Yoshihiro, and I. Tsuneto, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Padmanaban, N.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant Computational Near-eye Displays,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

Park, J.

H. Yeom, H. Kim, S. Kim, and J. Park, “Design of holographic Head Mounted Display using Holographic Optical Element,” in 2015 Conference on Lasers and Electro-Optics Pacific Rim, (Optical Society of America, 2015), paper 27P_105.

Raskar, R.

D. Lanman, G. Wetzstein, M. Hirsch, and R. Raskar, “Depth of Field Analysis for Multilayer Automultiscopic Displays,” J. Phys.: Conf. Ser. 415, 012036 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis Using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D,” ACM Trans. Graph. 30(4), 1 (2011).
[Crossref]

Rathinavel, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight Displays: Wide Field of View Augmented Reality Eyeglasses Using Defocused Point Light Sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Rolland, J. P.

Schwiegerling, J.

J. Schwiegerling, Field guide to visual and ophthalmic optics (SPIE Press, 2004).

Shinichi, S.

S. Shinichi, O. Katsuyuki, and K. Fumio, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996).
[Crossref]

Takaki, Y.

Takashi, K.

S. Takashi, K. Takashi, O. Keiji, O. Masaki, M. Nobuyuki, Y. Yoshihiro, and I. Tsuneto, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Takashi, S.

S. Takashi, K. Takashi, O. Keiji, O. Masaki, M. Nobuyuki, Y. Yoshihiro, and I. Tsuneto, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Tsuneto, I.

S. Takashi, K. Takashi, O. Keiji, O. Masaki, M. Nobuyuki, Y. Yoshihiro, and I. Tsuneto, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Westheimer, G.

G. Westheimer, “The maxwellian view,” Vision Res. 6(11-12), 669–682 (1966).
[Crossref]

Wetzstein, G.

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant Computational Near-eye Displays,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

F. Huang, K. Chen, and G. Wetzstein, “The Light Field Stereoscope: Immersive Computer Graphics via Factored Near-eye Light Field Displays with Focus Cues,” ACM Trans. Graph. 34(4), 60–61 (2015).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, and R. Raskar, “Depth of Field Analysis for Multilayer Automultiscopic Displays,” J. Phys.: Conf. Ser. 415, 012036 (2013).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis Using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D,” ACM Trans. Graph. 30(4), 1 (2011).
[Crossref]

Yeom, H.

H. Yeom, H. Kim, S. Kim, and J. Park, “Design of holographic Head Mounted Display using Holographic Optical Element,” in 2015 Conference on Lasers and Electro-Optics Pacific Rim, (Optical Society of America, 2015), paper 27P_105.

Yoshihiro, Y.

S. Takashi, K. Takashi, O. Keiji, O. Masaki, M. Nobuyuki, Y. Yoshihiro, and I. Tsuneto, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

Zhao, T.

ACM Trans. Graph. (7)

R. Konrad, N. Padmanaban, K. Molner, E. A. Cooper, and G. Wetzstein, “Accommodation-invariant Computational Near-eye Displays,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

D. Lanman and D. Luebke, “Near-eye Light Field Displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight Displays: Wide Field of View Augmented Reality Eyeglasses Using Defocused Point Light Sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D,” ACM Trans. Graph. 30(4), 1 (2011).
[Crossref]

F. Huang, K. Chen, and G. Wetzstein, “The Light Field Stereoscope: Immersive Computer Graphics via Factored Near-eye Light Field Displays with Focus Cues,” ACM Trans. Graph. 34(4), 60–61 (2015).
[Crossref]

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Displays: Compressive Light Field Synthesis Using Multilayer Displays with Directional Backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Appl. Opt. (1)

Inf. Disp. (1)

H. Hua, “Advances in Head-Mounted Light-Field Displays for Virtual and Augmented Reality,” Inf. Disp. 32, 14–21 (2016).
[Crossref]

J. Phys.: Conf. Ser. (1)

D. Lanman, G. Wetzstein, M. Hirsch, and R. Raskar, “Depth of Field Analysis for Multilayer Automultiscopic Displays,” J. Phys.: Conf. Ser. 415, 012036 (2013).
[Crossref]

J. Soc. Inf. Disp. (2)

S. Shinichi, O. Katsuyuki, and K. Fumio, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” J. Soc. Inf. Disp. 4(4), 255–261 (1996).
[Crossref]

S. Takashi, K. Takashi, O. Keiji, O. Masaki, M. Nobuyuki, Y. Yoshihiro, and I. Tsuneto, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13(8), 665–671 (2005).
[Crossref]

J. Vis. (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Proc. IEEE (1)

H. Hua, “Enabling Focus Cues in Head-Mounted Displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

Vision Res. (1)

G. Westheimer, “The maxwellian view,” Vision Res. 6(11-12), 669–682 (1966).
[Crossref]

Other (5)

J. Schwiegerling, Field guide to visual and ophthalmic optics (SPIE Press, 2004).

A. Maimone and H. Fuchs, “Computational augmented reality eyeglasses,” 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Adelaide, SA, 2013, pp. 29–38. (IEEE, Oct 2013).

H. Yeom, H. Kim, S. Kim, and J. Park, “Design of holographic Head Mounted Display using Holographic Optical Element,” in 2015 Conference on Lasers and Electro-Optics Pacific Rim, (Optical Society of America, 2015), paper 27P_105.

S. Liu, D. Cheng, and H. Hua,"An optical see-through head mounted display with addressable focal planes,” 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, 33–42(2008).

A. Maimone and H. Fuchs, “Computational augmented reality eyeglasses,” 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)29–38 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. The generalized systematic analysis model of a two-layers light field display system with a schematic eye model and the perceived retinal image formation of this display for the reconstruction point B locates at the distance z from eye pupil that (a) equals to, (b) smaller than and (c) larger than the eye accommodative distance zA. (d) is the viewing window or the eye entrance pupil with footprints of multiple elemental views.
Fig. 2.
Fig. 2. Factorization process to calculate the transmittance of the pixels on the display layers and the reconstruction of the target plane rendered by the multilayer light field display engine.
Fig. 3.
Fig. 3. The implementation of the perceived retinal image and the accumulated PSF of the multilayers light field displays.
Fig. 4.
Fig. 4. The eye positions in viewing window for simulation, namely view 0 to view7
Fig. 5.
Fig. 5. Implementation results: (a) is an example of the normalized elemental view PSF obtained computationally via Eq. (3) and through Zemax simulation; (b) is an example of the normalized accumulated PSF computationally obtained via Eq. (2); (c) is an example of the MTF of the accumulated PSF computer via Eq. (6); and (d) is the simulation of retinal images of the center view for a reference light field composed of a 5 cpd square wave.
Fig. 6.
Fig. 6. Effects of pixel pitch: (a) and (c) are the normalized elemental view PSFs for two different display configurations with a pixel pitch of 0.29 mm and 2mm, respectively, at four different eye accommodation distances, 0, 0.8, 1, and 1.2 diopters, respectively; (b) and (d) are the accumulated PSF of the two display pitch configurations (0.29 mm and 2mm) for reconstructing an on-axis object point located at four different depths, 0, 0.8, 1, and 1.2 diopters, respectively, matching with the accommodation distances of the eye model.
Fig. 7.
Fig. 7. Simulated retinal images of display configurations of different pixel pitches for three reference targets with depths of 0.8,1, and 1.2 diopters, respectively, and a frequency of 5 cycles/degree (a) is for the display of 0.29mm pixel pitch and the accommodation distance of the eye model matches with the target depth in each sub-figure; and (b) is the perceived retinal images for the display of 2mm pixel pitch.
Fig. 8.
Fig. 8. Simulated retinal images of display configurations of different layer separations for three reference targets with depths of 0.8,1, and 1.2 diopters, respectively, and a frequency of 5 cycles/degree: (a) is the reconstruction for display layers separated by 100mm and (b) is the reconstruction for display layers separated by 533mm. The dioptric center of the two display configurations is located at 1 diopter away from the viewing window
Fig. 9.
Fig. 9. The perceived retinal image for the target at 0.8 diopters and 1 diopter with different eye positions. (a)-(c) show the reconstruction for target distance as 1 diopter and tested frequencies are 1,5,7.5 cpd, respectively. (d)-(f) show the reconstruction for target distance as 0.8 diopters and tested frequencies are 1,2,5 cpd, respectively.
Fig. 10.
Fig. 10. The perceived retinal image plot for the reconstruction distance of 0.8 diopters for a square wave reference light field with the spatial frequency of 1,3,5, and 7.5 cpd, respectively, for the (a) edge view (view7) and (b) center view (view 0).
Fig. 11.
Fig. 11. The perceived retinal image for the view-depended reference light field. (a) is reconstruction for modulation function with standard deviation as 0.5 degrees and target frequency as 2cpd. (b) is the reconstruction for modulation function with standard deviation as 0.25 degrees and target frequency as 7.5cpd.
Fig. 12.
Fig. 12. (a)-(e) are MTF plots of the perceived retinal images as a function of eye accommodation shift for five target distance at 0.2,0.6,1,1.4 and 1.8 diopters, respectively. The target frequencies are 2,4,6 and 8 cpd, respectively. (f) is the accommodation error plot as a function of target depths for targets of different frequencies in a multilayer LF display in comparison to a natural viewing.
Fig. 13.
Fig. 13. The perceived retinal image for the rendered object locates at 1 diopter (1000mm) while the eye accommodation distance is (a) 0.8 diopters, (b) 1 diopter and (c) 2 diopters, respectively.

Tables (1)

Tables Icon

Table 1. The parameters of the test setup

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I r e t i n a ( x , y , z A ) = n = 1 N m = 1 M q = 1 Q L ( m , n , λ q ) w ( λ q ) s ( d x m , d y n ) | P S F m n q ( x , y , z A ) | 2 n = 1 N m = 1 M q = 1 Q L ( m , n , λ q ) w ( λ q ) s ( d x m , d y n ) ,
P S F A c c ( x , y , z A ) = n = 1 N m = 1 M q = 1 Q w ( λ q ) s ( d x m , d y n ) | P S F m n q ( x , y , z A ) | 2 n = 1 N m = 1 M q = 1 Q w ( λ q ) s ( d x m , d y n ) .
P S F m n q ( x , y , z A ) = e j 2 π λ q z r e t i n a e j π λ q z r e t i n a ( x 2 + y 2 ) j λ q z r e t i n a P ( x d x m , y d y n ) e j k m n r   exp [ j 2 π λ q W e y e ( d x m , d y n , x , y , λ q , z A ) ] exp [ j π λ q ( 1 z A ) ( x 2 + y 2 ) ]   exp [ j 2 π λ q ( x z r e t i n a x + y z r e t i n a y ) ] d x d y
P ( x d x m , y d y n ) = r e c t ( α ( x d x m ) p , α ( y d y n ) p ) .
d x m = z k m n e x k m n e z ; d y n = z k m n e y k m n e z
M T F A c c ( ξ , η ) = P S F A c c ( x , y ) exp [ j ( ξ x + η y ) ] d x d y P S F A c c ( x , y ) d x d y ,
L ( m , n ) = L 0 t 1 ( m , n ) t 2 ( m , n ) ,
log ( L ( m , n ) L 0 ) = log ( t 1 ( m , n ) ) log ( t 2 ( m , n ) ) .
I Re c = 1 N M n = 1 N m = 1 M L ( m , n ) ,
I r e t i n a ( x , y , z A ) = I Re c ( x , y ) P S F A c c ( x , y , z A ) ,

Metrics