Abstract

We present a systematic optimization of nighttime thermoelectric power generation system utilizing radiative cooling. We show that an electrical power density >2 W/m2, two orders of magnitude higher than the previously reported experimental result, is achievable using existing technologies. This system combines radiative cooling and thermoelectric power generation and operates at night when solar energy harvesting is unavailable. The thermoelectric power generator (TEG) itself covers less than 1 percent of the system footprint area when achieving this optimal power generation, showing economic feasibility. We study the influence of emissivity spectra, thermal convection, thermoelectric figure of merit and the area ratio between the TEG and the radiative cooler on the power generation performance. We optimize the thermal radiation emitter attached to the cold side and propose practical material implementation. The importance of the optimal emitter is elucidated by the gain of 153% in power density compared to regular blackbody emitters.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Cabraal, D. F. Barnes, and S. G. Agarwal, “Productive uses of energy for rural development,” Annu. Rev. Env. Resour. 30(1), 117–144 (2005).
    [Crossref]
  2. S. Chu, Y. Cui, and N. Liu, “The path towards sustainable energy,” Nat. Mater. 16(1), 16–22 (2017).
    [Crossref]
  3. D. Shindell and C. J. Smith, “Climate and air-quality benefits of a realistic phase-out of fossil fuels,” Nature 573(7774), 408–411 (2019).
    [Crossref]
  4. J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
    [Crossref]
  5. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref]
  6. T. A. Cooper, S. H. Zandavi, G. W. Ni, Y. Tsurimaki, Y. Huang, S. V. Boriskina, and G. Chen, “Contactless steam generation and superheating under one sun illumination,” Nat. Commun. 9(1), 5086 (2018).
    [Crossref]
  7. Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
    [Crossref]
  8. E. Zhou, W. Cole, and B. Frew, “Valuing variable renewable energy for peak demand requirements,” Energy 165, 499–511 (2018).
    [Crossref]
  9. A. P. Raman, W. Li, and S. Fan, “Generating light from darkness,” Joule 3(11), 2679–2686 (2019).
    [Crossref]
  10. C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
    [Crossref]
  11. A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
    [Crossref]
  12. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref]
  13. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref]
  14. Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
    [Crossref]
  15. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref]
  16. J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
    [Crossref]
  17. S. J. Byrnes, R. Blanchard, and F. Capasso, “Harvesting renewable energy from earth’s mid-infrared emissions,” Proc. Natl. Acad. Sci. 111(11), 3927–3932 (2014).
    [Crossref]
  18. S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic limits of energy harvesting from outgoing thermal radiation,” Proc. Natl. Acad. Sci. 115(16), E3609–E3615 (2018).
    [Crossref]
  19. Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multilayer optical films with a memetic algorithm and mixed integer programming,” ACS Photonics 5(3), 684–691 (2018).
    [Crossref]
  20. B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
    [Crossref]
  21. L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
    [Crossref]
  22. Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and synergistically harvest energy from the sun and outer space,” Joule 3(1), 101–110 (2019).
    [Crossref]
  23. C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
    [Crossref]
  24. S. D. Lord, “A new software tool for computing earth’s atmospheric transmission of near- and far-infrared radiation,” NASA Technical Memorandum 103957 (1992).
  25. G. Observatory, “IR transmission spectra,” https://www.gemini.edu/sciops/telescopes-and-sites/observing-condition-constraints/ir-transmission-spectra (2020).
  26. D. M. Rowe (Editor), Thermoelectrics Handbook: Macro to Nano (Taylor & Francis Group, LLC, 2006).
  27. H. J. Goldsmid, Introduction to Thermoelectricity (Springer Heidelberg Dordrecht London New York, 2010).
  28. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
    [Crossref]
  29. L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. 112(40), 12282–12287 (2015).
    [Crossref]
  30. W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
    [Crossref]
  31. W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
    [Crossref]
  32. S. G. Johnson, “The nlopt nonlinear-optimization package,” http://github.com/stevengj/nlopt .
  33. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall: Englewood Cliffs, NJ, 1983).
  34. W. Jin, R. Messina, and A. W. Rodriguez, “Overcoming limits to near-field radiative heat transfer in uniform planar media through multilayer optimization,” Opt. Express 25(13), 14746–14759 (2017).
    [Crossref]
  35. W. Jin, S. Molesky, Z. Lin, K.-M. C. Fu, and A. W. Rodriguez, “Inverse design of compact multimode cavity couplers,” Opt. Express 26(20), 26713–26721 (2018).
    [Crossref]
  36. W. Jin, S. Molesky, Z. Lin, and A. W. Rodriguez, “Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design,” Phys. Rev. B 99(4), 041403 (2019).
    [Crossref]
  37. B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
    [Crossref]
  38. S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, and Y. Iwasa, “Giant thermoelectric power factor in ultrathin fese superconductor,” Nat. Commun. 10(1), 825 (2019).
    [Crossref]
  39. G. Maranzana, S. Didierjean, B. Remy, and D. Maillet, “Experimental estimation of the transient free convection heat transfer coefficient on a vertical flat plate in air,” Int. J. Heat Mass Transfer 45(16), 3413–3427 (2002).
    [Crossref]
  40. S. Hireholi, K. S. Shashishekhar, and G. S. Milton, “Experimental and theoretical study of heat transfer by natural convection of a heat sink used for cooling of electronic chip,” (2013), vol. 3, pp. 43–45.
  41. M. Raju and M. Grazier, “Ulp meets energy harvesting: A game-changing combination for design engineers,” Texas Instruments WHITE PAPER (2010).
  42. S. Cao and J. Li, “A survey on ambient energy sources and harvesting methods for structural health monitoring applications,” Adv. Mech. Eng. 9(4), 168781401769621 (2017).
    [Crossref]
  43. O. A. Saraereh, A. Alsaraira, I. Khan, and B. J. Choi, “A hybrid energy harvesting design for on-body internet-of-things (iot) networks,” Sensors 20(2), 407 (2020).
    [Crossref]
  44. L. Fan, Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA, is preparing a manuscript to be called “24-hour light generation with radiative cooling.”
  45. J. H. Lienhard and J. H. Lienhard, A Heat Transfer Textbook (Dover Publications, Mineola, NY, 2019), 5th ed.
  46. R. T. Bailey, J. W. Mitchell, and W. A. Beckman, “Convective Heat Transfer From a Desert Surface,” J. Heat Transfer 97(1), 104–109 (1975).
    [Crossref]
  47. G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7(2), 105–114 (2008).
    [Crossref]
  48. G. J. Snyder and A. H. Snyder, “Figure of merit zt of a thermoelectric device defined from materials properties,” Energy Environ. Sci. 10(11), 2280–2283 (2017).
    [Crossref]
  49. W. Li, S. Buddhiraju, and S. Fan, “Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space,” Light: Sci. Appl. 9(1), 68 (2020).
    [Crossref]

2020 (2)

O. A. Saraereh, A. Alsaraira, I. Khan, and B. J. Choi, “A hybrid energy harvesting design for on-body internet-of-things (iot) networks,” Sensors 20(2), 407 (2020).
[Crossref]

W. Li, S. Buddhiraju, and S. Fan, “Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space,” Light: Sci. Appl. 9(1), 68 (2020).
[Crossref]

2019 (8)

D. Shindell and C. J. Smith, “Climate and air-quality benefits of a realistic phase-out of fossil fuels,” Nature 573(7774), 408–411 (2019).
[Crossref]

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
[Crossref]

A. P. Raman, W. Li, and S. Fan, “Generating light from darkness,” Joule 3(11), 2679–2686 (2019).
[Crossref]

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and synergistically harvest energy from the sun and outer space,” Joule 3(1), 101–110 (2019).
[Crossref]

W. Jin, S. Molesky, Z. Lin, and A. W. Rodriguez, “Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design,” Phys. Rev. B 99(4), 041403 (2019).
[Crossref]

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, and Y. Iwasa, “Giant thermoelectric power factor in ultrathin fese superconductor,” Nat. Commun. 10(1), 825 (2019).
[Crossref]

2018 (8)

W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
[Crossref]

W. Jin, S. Molesky, Z. Lin, K.-M. C. Fu, and A. W. Rodriguez, “Inverse design of compact multimode cavity couplers,” Opt. Express 26(20), 26713–26721 (2018).
[Crossref]

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic limits of energy harvesting from outgoing thermal radiation,” Proc. Natl. Acad. Sci. 115(16), E3609–E3615 (2018).
[Crossref]

Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multilayer optical films with a memetic algorithm and mixed integer programming,” ACS Photonics 5(3), 684–691 (2018).
[Crossref]

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref]

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

E. Zhou, W. Cole, and B. Frew, “Valuing variable renewable energy for peak demand requirements,” Energy 165, 499–511 (2018).
[Crossref]

T. A. Cooper, S. H. Zandavi, G. W. Ni, Y. Tsurimaki, Y. Huang, S. V. Boriskina, and G. Chen, “Contactless steam generation and superheating under one sun illumination,” Nat. Commun. 9(1), 5086 (2018).
[Crossref]

2017 (6)

S. Chu, Y. Cui, and N. Liu, “The path towards sustainable energy,” Nat. Mater. 16(1), 16–22 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

S. Cao and J. Li, “A survey on ambient energy sources and harvesting methods for structural health monitoring applications,” Adv. Mech. Eng. 9(4), 168781401769621 (2017).
[Crossref]

W. Jin, R. Messina, and A. W. Rodriguez, “Overcoming limits to near-field radiative heat transfer in uniform planar media through multilayer optimization,” Opt. Express 25(13), 14746–14759 (2017).
[Crossref]

G. J. Snyder and A. H. Snyder, “Figure of merit zt of a thermoelectric device defined from materials properties,” Energy Environ. Sci. 10(11), 2280–2283 (2017).
[Crossref]

2016 (1)

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

2015 (1)

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. 112(40), 12282–12287 (2015).
[Crossref]

2014 (4)

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

S. J. Byrnes, R. Blanchard, and F. Capasso, “Harvesting renewable energy from earth’s mid-infrared emissions,” Proc. Natl. Acad. Sci. 111(11), 3927–3932 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

2013 (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

2010 (2)

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref]

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

2008 (1)

G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7(2), 105–114 (2008).
[Crossref]

2005 (1)

R. A. Cabraal, D. F. Barnes, and S. G. Agarwal, “Productive uses of energy for rural development,” Annu. Rev. Env. Resour. 30(1), 117–144 (2005).
[Crossref]

2002 (1)

G. Maranzana, S. Didierjean, B. Remy, and D. Maillet, “Experimental estimation of the transient free convection heat transfer coefficient on a vertical flat plate in air,” Int. J. Heat Mass Transfer 45(16), 3413–3427 (2002).
[Crossref]

1981 (2)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

1975 (1)

R. T. Bailey, J. W. Mitchell, and W. A. Beckman, “Convective Heat Transfer From a Desert Surface,” J. Heat Transfer 97(1), 104–109 (1975).
[Crossref]

Agarwal, S. G.

R. A. Cabraal, D. F. Barnes, and S. G. Agarwal, “Productive uses of energy for rural development,” Annu. Rev. Env. Resour. 30(1), 117–144 (2005).
[Crossref]

Alsaraira, A.

O. A. Saraereh, A. Alsaraira, I. Khan, and B. J. Choi, “A hybrid energy harvesting design for on-body internet-of-things (iot) networks,” Sensors 20(2), 407 (2020).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

Arita, R.

S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, and Y. Iwasa, “Giant thermoelectric power factor in ultrathin fese superconductor,” Nat. Commun. 10(1), 825 (2019).
[Crossref]

Atwater, H.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
[Crossref]

Baba, T.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Bailey, R. T.

R. T. Bailey, J. W. Mitchell, and W. A. Beckman, “Convective Heat Transfer From a Desert Surface,” J. Heat Transfer 97(1), 104–109 (1975).
[Crossref]

Bargatin, I.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

Barnes, D. F.

R. A. Cabraal, D. F. Barnes, and S. G. Agarwal, “Productive uses of energy for rural development,” Annu. Rev. Env. Resour. 30(1), 117–144 (2005).
[Crossref]

Bauer, E.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Beckman, W. A.

R. T. Bailey, J. W. Mitchell, and W. A. Beckman, “Convective Heat Transfer From a Desert Surface,” J. Heat Transfer 97(1), 104–109 (1975).
[Crossref]

Bhatia, B.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Blanchard, R.

S. J. Byrnes, R. Blanchard, and F. Capasso, “Harvesting renewable energy from earth’s mid-infrared emissions,” Proc. Natl. Acad. Sci. 111(11), 3927–3932 (2014).
[Crossref]

Boriskina, S. V.

T. A. Cooper, S. H. Zandavi, G. W. Ni, Y. Tsurimaki, Y. Huang, S. V. Boriskina, and G. Chen, “Contactless steam generation and superheating under one sun illumination,” Nat. Commun. 9(1), 5086 (2018).
[Crossref]

Buddhiraju, S.

W. Li, S. Buddhiraju, and S. Fan, “Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space,” Light: Sci. Appl. 9(1), 68 (2020).
[Crossref]

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic limits of energy harvesting from outgoing thermal radiation,” Proc. Natl. Acad. Sci. 115(16), E3609–E3615 (2018).
[Crossref]

Byrnes, S. J.

S. J. Byrnes, R. Blanchard, and F. Capasso, “Harvesting renewable energy from earth’s mid-infrared emissions,” Proc. Natl. Acad. Sci. 111(11), 3927–3932 (2014).
[Crossref]

Cabraal, R. A.

R. A. Cabraal, D. F. Barnes, and S. G. Agarwal, “Productive uses of energy for rural development,” Annu. Rev. Env. Resour. 30(1), 117–144 (2005).
[Crossref]

Cao, S.

S. Cao and J. Li, “A survey on ambient energy sources and harvesting methods for structural health monitoring applications,” Adv. Mech. Eng. 9(4), 168781401769621 (2017).
[Crossref]

Capasso, F.

S. J. Byrnes, R. Blanchard, and F. Capasso, “Harvesting renewable energy from earth’s mid-infrared emissions,” Proc. Natl. Acad. Sci. 111(11), 3927–3932 (2014).
[Crossref]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Chen, G.

T. A. Cooper, S. H. Zandavi, G. W. Ni, Y. Tsurimaki, Y. Huang, S. V. Boriskina, and G. Chen, “Contactless steam generation and superheating under one sun illumination,” Nat. Commun. 9(1), 5086 (2018).
[Crossref]

Chen, K.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Chen, X.-Q.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Chen, Z.

Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and synergistically harvest energy from the sun and outer space,” Joule 3(1), 101–110 (2019).
[Crossref]

W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

Choi, B. J.

O. A. Saraereh, A. Alsaraira, I. Khan, and B. J. Choi, “A hybrid energy harvesting design for on-body internet-of-things (iot) networks,” Sensors 20(2), 407 (2020).
[Crossref]

Chu, S.

S. Chu, Y. Cui, and N. Liu, “The path towards sustainable energy,” Nat. Mater. 16(1), 16–22 (2017).
[Crossref]

Cole, W.

E. Zhou, W. Cole, and B. Frew, “Valuing variable renewable energy for peak demand requirements,” Energy 165, 499–511 (2018).
[Crossref]

Cooper, T. A.

T. A. Cooper, S. H. Zandavi, G. W. Ni, Y. Tsurimaki, Y. Huang, S. V. Boriskina, and G. Chen, “Contactless steam generation and superheating under one sun illumination,” Nat. Commun. 9(1), 5086 (2018).
[Crossref]

Cui, Y.

S. Chu, Y. Cui, and N. Liu, “The path towards sustainable energy,” Nat. Mater. 16(1), 16–22 (2017).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Didierjean, S.

G. Maranzana, S. Didierjean, B. Remy, and D. Maillet, “Experimental estimation of the transient free convection heat transfer coefficient on a vertical flat plate in air,” Int. J. Heat Mass Transfer 45(16), 3413–3427 (2002).
[Crossref]

Eguchi, G.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Eisenmenger-Sittner, C.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Fan, L.

L. Fan, Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA, is preparing a manuscript to be called “24-hour light generation with radiative cooling.”

Fan, S.

W. Li, S. Buddhiraju, and S. Fan, “Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space,” Light: Sci. Appl. 9(1), 68 (2020).
[Crossref]

Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and synergistically harvest energy from the sun and outer space,” Joule 3(1), 101–110 (2019).
[Crossref]

A. P. Raman, W. Li, and S. Fan, “Generating light from darkness,” Joule 3(11), 2679–2686 (2019).
[Crossref]

W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
[Crossref]

Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multilayer optical films with a memetic algorithm and mixed integer programming,” ACS Photonics 5(3), 684–691 (2018).
[Crossref]

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic limits of energy harvesting from outgoing thermal radiation,” Proc. Natl. Acad. Sci. 115(16), E3609–E3615 (2018).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. 112(40), 12282–12287 (2015).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Frew, B.

E. Zhou, W. Cole, and B. Frew, “Valuing variable renewable energy for peak demand requirements,” Energy 165, 499–511 (2018).
[Crossref]

Fu, K.-M. C.

Fu, Y.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Gan, Q.

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Ganapati, V.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
[Crossref]

Gentle, A. R.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref]

Gianello, M.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref]

Goldsmid, H. J.

H. J. Goldsmid, Introduction to Thermoelectricity (Springer Heidelberg Dordrecht London New York, 2010).

Granqvist, C. G.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Grazier, M.

M. Raju and M. Grazier, “Ulp meets energy harvesting: A game-changing combination for design engineers,” Texas Instruments WHITE PAPER (2010).

Gu, T.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref]

Guo, Q.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Hardin, B. E.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall: Englewood Cliffs, NJ, 1983).

Hinterleitner, B.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Hireholi, S.

S. Hireholi, K. S. Shashishekhar, and G. S. Milton, “Experimental and theoretical study of heat transfer by natural convection of a heat sink used for cooling of electronic chip,” (2013), vol. 3, pp. 43–45.

Hjortsberg, A.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Holzrichter, J.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
[Crossref]

Howe, R. T.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

Hu, J.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref]

Huang, Y.

T. A. Cooper, S. H. Zandavi, G. W. Ni, Y. Tsurimaki, Y. Huang, S. V. Boriskina, and G. Chen, “Contactless steam generation and superheating under one sun illumination,” Nat. Commun. 9(1), 5086 (2018).
[Crossref]

Ikeda, H.

S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, and Y. Iwasa, “Giant thermoelectric power factor in ultrathin fese superconductor,” Nat. Commun. 10(1), 825 (2019).
[Crossref]

Iwasa, Y.

S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, and Y. Iwasa, “Giant thermoelectric power factor in ultrathin fese superconductor,” Nat. Commun. 10(1), 825 (2019).
[Crossref]

Jia, M.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Jin, W.

Johnson, S. G.

S. G. Johnson, “The nlopt nonlinear-optimization package,” http://github.com/stevengj/nlopt .

Kakefuda, Y.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Kawamoto, N.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Khan, I.

O. A. Saraereh, A. Alsaraira, I. Khan, and B. J. Choi, “A hybrid energy harvesting design for on-body internet-of-things (iot) networks,” Sensors 20(2), 407 (2020).
[Crossref]

Knapp, I.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Leroy, A.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref]

Li, D.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref]

Li, J.

S. Cao and J. Li, “A survey on ambient energy sources and harvesting methods for structural health monitoring applications,” Adv. Mech. Eng. 9(4), 168781401769621 (2017).
[Crossref]

Li, W.

W. Li, S. Buddhiraju, and S. Fan, “Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space,” Light: Sci. Appl. 9(1), 68 (2020).
[Crossref]

Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and synergistically harvest energy from the sun and outer space,” Joule 3(1), 101–110 (2019).
[Crossref]

A. P. Raman, W. Li, and S. Fan, “Generating light from darkness,” Joule 3(11), 2679–2686 (2019).
[Crossref]

W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
[Crossref]

Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multilayer optical films with a memetic algorithm and mixed integer programming,” ACS Photonics 5(3), 684–691 (2018).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Liang, J.

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Lienhard, J. H.

J. H. Lienhard and J. H. Lienhard, A Heat Transfer Textbook (Dover Publications, Mineola, NY, 2019), 5th ed.

J. H. Lienhard and J. H. Lienhard, A Heat Transfer Textbook (Dover Publications, Mineola, NY, 2019), 5th ed.

Lin, Z.

W. Jin, S. Molesky, Z. Lin, and A. W. Rodriguez, “Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design,” Phys. Rev. B 99(4), 041403 (2019).
[Crossref]

W. Jin, S. Molesky, Z. Lin, K.-M. C. Fu, and A. W. Rodriguez, “Inverse design of compact multimode cavity couplers,” Opt. Express 26(20), 26713–26721 (2018).
[Crossref]

Liu, N.

S. Chu, Y. Cui, and N. Liu, “The path towards sustainable energy,” Nat. Mater. 16(1), 16–22 (2017).
[Crossref]

Lord, S. D.

S. D. Lord, “A new software tool for computing earth’s atmospheric transmission of near- and far-infrared radiation,” NASA Technical Memorandum 103957 (1992).

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Maillet, D.

G. Maranzana, S. Didierjean, B. Remy, and D. Maillet, “Experimental estimation of the transient free convection heat transfer coefficient on a vertical flat plate in air,” Int. J. Heat Mass Transfer 45(16), 3413–3427 (2002).
[Crossref]

Mandal, J.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Maranzana, G.

G. Maranzana, S. Didierjean, B. Remy, and D. Maillet, “Experimental estimation of the transient free convection heat transfer coefficient on a vertical flat plate in air,” Int. J. Heat Mass Transfer 45(16), 3413–3427 (2002).
[Crossref]

Melosh, N. A.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

Messina, R.

Milton, G. S.

S. Hireholi, K. S. Shashishekhar, and G. S. Milton, “Experimental and theoretical study of heat transfer by natural convection of a heat sink used for cooling of electronic chip,” (2013), vol. 3, pp. 43–45.

Mitchell, J. W.

R. T. Bailey, J. W. Mitchell, and W. A. Beckman, “Convective Heat Transfer From a Desert Surface,” J. Heat Transfer 97(1), 104–109 (1975).
[Crossref]

Molesky, S.

W. Jin, S. Molesky, Z. Lin, and A. W. Rodriguez, “Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design,” Phys. Rev. B 99(4), 041403 (2019).
[Crossref]

W. Jin, S. Molesky, Z. Lin, K.-M. C. Fu, and A. W. Rodriguez, “Inverse design of compact multimode cavity couplers,” Opt. Express 26(20), 26713–26721 (2018).
[Crossref]

Mori, T.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Müller, H.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Ng, T.

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Ni, G. W.

T. A. Cooper, S. H. Zandavi, G. W. Ni, Y. Tsurimaki, Y. Huang, S. V. Boriskina, and G. Chen, “Contactless steam generation and superheating under one sun illumination,” Nat. Commun. 9(1), 5086 (2018).
[Crossref]

Nojima, T.

S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, and Y. Iwasa, “Giant thermoelectric power factor in ultrathin fese superconductor,” Nat. Commun. 10(1), 825 (2019).
[Crossref]

Omair, Z.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
[Crossref]

Ooi, B.

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Overvig, A. C.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Pazos-Outón, L. M.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
[Crossref]

Peterson, P. F.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
[Crossref]

Pianetta, P.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

Poneder, M.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Raju, M.

M. Raju and M. Grazier, “Ulp meets energy harvesting: A game-changing combination for design engineers,” Texas Instruments WHITE PAPER (2010).

Raman, A.

Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multilayer optical films with a memetic algorithm and mixed integer programming,” ACS Photonics 5(3), 684–691 (2018).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Raman, A. P.

A. P. Raman, W. Li, and S. Fan, “Generating light from darkness,” Joule 3(11), 2679–2686 (2019).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. 112(40), 12282–12287 (2015).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Remy, B.

G. Maranzana, S. Didierjean, B. Remy, and D. Maillet, “Experimental estimation of the transient free convection heat transfer coefficient on a vertical flat plate in air,” Int. J. Heat Mass Transfer 45(16), 3413–3427 (2002).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Riley, D. C.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

Rodriguez, A. W.

Rosenthal, S. J.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

Sakai, S.

S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, and Y. Iwasa, “Giant thermoelectric power factor in ultrathin fese superconductor,” Nat. Commun. 10(1), 825 (2019).
[Crossref]

Santhanam, P.

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic limits of energy harvesting from outgoing thermal radiation,” Proc. Natl. Acad. Sci. 115(16), E3609–E3615 (2018).
[Crossref]

Saraereh, O. A.

O. A. Saraereh, A. Alsaraira, I. Khan, and B. J. Choi, “A hybrid energy harvesting design for on-body internet-of-things (iot) networks,” Sensors 20(2), 407 (2020).
[Crossref]

Schmitt, F.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

Schwede, J. W.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

Scranton, G.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
[Crossref]

Shashishekhar, K. S.

S. Hireholi, K. S. Shashishekhar, and G. S. Milton, “Experimental and theoretical study of heat transfer by natural convection of a heat sink used for cooling of electronic chip,” (2013), vol. 3, pp. 43–45.

Shen, Y.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref]

Shen, Z.-X.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

Shi, N. N.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Shi, Y.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multilayer optical films with a memetic algorithm and mixed integer programming,” ACS Photonics 5(3), 684–691 (2018).
[Crossref]

W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Shimizu, S.

S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, and Y. Iwasa, “Giant thermoelectric power factor in ultrathin fese superconductor,” Nat. Commun. 10(1), 825 (2019).
[Crossref]

Shindell, D.

D. Shindell and C. J. Smith, “Climate and air-quality benefits of a realistic phase-out of fossil fuels,” Nature 573(7774), 408–411 (2019).
[Crossref]

Shiogai, J.

S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, and Y. Iwasa, “Giant thermoelectric power factor in ultrathin fese superconductor,” Nat. Commun. 10(1), 825 (2019).
[Crossref]

Singer, M.

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Smith, C. J.

D. Shindell and C. J. Smith, “Climate and air-quality benefits of a realistic phase-out of fossil fuels,” Nature 573(7774), 408–411 (2019).
[Crossref]

Smith, G. B.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref]

Snyder, A. H.

G. J. Snyder and A. H. Snyder, “Figure of merit zt of a thermoelectric device defined from materials properties,” Energy Environ. Sci. 10(11), 2280–2283 (2017).
[Crossref]

Snyder, G. J.

G. J. Snyder and A. H. Snyder, “Figure of merit zt of a thermoelectric device defined from materials properties,” Energy Environ. Sci. 10(11), 2280–2283 (2017).
[Crossref]

G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7(2), 105–114 (2008).
[Crossref]

Soljacic, M.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Song, H.

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Stegenburgs, E.

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Steiner, M. A.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
[Crossref]

Stöger-Pollach, M.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Sun, K.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Sun, Y.

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

Takemori, N.

S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, and Y. Iwasa, “Giant thermoelectric power factor in ultrathin fese superconductor,” Nat. Commun. 10(1), 825 (2019).
[Crossref]

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Toberer, E. S.

G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7(2), 105–114 (2008).
[Crossref]

Tsukazaki, A.

S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, and Y. Iwasa, “Giant thermoelectric power factor in ultrathin fese superconductor,” Nat. Commun. 10(1), 825 (2019).
[Crossref]

Tsurimaki, Y.

T. A. Cooper, S. H. Zandavi, G. W. Ni, Y. Tsurimaki, Y. Huang, S. V. Boriskina, and G. Chen, “Contactless steam generation and superheating under one sun illumination,” Nat. Commun. 9(1), 5086 (2018).
[Crossref]

Ullah, S.

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

Wang, E. N.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Wang, K. X.

Xiao, T. P.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
[Crossref]

Xiao, X.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Xu, C.

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Yablonovitch, E.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
[Crossref]

Yang, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yang, Y.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Yin, X.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yu, N.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Yu, Z.

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Zandavi, S. H.

T. A. Cooper, S. H. Zandavi, G. W. Ni, Y. Tsurimaki, Y. Huang, S. V. Boriskina, and G. Chen, “Contactless steam generation and superheating under one sun illumination,” Nat. Commun. 9(1), 5086 (2018).
[Crossref]

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhang, N.

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Zhao, D.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhao, L.

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref]

Zhou, E.

E. Zhou, W. Cole, and B. Frew, “Valuing variable renewable energy for peak demand requirements,” Energy 165, 499–511 (2018).
[Crossref]

Zhou, H.

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Zhou, L.

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Zhou, M.

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Zhu, L.

Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and synergistically harvest energy from the sun and outer space,” Joule 3(1), 101–110 (2019).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. 112(40), 12282–12287 (2015).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

ACS Photonics (2)

Y. Shi, W. Li, A. Raman, and S. Fan, “Optimization of multilayer optical films with a memetic algorithm and mixed integer programming,” ACS Photonics 5(3), 684–691 (2018).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A comprehensive photonic approach for solar cell cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Adv. Mech. Eng. (1)

S. Cao and J. Li, “A survey on ambient energy sources and harvesting methods for structural health monitoring applications,” Adv. Mech. Eng. 9(4), 168781401769621 (2017).
[Crossref]

Annu. Rev. Env. Resour. (1)

R. A. Cabraal, D. F. Barnes, and S. G. Agarwal, “Productive uses of energy for rural development,” Annu. Rev. Env. Resour. 30(1), 117–144 (2005).
[Crossref]

Energy (1)

E. Zhou, W. Cole, and B. Frew, “Valuing variable renewable energy for peak demand requirements,” Energy 165, 499–511 (2018).
[Crossref]

Energy Environ. Sci. (1)

G. J. Snyder and A. H. Snyder, “Figure of merit zt of a thermoelectric device defined from materials properties,” Energy Environ. Sci. 10(11), 2280–2283 (2017).
[Crossref]

Int. J. Heat Mass Transfer (1)

G. Maranzana, S. Didierjean, B. Remy, and D. Maillet, “Experimental estimation of the transient free convection heat transfer coefficient on a vertical flat plate in air,” Int. J. Heat Mass Transfer 45(16), 3413–3427 (2002).
[Crossref]

J. Appl. Phys. (2)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting sio films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

J. Heat Transfer (1)

R. T. Bailey, J. W. Mitchell, and W. A. Beckman, “Convective Heat Transfer From a Desert Surface,” J. Heat Transfer 97(1), 104–109 (1975).
[Crossref]

Joule (2)

Z. Chen, L. Zhu, W. Li, and S. Fan, “Simultaneously and synergistically harvest energy from the sun and outer space,” Joule 3(1), 101–110 (2019).
[Crossref]

A. P. Raman, W. Li, and S. Fan, “Generating light from darkness,” Joule 3(11), 2679–2686 (2019).
[Crossref]

Light: Sci. Appl. (1)

W. Li, S. Buddhiraju, and S. Fan, “Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space,” Light: Sci. Appl. 9(1), 68 (2020).
[Crossref]

Nano Lett. (2)

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Nat. Commun. (5)

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

T. A. Cooper, S. H. Zandavi, G. W. Ni, Y. Tsurimaki, Y. Huang, S. V. Boriskina, and G. Chen, “Contactless steam generation and superheating under one sun illumination,” Nat. Commun. 9(1), 5086 (2018).
[Crossref]

W. Li, Y. Shi, Z. Chen, and S. Fan, “Photonic thermal management of coloured objects,” Nat. Commun. 9(1), 4240 (2018).
[Crossref]

B. Bhatia, A. Leroy, Y. Shen, L. Zhao, M. Gianello, D. Li, T. Gu, J. Hu, M. Soljacic, and E. N. Wang, “Passive directional sub-ambient daytime radiative cooling,” Nat. Commun. 9(1), 5001 (2018).
[Crossref]

S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda, R. Arita, T. Nojima, A. Tsukazaki, and Y. Iwasa, “Giant thermoelectric power factor in ultrathin fese superconductor,” Nat. Commun. 10(1), 825 (2019).
[Crossref]

Nat. Mater. (3)

G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7(2), 105–114 (2008).
[Crossref]

S. Chu, Y. Cui, and N. Liu, “The path towards sustainable energy,” Nat. Mater. 16(1), 16–22 (2017).
[Crossref]

J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, “Photon-enhanced thermionic emission for solar concentrator systems,” Nat. Mater. 9(9), 762–767 (2010).
[Crossref]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Nat. Sustain. (1)

L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, and Q. Gan, “A polydimethylsiloxane-coated metal structure for all-day radiative cooling,” Nat. Sustain. 2(8), 718–724 (2019).
[Crossref]

Nature (3)

B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller, G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y. Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah, X.-Q. Chen, and E. Bauer, “Thermoelectric performance of a metastable thin-film heusler alloy,” Nature 576(7785), 85–90 (2019).
[Crossref]

D. Shindell and C. J. Smith, “Climate and air-quality benefits of a realistic phase-out of fossil fuels,” Nature 573(7774), 408–411 (2019).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Opt. Express (2)

Optica (1)

Phys. Rev. B (1)

W. Jin, S. Molesky, Z. Lin, and A. W. Rodriguez, “Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design,” Phys. Rev. B 99(4), 041403 (2019).
[Crossref]

Proc. Natl. Acad. Sci. (4)

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. 112(40), 12282–12287 (2015).
[Crossref]

S. J. Byrnes, R. Blanchard, and F. Capasso, “Harvesting renewable energy from earth’s mid-infrared emissions,” Proc. Natl. Acad. Sci. 111(11), 3927–3932 (2014).
[Crossref]

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic limits of energy harvesting from outgoing thermal radiation,” Proc. Natl. Acad. Sci. 115(16), E3609–E3615 (2018).
[Crossref]

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. 116(31), 15356–15361 (2019).
[Crossref]

Science (2)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Sensors (1)

O. A. Saraereh, A. Alsaraira, I. Khan, and B. J. Choi, “A hybrid energy harvesting design for on-body internet-of-things (iot) networks,” Sensors 20(2), 407 (2020).
[Crossref]

Other (10)

L. Fan, Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA, is preparing a manuscript to be called “24-hour light generation with radiative cooling.”

J. H. Lienhard and J. H. Lienhard, A Heat Transfer Textbook (Dover Publications, Mineola, NY, 2019), 5th ed.

S. Hireholi, K. S. Shashishekhar, and G. S. Milton, “Experimental and theoretical study of heat transfer by natural convection of a heat sink used for cooling of electronic chip,” (2013), vol. 3, pp. 43–45.

M. Raju and M. Grazier, “Ulp meets energy harvesting: A game-changing combination for design engineers,” Texas Instruments WHITE PAPER (2010).

S. D. Lord, “A new software tool for computing earth’s atmospheric transmission of near- and far-infrared radiation,” NASA Technical Memorandum 103957 (1992).

G. Observatory, “IR transmission spectra,” https://www.gemini.edu/sciops/telescopes-and-sites/observing-condition-constraints/ir-transmission-spectra (2020).

D. M. Rowe (Editor), Thermoelectrics Handbook: Macro to Nano (Taylor & Francis Group, LLC, 2006).

H. J. Goldsmid, Introduction to Thermoelectricity (Springer Heidelberg Dordrecht London New York, 2010).

S. G. Johnson, “The nlopt nonlinear-optimization package,” http://github.com/stevengj/nlopt .

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall: Englewood Cliffs, NJ, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic setup of the TEG utilizing radiative cooling.
Fig. 2.
Fig. 2. Nighttime power generator with selective thermal emitter for improved thermoelectric power generation. (a) The ideal emissivity (Eq. (5)) for optimal thermoelectric power generation at ambient temperature of 300 K, cooling down the emitter to $T_{\textrm{c}} = 292.3$ K. (b) The emissivity of the optimized multi-layer at ambient temperature of 300 K, cooling down the emitter to $T_{\textrm{c}} = 293.1$ K. (c) The material composition and thicknesses for the multi-layer structure with spectro-angular selectivity depicted in (b). (d) Output power density $p_{\textrm{max}}$ of the above three emitters at different ambient temperatures. (e) Temperature difference between the radiative cooler and ambient for the three emitters. The other parameters of the TEG system are assumed to be the same as [9].
Fig. 3.
Fig. 3. The proposed system for optimal power generation at nighttime. (a) Schematic of the setup. (b) The output power density $p_{\textrm{max}}$ as a function of thermoelectric to radiative cooler area ratio for various thermoelectric figure-of-merit values, as well as the limit determined by half of the Carnot engine extracted power density, with $h_{\textrm{c}} = 10^{-3}$ W/(m$^{2}$K) and $h_{\textrm{h}} = 10^{2}$ W/(m$^{2}$K) at the ambient temperature of 300 K.
Fig. 4.
Fig. 4. The output power density $p_{\textrm{max}}$ as a function of system parameters: convection coefficients (panels a and b), thermoelectric figure of merit (panel c) and TEG/radiative cooler area ratio (panel d) at the ambient temperature of 300 K. In each panel, we study the impact of a respective parameter at a fixed value of the other parameters that are optimized at ZT = 6 (section 4). The red dashed line in each panel indicates the value of the respective parameter in the experiment [9]: $h_{\textrm{h}}=10$ W/m$^{2}$/K, $h_{\textrm{c}}$ = 7 W/m$^{2}$/K, ZT $= 0.71$, and $A_{\textrm{TE}}/A_{\textrm{c}}= 0.0286$. The black point in each panel denotes the parameter used for the optimal power generation performance.
Fig. 5.
Fig. 5. Work extracted by a Carnot engine in place of the TEG. (a) Schematics of the Carnot engine (represented by a circular disk) setup. (b) “Window” emissivity spectrum. (c) Optimized emitter for maximum generation of work by a Carnot engine operating between the nighttime radiative cooler and the ambient temperature according to Eq. (5). (d) Thermoelectric power generation performance for blackbody, window and optimal emitters as a function of ambient temperature. (e) Temperature of the cold side for the system in (d).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P rad P atm P cond P c conv P Joule P c Seebeck = 0 ,
P cond P h conv P Joule + P h Seebeck = 0 ,
p max = N S np 2 ( T h T c ) 2 4 R np A c .
Δ p r ( T c ) = Δ p par ( T c ) ,
ϵ ( λ , θ ) = Θ [ I BB ( T c , λ ) ϵ atm ( λ , θ ) I BB ( T amb , λ ) ] ,
p max Carnot = max T c Carnot [ ( T amb T c Carnot 1 ) Δ p r ( T c ) ] ,

Metrics