Abstract

Multiplexing metasurfaces have drawn great interest from the microwave to optical regimes. However, previous works often encounter the restriction of insufficient independence and deficient interference suppression among different channels. Herein, a metasurface platform featuring a dual-wavelength and dual-polarization multiplexing operation is proposed for highly decorrelated and completely independent manipulation of four frequency and polarization states. As illustrative examples, two paradigms of a multiplexing holographic metasurface in which four channels can respond independently without conjugate images are presented, and the measurement results not only validate the feasibility but also exhibit excellent imaging efficiency. The proposed metasurface may thus boost more complex and versatile multi-functional devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
    [Crossref]
  2. C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
    [Crossref]
  3. X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
    [Crossref]
  4. L. L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: from fundamentals to applications,” Nanophotonics 7(6), 1169–1190 (2018).
    [Crossref]
  5. Z. W. Feng, D. J. Hu, L. L. Liang, J. Xu, Y. Y. Cao, Q. Q. Zhan, B. O. Guan, X. G. Liu, and X. P. Li, “Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption,” Adv. Opt. Mater. 7(19), 1900610 (2019).
    [Crossref]
  6. Z. M. Lin, L. L. Huang, Z. T. Xu, X. W. Li, T. Zentgraf, and Y. T. Wang, “Four-wave mixing holographic multiplexing based on nonlinear metasurfaces,” Adv. Opt. Mater. 7(21), 1900782 (2019).
    [Crossref]
  7. D. Frese, Q. S. Wei, Y. T. Wang, L. L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces,” Nano Lett. 19(6), 3976–3980 (2019).
    [Crossref]
  8. T. Li, Z. C. Li, S. Q. Chen, L. Zhou, N. Zhang, X. Wei, G. F. Song, Q. Q. Gan, and Y. Xu, “Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization,” Appl. Phys. Lett. 114(2), 021107 (2019).
    [Crossref]
  9. S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
    [Crossref]
  10. W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
    [Crossref]
  11. Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
    [Crossref]
  12. W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, and J. Tian, “Metasurface enabled wide-angle fourier lens,” Adv. Mater. 30(23), 1706368 (2018).
    [Crossref]
  13. C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
    [Crossref]
  14. Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
    [Crossref]
  15. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref]
  16. T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
    [Crossref]
  17. Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4(8), 1230–1235 (2016).
    [Crossref]
  18. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
    [Crossref]
  19. T. Shi, Y. Wang, Z. Deng, X. Ye, Z. Dai, Y. Cao, B. Guan, S. Xiao, and X. Li, “All-dielectric kissing-dimer metagratings for asymmetric High Diffraction,” Adv. Opt. Mater. 7(24), 1901389 (2019).
    [Crossref]
  20. S. Belan, V. Parfenyev, and S. S. Vergeles, “Negative-angle refraction and reflection of visible light with a planar array of silver dimers,” Opt. Mater. Express 5(12), 2843 (2015).
    [Crossref]
  21. X. Cao, Q. Wang, P. Wan, W. Zhang, Z. Lin, S. T. Chui, and J. Du, “Electric Symmetric Dipole Modes Enabling Retroreflection from an Array Consisting of Homogeneous Isotropic Linear Dielectric Rods,” Adv. Opt. Mater., 2000452 (2020).
    [Crossref]
  22. Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
    [Crossref]
  23. J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
    [Crossref]
  24. W. Pan, T. Cai, S. Tang, L. Zhou, and J. Dong, “Trifunctional metasurfaces: concept and characterizations,” Opt. Express 26(13), 17447–17457 (2018).
    [Crossref]
  25. E. Rahimi and R. Gordon, “Nonlinear plasmonic metasurfaces,” Adv. Opt. Mater. 6(18), 1800274 (2018).
    [Crossref]
  26. C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, “Imaging through Nonlinear Metalens Using Second Harmonic Generation,” Adv. Mater. 30(8), 1703843 (2018).
    [Crossref]
  27. M. Serra-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, “Observation of a phononic quadrupole topological insulator,” Nature 555(7696), 342–345 (2018).
    [Crossref]
  28. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ( 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  29. A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
    [Crossref]
  30. B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
    [Crossref]
  31. W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
    [Crossref]
  32. S. Q. Chen, W. W. Liu, Z. C. Li, H. Cheng, and J. G. Tian, “Metasurface-empowered optical multiplexing and multifunction,” Adv. Mater. 32(3), 1805912 (2020).
    [Crossref]
  33. Y. Li, Z. J. Zhang, J. F. Zheng, and Z. H. Feng, “Compact azimuthal omnidirectional dual-polarized antenna using highly isolated colocated slots,” IEEE Trans. Antennas Propag. 60(9), 4037–4045 (2012).
    [Crossref]
  34. P. B. Ramesh, Microstrip Antenna Design Handbook (Artech House, 2001).
  35. Z. C. Wang, J. Liu, X. M. Ding, W. S. Zhao, K. Zhang, H. Y. Li, B. Ratni, S. N. Burokur, and Q. Wu, “Three-dimensional microwave holography based on broadband huygens’ metasurface,” Phys. Rev. Appl. 13(1), 014033 (2020).
    [Crossref]
  36. Z. C. Wang, X. M. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. M. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6(12), 1800121 (2018).
    [Crossref]

2020 (2)

S. Q. Chen, W. W. Liu, Z. C. Li, H. Cheng, and J. G. Tian, “Metasurface-empowered optical multiplexing and multifunction,” Adv. Mater. 32(3), 1805912 (2020).
[Crossref]

Z. C. Wang, J. Liu, X. M. Ding, W. S. Zhao, K. Zhang, H. Y. Li, B. Ratni, S. N. Burokur, and Q. Wu, “Three-dimensional microwave holography based on broadband huygens’ metasurface,” Phys. Rev. Appl. 13(1), 014033 (2020).
[Crossref]

2019 (6)

Z. W. Feng, D. J. Hu, L. L. Liang, J. Xu, Y. Y. Cao, Q. Q. Zhan, B. O. Guan, X. G. Liu, and X. P. Li, “Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption,” Adv. Opt. Mater. 7(19), 1900610 (2019).
[Crossref]

Z. M. Lin, L. L. Huang, Z. T. Xu, X. W. Li, T. Zentgraf, and Y. T. Wang, “Four-wave mixing holographic multiplexing based on nonlinear metasurfaces,” Adv. Opt. Mater. 7(21), 1900782 (2019).
[Crossref]

D. Frese, Q. S. Wei, Y. T. Wang, L. L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces,” Nano Lett. 19(6), 3976–3980 (2019).
[Crossref]

T. Li, Z. C. Li, S. Q. Chen, L. Zhou, N. Zhang, X. Wei, G. F. Song, Q. Q. Gan, and Y. Xu, “Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization,” Appl. Phys. Lett. 114(2), 021107 (2019).
[Crossref]

C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
[Crossref]

T. Shi, Y. Wang, Z. Deng, X. Ye, Z. Dai, Y. Cao, B. Guan, S. Xiao, and X. Li, “All-dielectric kissing-dimer metagratings for asymmetric High Diffraction,” Adv. Opt. Mater. 7(24), 1901389 (2019).
[Crossref]

2018 (10)

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

L. L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: from fundamentals to applications,” Nanophotonics 7(6), 1169–1190 (2018).
[Crossref]

W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, and J. Tian, “Metasurface enabled wide-angle fourier lens,” Adv. Mater. 30(23), 1706368 (2018).
[Crossref]

Z. C. Wang, X. M. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. M. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6(12), 1800121 (2018).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

W. Pan, T. Cai, S. Tang, L. Zhou, and J. Dong, “Trifunctional metasurfaces: concept and characterizations,” Opt. Express 26(13), 17447–17457 (2018).
[Crossref]

E. Rahimi and R. Gordon, “Nonlinear plasmonic metasurfaces,” Adv. Opt. Mater. 6(18), 1800274 (2018).
[Crossref]

C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, “Imaging through Nonlinear Metalens Using Second Harmonic Generation,” Adv. Mater. 30(8), 1703843 (2018).
[Crossref]

M. Serra-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, “Observation of a phononic quadrupole topological insulator,” Nature 555(7696), 342–345 (2018).
[Crossref]

2017 (2)

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

2016 (5)

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4(8), 1230–1235 (2016).
[Crossref]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

2015 (5)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ( 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

S. Belan, V. Parfenyev, and S. S. Vergeles, “Negative-angle refraction and reflection of visible light with a planar array of silver dimers,” Opt. Mater. Express 5(12), 2843 (2015).
[Crossref]

2014 (2)

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
[Crossref]

2013 (1)

C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref]

2012 (1)

Y. Li, Z. J. Zhang, J. F. Zheng, and Z. H. Feng, “Compact azimuthal omnidirectional dual-polarized antenna using highly isolated colocated slots,” IEEE Trans. Antennas Propag. 60(9), 4037–4045 (2012).
[Crossref]

Altug, H.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Bao, D.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Belan, S.

Bilal, O. R.

M. Serra-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, “Observation of a phononic quadrupole topological insulator,” Nature 555(7696), 342–345 (2018).
[Crossref]

Brongersma, M. L.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Buller, G. S.

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

Burokur, S. N.

Z. C. Wang, J. Liu, X. M. Ding, W. S. Zhao, K. Zhang, H. Y. Li, B. Ratni, S. N. Burokur, and Q. Wu, “Three-dimensional microwave holography based on broadband huygens’ metasurface,” Phys. Rev. Appl. 13(1), 014033 (2020).
[Crossref]

Z. C. Wang, X. M. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. M. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6(12), 1800121 (2018).
[Crossref]

Cai, T.

W. Pan, T. Cai, S. Tang, L. Zhou, and J. Dong, “Trifunctional metasurfaces: concept and characterizations,” Opt. Express 26(13), 17447–17457 (2018).
[Crossref]

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Cao, X.

X. Cao, Q. Wang, P. Wan, W. Zhang, Z. Lin, S. T. Chui, and J. Du, “Electric Symmetric Dipole Modes Enabling Retroreflection from an Array Consisting of Homogeneous Isotropic Linear Dielectric Rods,” Adv. Opt. Mater., 2000452 (2020).
[Crossref]

Cao, Y.

T. Shi, Y. Wang, Z. Deng, X. Ye, Z. Dai, Y. Cao, B. Guan, S. Xiao, and X. Li, “All-dielectric kissing-dimer metagratings for asymmetric High Diffraction,” Adv. Opt. Mater. 7(24), 1901389 (2019).
[Crossref]

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

Cao, Y. Y.

Z. W. Feng, D. J. Hu, L. L. Liang, J. Xu, Y. Y. Cao, Q. Q. Zhan, B. O. Guan, X. G. Liu, and X. P. Li, “Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption,” Adv. Opt. Mater. 7(19), 1900610 (2019).
[Crossref]

Capasso, F.

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Chan, K.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Cheah, K. W.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Chen, J.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Chen, M.

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Chen, P. Y.

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

Chen, S.

W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, and J. Tian, “Metasurface enabled wide-angle fourier lens,” Adv. Mater. 30(23), 1706368 (2018).
[Crossref]

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4(8), 1230–1235 (2016).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Chen, S. Q.

S. Q. Chen, W. W. Liu, Z. C. Li, H. Cheng, and J. G. Tian, “Metasurface-empowered optical multiplexing and multifunction,” Adv. Mater. 32(3), 1805912 (2020).
[Crossref]

T. Li, Z. C. Li, S. Q. Chen, L. Zhou, N. Zhang, X. Wei, G. F. Song, Q. Q. Gan, and Y. Xu, “Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization,” Appl. Phys. Lett. 114(2), 021107 (2019).
[Crossref]

Chen, W. T.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Chen, X.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Chen, X. Z.

C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
[Crossref]

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

Cheng, H.

S. Q. Chen, W. W. Liu, Z. C. Li, H. Cheng, and J. G. Tian, “Metasurface-empowered optical multiplexing and multifunction,” Adv. Mater. 32(3), 1805912 (2020).
[Crossref]

W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, and J. Tian, “Metasurface enabled wide-angle fourier lens,” Adv. Mater. 30(23), 1706368 (2018).
[Crossref]

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4(8), 1230–1235 (2016).
[Crossref]

Cheng, Q.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Cheng, X.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

Chiang, I. D.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Choi, D.-Y.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Chu, W.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Chu, W. G.

C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
[Crossref]

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

Chui, S. T.

X. Cao, Q. Wang, P. Wan, W. Zhang, Z. Lin, S. T. Chui, and J. Du, “Electric Symmetric Dipole Modes Enabling Retroreflection from an Array Consisting of Homogeneous Isotropic Linear Dielectric Rods,” Adv. Opt. Mater., 2000452 (2020).
[Crossref]

Cui, T. J.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Dai, Z.

T. Shi, Y. Wang, Z. Deng, X. Ye, Z. Dai, Y. Cao, B. Guan, S. Xiao, and X. Li, “All-dielectric kissing-dimer metagratings for asymmetric High Diffraction,” Adv. Opt. Mater. 7(24), 1901389 (2019).
[Crossref]

Deng, J.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

Deng, Z.

T. Shi, Y. Wang, Z. Deng, X. Ye, Z. Dai, Y. Cao, B. Guan, S. Xiao, and X. Li, “All-dielectric kissing-dimer metagratings for asymmetric High Diffraction,” Adv. Opt. Mater. 7(24), 1901389 (2019).
[Crossref]

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

Devlin, R. C.

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Ding, X. M.

Z. C. Wang, J. Liu, X. M. Ding, W. S. Zhao, K. Zhang, H. Y. Li, B. Ratni, S. N. Burokur, and Q. Wu, “Three-dimensional microwave holography based on broadband huygens’ metasurface,” Phys. Rev. Appl. 13(1), 014033 (2020).
[Crossref]

Z. C. Wang, X. M. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. M. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6(12), 1800121 (2018).
[Crossref]

Dong, F.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Dong, F. L.

C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
[Crossref]

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

Dong, J.

Du, J.

X. Cao, Q. Wang, P. Wan, W. Zhang, Z. Lin, S. T. Chui, and J. Du, “Electric Symmetric Dipole Modes Enabling Retroreflection from an Array Consisting of Homogeneous Isotropic Linear Dielectric Rods,” Adv. Opt. Mater., 2000452 (2020).
[Crossref]

Du, L.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Feng, Z. H.

Y. Li, Z. J. Zhang, J. F. Zheng, and Z. H. Feng, “Compact azimuthal omnidirectional dual-polarized antenna using highly isolated colocated slots,” IEEE Trans. Antennas Propag. 60(9), 4037–4045 (2012).
[Crossref]

Feng, Z. W.

Z. W. Feng, D. J. Hu, L. L. Liang, J. Xu, Y. Y. Cao, Q. Q. Zhan, B. O. Guan, X. G. Liu, and X. P. Li, “Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption,” Adv. Opt. Mater. 7(19), 1900610 (2019).
[Crossref]

Frese, D.

D. Frese, Q. S. Wei, Y. T. Wang, L. L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces,” Nano Lett. 19(6), 3976–3980 (2019).
[Crossref]

Gan, Q. Q.

T. Li, Z. C. Li, S. Q. Chen, L. Zhou, N. Zhang, X. Wei, G. F. Song, Q. Q. Gan, and Y. Xu, “Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization,” Appl. Phys. Lett. 114(2), 021107 (2019).
[Crossref]

Georgi, P.

C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, “Imaging through Nonlinear Metalens Using Second Harmonic Generation,” Adv. Mater. 30(8), 1703843 (2018).
[Crossref]

Gong, Q.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Gordon, R.

E. Rahimi and R. Gordon, “Nonlinear plasmonic metasurfaces,” Adv. Opt. Mater. 6(18), 1800274 (2018).
[Crossref]

Grbic, A.

C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref]

Groever, B.

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Gu, X. M.

Z. C. Wang, X. M. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. M. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6(12), 1800121 (2018).
[Crossref]

Guan, B.

T. Shi, Y. Wang, Z. Deng, X. Ye, Z. Dai, Y. Cao, B. Guan, S. Xiao, and X. Li, “All-dielectric kissing-dimer metagratings for asymmetric High Diffraction,” Adv. Opt. Mater. 7(24), 1901389 (2019).
[Crossref]

Guan, B. O.

Z. W. Feng, D. J. Hu, L. L. Liang, J. Xu, Y. Y. Cao, Q. Q. Zhan, B. O. Guan, X. G. Liu, and X. P. Li, “Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption,” Adv. Opt. Mater. 7(19), 1900610 (2019).
[Crossref]

Han, J.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Hasman, E.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

He, Q.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

He, S.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Hsu, W.-L.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Hu, D. J.

Z. W. Feng, D. J. Hu, L. L. Liang, J. Xu, Y. Y. Cao, Q. Q. Zhan, B. O. Guan, X. G. Liu, and X. P. Li, “Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption,” Adv. Opt. Mater. 7(19), 1900610 (2019).
[Crossref]

Huang, L. L.

Z. M. Lin, L. L. Huang, Z. T. Xu, X. W. Li, T. Zentgraf, and Y. T. Wang, “Four-wave mixing holographic multiplexing based on nonlinear metasurfaces,” Adv. Opt. Mater. 7(21), 1900782 (2019).
[Crossref]

D. Frese, Q. S. Wei, Y. T. Wang, L. L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces,” Nano Lett. 19(6), 3976–3980 (2019).
[Crossref]

L. L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: from fundamentals to applications,” Nanophotonics 7(6), 1169–1190 (2018).
[Crossref]

Huang, Y.-W.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Huber, S. D.

M. Serra-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, “Observation of a phononic quadrupole topological insulator,” Nature 555(7696), 342–345 (2018).
[Crossref]

Intaravanne, Y.

C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
[Crossref]

Jiang, W. X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Kivshar, Y. S.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Kleiner, V.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Larsen, T.

M. Serra-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, “Observation of a phononic quadrupole topological insulator,” Nature 555(7696), 342–345 (2018).
[Crossref]

Leitis, A.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Li, G.

C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, “Imaging through Nonlinear Metalens Using Second Harmonic Generation,” Adv. Mater. 30(8), 1703843 (2018).
[Crossref]

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Li, H. Y.

Z. C. Wang, J. Liu, X. M. Ding, W. S. Zhao, K. Zhang, H. Y. Li, B. Ratni, S. N. Burokur, and Q. Wu, “Three-dimensional microwave holography based on broadband huygens’ metasurface,” Phys. Rev. Appl. 13(1), 014033 (2020).
[Crossref]

Li, J.

W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, and J. Tian, “Metasurface enabled wide-angle fourier lens,” Adv. Mater. 30(23), 1706368 (2018).
[Crossref]

Li, K. F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Li, Q.-T.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Li, T.

T. Li, Z. C. Li, S. Q. Chen, L. Zhou, N. Zhang, X. Wei, G. F. Song, Q. Q. Gan, and Y. Xu, “Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization,” Appl. Phys. Lett. 114(2), 021107 (2019).
[Crossref]

Li, X.

T. Shi, Y. Wang, Z. Deng, X. Ye, Z. Dai, Y. Cao, B. Guan, S. Xiao, and X. Li, “All-dielectric kissing-dimer metagratings for asymmetric High Diffraction,” Adv. Opt. Mater. 7(24), 1901389 (2019).
[Crossref]

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]

Li, X. P.

Z. W. Feng, D. J. Hu, L. L. Liang, J. Xu, Y. Y. Cao, Q. Q. Zhan, B. O. Guan, X. G. Liu, and X. P. Li, “Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption,” Adv. Opt. Mater. 7(19), 1900610 (2019).
[Crossref]

Li, X. W.

Z. M. Lin, L. L. Huang, Z. T. Xu, X. W. Li, T. Zentgraf, and Y. T. Wang, “Four-wave mixing holographic multiplexing based on nonlinear metasurfaces,” Adv. Opt. Mater. 7(21), 1900782 (2019).
[Crossref]

Li, Y.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Y. Li, Z. J. Zhang, J. F. Zheng, and Z. H. Feng, “Compact azimuthal omnidirectional dual-polarized antenna using highly isolated colocated slots,” IEEE Trans. Antennas Propag. 60(9), 4037–4045 (2012).
[Crossref]

Li, Z.

W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, and J. Tian, “Metasurface enabled wide-angle fourier lens,” Adv. Mater. 30(23), 1706368 (2018).
[Crossref]

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4(8), 1230–1235 (2016).
[Crossref]

Li, Z. C.

S. Q. Chen, W. W. Liu, Z. C. Li, H. Cheng, and J. G. Tian, “Metasurface-empowered optical multiplexing and multifunction,” Adv. Mater. 32(3), 1805912 (2020).
[Crossref]

T. Li, Z. C. Li, S. Q. Chen, L. Zhou, N. Zhang, X. Wei, G. F. Song, Q. Q. Gan, and Y. Xu, “Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization,” Appl. Phys. Lett. 114(2), 021107 (2019).
[Crossref]

Liang, L. L.

Z. W. Feng, D. J. Hu, L. L. Liang, J. Xu, Y. Y. Cao, Q. Q. Zhan, B. O. Guan, X. G. Liu, and X. P. Li, “Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption,” Adv. Opt. Mater. 7(19), 1900610 (2019).
[Crossref]

Liao, C. Y.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Lin, H. T.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Lin, Z.

X. Cao, Q. Wang, P. Wan, W. Zhang, Z. Lin, S. T. Chui, and J. Du, “Electric Symmetric Dipole Modes Enabling Retroreflection from an Array Consisting of Homogeneous Isotropic Linear Dielectric Rods,” Adv. Opt. Mater., 2000452 (2020).
[Crossref]

Lin, Z. M.

Z. M. Lin, L. L. Huang, Z. T. Xu, X. W. Li, T. Zentgraf, and Y. T. Wang, “Four-wave mixing holographic multiplexing based on nonlinear metasurfaces,” Adv. Opt. Mater. 7(21), 1900782 (2019).
[Crossref]

Liu, A. Q.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Liu, J.

Z. C. Wang, J. Liu, X. M. Ding, W. S. Zhao, K. Zhang, H. Y. Li, B. Ratni, S. N. Burokur, and Q. Wu, “Three-dimensional microwave holography based on broadband huygens’ metasurface,” Phys. Rev. Appl. 13(1), 014033 (2020).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]

Liu, M.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Liu, S.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Liu, W.

W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, and J. Tian, “Metasurface enabled wide-angle fourier lens,” Adv. Mater. 30(23), 1706368 (2018).
[Crossref]

Liu, W. W.

S. Q. Chen, W. W. Liu, Z. C. Li, H. Cheng, and J. G. Tian, “Metasurface-empowered optical multiplexing and multifunction,” Adv. Mater. 32(3), 1805912 (2020).
[Crossref]

Liu, X. G.

Z. W. Feng, D. J. Hu, L. L. Liang, J. Xu, Y. Y. Cao, Q. Q. Zhan, B. O. Guan, X. G. Liu, and X. P. Li, “Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption,” Adv. Opt. Mater. 7(19), 1900610 (2019).
[Crossref]

Liu, Z.

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4(8), 1230–1235 (2016).
[Crossref]

Ma, H. F.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Maguid, E.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ( 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Milne, W. I.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
[Crossref]

Montelongo, Y.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
[Crossref]

Mueller, J. P. B.

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Neshev, D. N.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Ouyang, C.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Pan, W.

Parfenyev, V.

Peri, V.

M. Serra-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, “Observation of a phononic quadrupole topological insulator,” Nature 555(7696), 342–345 (2018).
[Crossref]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ( 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Pun, E. Y. B.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Qiu, C.-W.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]

Rahimi, E.

E. Rahimi and R. Gordon, “Nonlinear plasmonic metasurfaces,” Adv. Opt. Mater. 6(18), 1800274 (2018).
[Crossref]

Ramesh, P. B.

P. B. Ramesh, Microstrip Antenna Design Handbook (Artech House, 2001).

Ratni, B.

Z. C. Wang, J. Liu, X. M. Ding, W. S. Zhao, K. Zhang, H. Y. Li, B. Ratni, S. N. Burokur, and Q. Wu, “Three-dimensional microwave holography based on broadband huygens’ metasurface,” Phys. Rev. Appl. 13(1), 014033 (2020).
[Crossref]

Z. C. Wang, X. M. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. M. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6(12), 1800121 (2018).
[Crossref]

Reineke, B.

C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, “Imaging through Nonlinear Metalens Using Second Harmonic Generation,” Adv. Mater. 30(8), 1703843 (2018).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]

Rubin, N. A.

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Schlickriede, C.

C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, “Imaging through Nonlinear Metalens Using Second Harmonic Generation,” Adv. Mater. 30(8), 1703843 (2018).
[Crossref]

Serra-Garcia, M.

M. Serra-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, “Observation of a phononic quadrupole topological insulator,” Nature 555(7696), 342–345 (2018).
[Crossref]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ( 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Shi, T.

T. Shi, Y. Wang, Z. Deng, X. Ye, Z. Dai, Y. Cao, B. Guan, S. Xiao, and X. Li, “All-dielectric kissing-dimer metagratings for asymmetric High Diffraction,” Adv. Opt. Mater. 7(24), 1901389 (2019).
[Crossref]

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

Song, G. F.

T. Li, Z. C. Li, S. Q. Chen, L. Zhou, N. Zhang, X. Wei, G. F. Song, Q. Q. Gan, and Y. Xu, “Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization,” Appl. Phys. Lett. 114(2), 021107 (2019).
[Crossref]

Song, Z.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Song, Z. W.

C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
[Crossref]

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

Sun, C.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Sun, G.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Sun, S.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Susstrunk, R.

M. Serra-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, “Observation of a phononic quadrupole topological insulator,” Nature 555(7696), 342–345 (2018).
[Crossref]

Tang, C.

W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, and J. Tian, “Metasurface enabled wide-angle fourier lens,” Adv. Mater. 30(23), 1706368 (2018).
[Crossref]

Tang, S.

W. Pan, T. Cai, S. Tang, L. Zhou, and J. Dong, “Trifunctional metasurfaces: concept and characterizations,” Opt. Express 26(13), 17447–17457 (2018).
[Crossref]

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Tang, W. X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Tenorio-Pearl, J. O.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
[Crossref]

Tian, J.

W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, and J. Tian, “Metasurface enabled wide-angle fourier lens,” Adv. Mater. 30(23), 1706368 (2018).
[Crossref]

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4(8), 1230–1235 (2016).
[Crossref]

Tian, J. G.

S. Q. Chen, W. W. Liu, Z. C. Li, H. Cheng, and J. G. Tian, “Metasurface-empowered optical multiplexing and multifunction,” Adv. Mater. 32(3), 1805912 (2020).
[Crossref]

Tittl, A.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Tsai, D. P.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Tsai, W.-Y.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

Veksler, D.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Vergeles, S. S.

Villanueva, L. G.

M. Serra-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, “Observation of a phononic quadrupole topological insulator,” Nature 555(7696), 342–345 (2018).
[Crossref]

Wan, P.

X. Cao, Q. Wang, P. Wan, W. Zhang, Z. Lin, S. T. Chui, and J. Du, “Electric Symmetric Dipole Modes Enabling Retroreflection from an Array Consisting of Homogeneous Isotropic Linear Dielectric Rods,” Adv. Opt. Mater., 2000452 (2020).
[Crossref]

Wan, X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Wang, B.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Wang, C.-M.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Wang, G.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ( 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Wang, Q.

X. Cao, Q. Wang, P. Wan, W. Zhang, Z. Lin, S. T. Chui, and J. Du, “Electric Symmetric Dipole Modes Enabling Retroreflection from an Array Consisting of Homogeneous Isotropic Linear Dielectric Rods,” Adv. Opt. Mater., 2000452 (2020).
[Crossref]

Wang, S.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

Wang, W.

C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
[Crossref]

Wang, X.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

Wang, Y.

T. Shi, Y. Wang, Z. Deng, X. Ye, Z. Dai, Y. Cao, B. Guan, S. Xiao, and X. Li, “All-dielectric kissing-dimer metagratings for asymmetric High Diffraction,” Adv. Opt. Mater. 7(24), 1901389 (2019).
[Crossref]

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]

Wang, Y. T.

Z. M. Lin, L. L. Huang, Z. T. Xu, X. W. Li, T. Zentgraf, and Y. T. Wang, “Four-wave mixing holographic multiplexing based on nonlinear metasurfaces,” Adv. Opt. Mater. 7(21), 1900782 (2019).
[Crossref]

D. Frese, Q. S. Wei, Y. T. Wang, L. L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces,” Nano Lett. 19(6), 3976–3980 (2019).
[Crossref]

Wang, Z. C.

Z. C. Wang, J. Liu, X. M. Ding, W. S. Zhao, K. Zhang, H. Y. Li, B. Ratni, S. N. Burokur, and Q. Wu, “Three-dimensional microwave holography based on broadband huygens’ metasurface,” Phys. Rev. Appl. 13(1), 014033 (2020).
[Crossref]

Z. C. Wang, X. M. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. M. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6(12), 1800121 (2018).
[Crossref]

Waterman, N.

C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, “Imaging through Nonlinear Metalens Using Second Harmonic Generation,” Adv. Mater. 30(8), 1703843 (2018).
[Crossref]

Wei, Q. S.

D. Frese, Q. S. Wei, Y. T. Wang, L. L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces,” Nano Lett. 19(6), 3976–3980 (2019).
[Crossref]

Wei, X.

T. Li, Z. C. Li, S. Q. Chen, L. Zhou, N. Zhang, X. Wei, G. F. Song, Q. Q. Gan, and Y. Xu, “Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization,” Appl. Phys. Lett. 114(2), 021107 (2019).
[Crossref]

Wen, D.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Wilkinson, T. D.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
[Crossref]

Wong, P. W. H.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Wu, P. C.

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

Wu, Q.

Z. C. Wang, J. Liu, X. M. Ding, W. S. Zhao, K. Zhang, H. Y. Li, B. Ratni, S. N. Burokur, and Q. Wu, “Three-dimensional microwave holography based on broadband huygens’ metasurface,” Phys. Rev. Appl. 13(1), 014033 (2020).
[Crossref]

Z. C. Wang, X. M. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. M. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6(12), 1800121 (2018).
[Crossref]

Xiao, S.

T. Shi, Y. Wang, Z. Deng, X. Ye, Z. Dai, Y. Cao, B. Guan, S. Xiao, and X. Li, “All-dielectric kissing-dimer metagratings for asymmetric High Diffraction,” Adv. Opt. Mater. 7(24), 1901389 (2019).
[Crossref]

Xiao, Y.-F.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Xu, H.

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Xu, J.

Z. W. Feng, D. J. Hu, L. L. Liang, J. Xu, Y. Y. Cao, Q. Q. Zhan, B. O. Guan, X. G. Liu, and X. P. Li, “Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption,” Adv. Opt. Mater. 7(19), 1900610 (2019).
[Crossref]

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

Xu, L.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Xu, L. H.

C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
[Crossref]

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

Xu, Q.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Xu, Y.

T. Li, Z. C. Li, S. Q. Chen, L. Zhou, N. Zhang, X. Wei, G. F. Song, Q. Q. Gan, and Y. Xu, “Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization,” Appl. Phys. Lett. 114(2), 021107 (2019).
[Crossref]

Xu, Z. T.

Z. M. Lin, L. L. Huang, Z. T. Xu, X. W. Li, T. Zentgraf, and Y. T. Wang, “Four-wave mixing holographic multiplexing based on nonlinear metasurfaces,” Adv. Opt. Mater. 7(21), 1900782 (2019).
[Crossref]

Yang, D.

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Yang, K.-Y.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Ye, W.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]

Ye, X.

T. Shi, Y. Wang, Z. Deng, X. Ye, Z. Dai, Y. Cao, B. Guan, S. Xiao, and X. Li, “All-dielectric kissing-dimer metagratings for asymmetric High Diffraction,” Adv. Opt. Mater. 7(24), 1901389 (2019).
[Crossref]

Yesilkoy, F.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Yuan, H.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Yue, F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Yue, F. Y.

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

Yulevich, I.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Zang, X. F.

C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
[Crossref]

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

Zentgraf, T.

Z. M. Lin, L. L. Huang, Z. T. Xu, X. W. Li, T. Zentgraf, and Y. T. Wang, “Four-wave mixing holographic multiplexing based on nonlinear metasurfaces,” Adv. Opt. Mater. 7(21), 1900782 (2019).
[Crossref]

D. Frese, Q. S. Wei, Y. T. Wang, L. L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces,” Nano Lett. 19(6), 3976–3980 (2019).
[Crossref]

L. L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: from fundamentals to applications,” Nanophotonics 7(6), 1169–1190 (2018).
[Crossref]

C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, “Imaging through Nonlinear Metalens Using Second Harmonic Generation,” Adv. Mater. 30(8), 1703843 (2018).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]

Zeuner, F.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]

Zhan, Q. Q.

Z. W. Feng, D. J. Hu, L. L. Liang, J. Xu, Y. Y. Cao, Q. Q. Zhan, B. O. Guan, X. G. Liu, and X. P. Li, “Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption,” Adv. Opt. Mater. 7(19), 1900610 (2019).
[Crossref]

Zhang, C. M.

C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
[Crossref]

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

Zhang, K.

Z. C. Wang, J. Liu, X. M. Ding, W. S. Zhao, K. Zhang, H. Y. Li, B. Ratni, S. N. Burokur, and Q. Wu, “Three-dimensional microwave holography based on broadband huygens’ metasurface,” Phys. Rev. Appl. 13(1), 014033 (2020).
[Crossref]

Z. C. Wang, X. M. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. M. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6(12), 1800121 (2018).
[Crossref]

Zhang, N.

T. Li, Z. C. Li, S. Q. Chen, L. Zhou, N. Zhang, X. Wei, G. F. Song, Q. Q. Gan, and Y. Xu, “Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization,” Appl. Phys. Lett. 114(2), 021107 (2019).
[Crossref]

Zhang, S.

L. L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: from fundamentals to applications,” Nanophotonics 7(6), 1169–1190 (2018).
[Crossref]

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, and J. Tian, “Metasurface enabled wide-angle fourier lens,” Adv. Mater. 30(23), 1706368 (2018).
[Crossref]

C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, “Imaging through Nonlinear Metalens Using Second Harmonic Generation,” Adv. Mater. 30(8), 1703843 (2018).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Zhang, W.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

X. Cao, Q. Wang, P. Wan, W. Zhang, Z. Lin, S. T. Chui, and J. Du, “Electric Symmetric Dipole Modes Enabling Retroreflection from an Array Consisting of Homogeneous Isotropic Linear Dielectric Rods,” Adv. Opt. Mater., 2000452 (2020).
[Crossref]

Zhang, Z. J.

Y. Li, Z. J. Zhang, J. F. Zheng, and Z. H. Feng, “Compact azimuthal omnidirectional dual-polarized antenna using highly isolated colocated slots,” IEEE Trans. Antennas Propag. 60(9), 4037–4045 (2012).
[Crossref]

Zhao, W. S.

Z. C. Wang, J. Liu, X. M. Ding, W. S. Zhao, K. Zhang, H. Y. Li, B. Ratni, S. N. Burokur, and Q. Wu, “Three-dimensional microwave holography based on broadband huygens’ metasurface,” Phys. Rev. Appl. 13(1), 014033 (2020).
[Crossref]

Zheng, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

Zheng, G. X.

C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
[Crossref]

Zheng, J. F.

Y. Li, Z. J. Zhang, J. F. Zheng, and Z. H. Feng, “Compact azimuthal omnidirectional dual-polarized antenna using highly isolated colocated slots,” IEEE Trans. Antennas Propag. 60(9), 4037–4045 (2012).
[Crossref]

Zhou, L.

T. Li, Z. C. Li, S. Q. Chen, L. Zhou, N. Zhang, X. Wei, G. F. Song, Q. Q. Gan, and Y. Xu, “Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization,” Appl. Phys. Lett. 114(2), 021107 (2019).
[Crossref]

W. Pan, T. Cai, S. Tang, L. Zhou, and J. Dong, “Trifunctional metasurfaces: concept and characterizations,” Opt. Express 26(13), 17447–17457 (2018).
[Crossref]

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Zhou, X. Y.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Zhu, Y. M.

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

Zhuang, S. L.

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

Zhuang, X.

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

Adv. Mater. (4)

X. F. Zang, F. L. Dong, F. Y. Yue, C. M. Zhang, L. H. Xu, Z. W. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. M. Zhu, S. L. Zhuang, W. G. Chu, S. Zhang, and X. Z. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30(21), 1707499 (2018).
[Crossref]

W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, and J. Tian, “Metasurface enabled wide-angle fourier lens,” Adv. Mater. 30(23), 1706368 (2018).
[Crossref]

C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, “Imaging through Nonlinear Metalens Using Second Harmonic Generation,” Adv. Mater. 30(8), 1703843 (2018).
[Crossref]

S. Q. Chen, W. W. Liu, Z. C. Li, H. Cheng, and J. G. Tian, “Metasurface-empowered optical multiplexing and multifunction,” Adv. Mater. 32(3), 1805912 (2020).
[Crossref]

Adv. Opt. Mater. (7)

Z. C. Wang, X. M. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. M. Gu, and Q. Wu, “Huygens metasurface holograms with the modulation of focal energy distribution,” Adv. Opt. Mater. 6(12), 1800121 (2018).
[Crossref]

E. Rahimi and R. Gordon, “Nonlinear plasmonic metasurfaces,” Adv. Opt. Mater. 6(18), 1800274 (2018).
[Crossref]

T. Shi, Y. Wang, Z. Deng, X. Ye, Z. Dai, Y. Cao, B. Guan, S. Xiao, and X. Li, “All-dielectric kissing-dimer metagratings for asymmetric High Diffraction,” Adv. Opt. Mater. 7(24), 1901389 (2019).
[Crossref]

Z. W. Feng, D. J. Hu, L. L. Liang, J. Xu, Y. Y. Cao, Q. Q. Zhan, B. O. Guan, X. G. Liu, and X. P. Li, “Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption,” Adv. Opt. Mater. 7(19), 1900610 (2019).
[Crossref]

Z. M. Lin, L. L. Huang, Z. T. Xu, X. W. Li, T. Zentgraf, and Y. T. Wang, “Four-wave mixing holographic multiplexing based on nonlinear metasurfaces,” Adv. Opt. Mater. 7(21), 1900782 (2019).
[Crossref]

T. Cai, S. Tang, G. Wang, H. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4(8), 1230–1235 (2016).
[Crossref]

Appl. Phys. Lett. (1)

T. Li, Z. C. Li, S. Q. Chen, L. Zhou, N. Zhang, X. Wei, G. F. Song, Q. Q. Gan, and Y. Xu, “Efficient generation of broadband short-wave infrared vector beams with arbitrary polarization,” Appl. Phys. Lett. 114(2), 021107 (2019).
[Crossref]

IEEE Trans. Antennas Propag. (1)

Y. Li, Z. J. Zhang, J. F. Zheng, and Z. H. Feng, “Compact azimuthal omnidirectional dual-polarized antenna using highly isolated colocated slots,” IEEE Trans. Antennas Propag. 60(9), 4037–4045 (2012).
[Crossref]

Light: Sci. Appl. (2)

Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light: Sci. Appl. 7(1), 78 (2018).
[Crossref]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light: Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Nano Lett. (5)

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref]

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14(1), 294–298 (2014).
[Crossref]

Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano Lett. 15(5), 3122–3127 (2015).
[Crossref]

D. Frese, Q. S. Wei, Y. T. Wang, L. L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces,” Nano Lett. 19(6), 3976–3980 (2019).
[Crossref]

B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref]

Nanophotonics (1)

L. L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: from fundamentals to applications,” Nanophotonics 7(6), 1169–1190 (2018).
[Crossref]

Nat. Commun. (2)

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8264 (2015).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C.-W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7(1), 11930 (2016).
[Crossref]

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Nat. Photonics (1)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 ( 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Nature (1)

M. Serra-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, “Observation of a phononic quadrupole topological insulator,” Nature 555(7696), 342–345 (2018).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. Appl. (2)

Z. C. Wang, J. Liu, X. M. Ding, W. S. Zhao, K. Zhang, H. Y. Li, B. Ratni, S. N. Burokur, and Q. Wu, “Three-dimensional microwave holography based on broadband huygens’ metasurface,” Phys. Rev. Appl. 13(1), 014033 (2020).
[Crossref]

C. M. Zhang, F. L. Dong, Y. Intaravanne, X. F. Zang, L. H. Xu, Z. W. Song, G. X. Zheng, W. Wang, W. G. Chu, and X. Z. Chen, “Multichannel metasurfaces for anticounterfeiting,” Phys. Rev. Appl. 12(3), 034028 (2019).
[Crossref]

Phys. Rev. Lett. (2)

C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref]

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Science (2)

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref]

Other (2)

P. B. Ramesh, Microstrip Antenna Design Handbook (Artech House, 2001).

X. Cao, Q. Wang, P. Wan, W. Zhang, Z. Lin, S. T. Chui, and J. Du, “Electric Symmetric Dipole Modes Enabling Retroreflection from an Array Consisting of Homogeneous Isotropic Linear Dielectric Rods,” Adv. Opt. Mater., 2000452 (2020).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Decomposed topological layouts of the proposed reflective metamolecule where the dielectric substrate and copper are distinguished with different color block. The purple arrows marked with Ei/Hi denote the electric or magnetic fields of the incident wave, while the Er/Hr denote those of the reflected wave. The two circular rings in the polar coordinates operate in two separated bands—19.6 GHz-21.2 GHz and 29.4 GHz-31 GHz, respectively, as well as the two crossed slots and two pairs of delay lines (b) Magnetic field distributions of the slot layers when only one of the slots is excited, and the magnetic field distribution of the vertical slot in 30 GHz band is shown in the insert. The blue dotted line stands for the null locus and the blue arrows represent the coupled currents. (c) The simulated reflection amplitude profiles versus the variation of the microstrip line length at 20.4 GHz and 30.2 GHz for the horizontal and the vertical polarizations, respectively. (d) The simulated reflection phase responses versus the variation of the microstrip line length at 20.4 GHz and 30.2 GHz for the horizontal and the vertical polarizations, respectively.
Fig. 2.
Fig. 2. (a) Schematic demonstration of the x-polarized (X-Pol) and y-polarized (Y-Pol) incident wave propagating in the metamolecule, where four purple dashes denote the waveguide ports further implemented in CST and labeled as from 1 to 4. (b) The matchups among energy input port (PW_X-Pol and PW_Y-Pol) and four waveguide ports (from Port 1 to Port 4), where the solid lines indicate the desired co-polarization transmission coefficients while the dotted lines denote the undesired cross-polarization ones. (c) The simulated frequency dependent transmission coefficients which characterize to which extent the incident X-Pol or Y-Pol plane wave can be effectively coupled into different microstrip delay lines. The purple and the yellow blocks point out two 3 dB operational frequency bands. Two frequencies in red are the calculated results with the cavity modal theory. PW is short for plane wave.
Fig. 3.
Fig. 3. (a) The inverted microstrip line model, where h=0.254 mm, H=1 mm, ring width w=0.6 mm for lower band, w=0.4 mm for higher band, and εr=6.15.(b) The parallel plate model, where a=1.22, b=1.82 mm for lower band, a=0.72 mm, b=1.12 mm for higher band. (c) The simulated surface current distribution on the circular rings at 20.4 GHz and 30.2 GHz. (d) Sum-square error (SSE), varying with the iteration steps.
Fig. 4.
Fig. 4. (a) Schematic demonstration of the proposed metasurface which can independently manipulate four-channel reflected waves for projecting holographic images. As a case study, two combination of reconstructed pictures are investigated to construct “H” (x-pol @30 GHz), “I” (y-pol @30 GHz), “T” (x-pol @20 GHz), “smile” (y-pol @20 GHz), and a “smile face puzzle”. (b) The Fraunhofer diffraction based theoretical calculation results of the normalized intensity profiles and the simulated results. (c) Simulated asymmetric “smile” whose intensity ratio is set to 1:0.7 in calculation. (d) The simulated intensity ratio in four sampling positions as depicted in (c).
Fig. 5.
Fig. 5. (a) Schematic diagram of the projected “smile face puzzle”. (b) The panorama of the experiment setup. The insets show the corrugated horn and the rigid coaxial cable probe. (c) Calculated, simulated and measured “smile face puzzle” (second row, f=145 mm at center frequency), measured results when shifting the detection plane from 140 mm to150 mm (first row, at center frequency), and the measured results when tuning the frequency (third row, f=145 mm). (d) The four intact holographic images (f=145 mm at center frequency), of which the “smile face puzzle” at center frequency and theoretical position is composed and the corresponding imaging efficiency.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

J ρ = j k E 0 ω μ [ J n ( k ρ ) Y n ( k a ) J n ( k a ) Y n ( k ρ ) ] cos n φ
J ρ ( ρ = a ) = H φ ( ρ = b ) = 0
J n ( k d ) Y n ( k ) J n ( k ) Y n ( k d ) = 0
f n m = k n n a c / ( 2 π a ε r )
d e = ( b + 3 h / 4 ) / ( a 3 h / 4 )
ε r e = 1 + h H ( a ¯ b ¯ ln W H ) ( ε r 1 )
a ¯ = { 0.5173 0.1515 ln [ h / ( H h ) ] } 2
b ¯ = { 0.3092 0.1047 ln [ h / ( H h ) ] } 2
ϕ n = arg [ m = 1 M e j k r m n r m n w m E m | E m | ]
0 t h step w m 0 = 1 , ϕ n 0 = R a n d o m ( ϕ )
k t h step  w m k = w m k 1 | E m k 1 | | E m k 1 | , ϕ n k = arg [ m = 1 M e j k r m n r m n w m k E m k 1 | E m k 1 | ]
| E m k 1 |  =  s m m = 1 M | E m k 1 | / m = 1 M s m
S S E = ( | E m | E m ) 2 / | E m | 2
w m k = w m k 1 [ | E m k 1 | / | E m k 1 | ] P

Metrics