Abstract

Upconversion nanoparticles (UCNPs) are becoming increasingly popular as biological markers as they offer photo-stable imaging in the near-infrared (NIR) biological transparency window. Imaging at NIR wavelengths benefits from low auto-fluorescence background and minimal photo-damage. However, as the diffraction limit increases with the wavelength, the imaging resolution deteriorates. To address this limitation, recently two independent approaches have been proposed for imaging UCNPs with sub-diffraction resolution, namely stimulated emission-depletion (STED) microscopy and super linear excitation-emission (uSEE) microscopy. Both methods are very sensitive to the UCNP composition and the imaging conditions, i.e. to the excitation and depletion power. Here, we demonstrate that the imaging conditions can be chosen in a way that activates both super-resolution regimes simultaneously when imaging NaYF4:Yb,Tm UCNPs. The combined uSEE-STED mode benefits from the advantages of both techniques, allowing for imaging with lateral resolution about six times better than the diffraction limit due to STED and simultaneous improvement of the axial resolution about twice over the diffraction limit due to uSEE. Conveniently, at certain imaging conditions, the uSEE-STED modality can achieve better resolution at four times lower laser power compared to STED mode, making the method appealing for biological applications. We illustrate this by imaging UCNPs functionalized by colominic acid in fixed neuronal phenotype cells.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. 50(26), 5808–5829 (2011).
    [Crossref]
  2. J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
    [Crossref]
  3. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
    [Crossref]
  4. S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, and D. Jin, “Advances in highly doped upconversion nanoparticles,” Nat. Commun. 9(1), 2415 (2018).
    [Crossref]
  5. C. Ma, C. Shana, K. Park, A. T. Mok, P. J. Antonick, and X. Yang, “Enhancing the generating and collecting efficiency of single particle upconverting luminescence at low power excitation,” Nanophotonics 9(7), 1993–2000 (2020).
    [Crossref]
  6. S. H. Nam, Y. M. Bae, Y. Il Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T. Lee, T. Hyeon, and Y. D. Suh, “Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells,” Angew. Chem. Int. Ed. 50(27), 6093–6097 (2011).
    [Crossref]
  7. G. Chen, H. Ågren, T. Y. Ohulchanskyy, and P. N. Prasad, “Light upconverting core-shell nanostructures: nanophotonic control for emerging applications,” Chem. Soc. Rev. 44(6), 1680–1713 (2015).
    [Crossref]
  8. Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
    [Crossref]
  9. A. Bagheri, H. Arandiyan, C. Boyer, and M. Lim, “Lanthanide-doped upconversion nanoparticles: Emerging intelligent light-activated drug delivery systems,” Adv. Sci. 3(7), 1500437 (2016).
    [Crossref]
  10. H. Li, X. Wang, D. Huang, and G. Chen, “Recent advances of lanthanide-doped upconversion nanoparticles for biological applications,” Nanotechnology 31(7), 072001 (2020).
    [Crossref]
  11. B. del Rosal and D. Jaque, “Upconversion nanoparticles for in vivo applications: limitations and future perspectives,” Methods Appl. Fluoresc. 7(2), 022001 (2019).
    [Crossref]
  12. S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
    [Crossref]
  13. Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
    [Crossref]
  14. Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
    [Crossref]
  15. E. Ruggiero, S. Alonso-de Castro, A. Habtemariamb, and L. Salassa, “Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry,” Dalton Trans. 45(33), 13012–13020 (2016).
    [Crossref]
  16. M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
    [Crossref]
  17. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135(8), 1839 (2010).
    [Crossref]
  18. G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1(1), 0010 (2017).
    [Crossref]
  19. G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
    [Crossref]
  20. D. Denkova, M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer, and J. A. Piper, “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters,” Nat. Commun. 10(1), 3695 (2019).
    [Crossref]
  21. B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
    [Crossref]
  22. Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
    [Crossref]
  23. Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
    [Crossref]
  24. X. Peng, B. Huang, R. Pu, H. Liu, T. Zhang, J. Widengren, Q. Zhan, and H. Ågren, “Fast upconversion super-resolution microscopy with 10 µs per pixel dwell times,” Nanoscale 11(4), 1563–1569 (2019).
    [Crossref]
  25. L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, and F. Pellé, “Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy,” Appl. Phys. Lett. 102(14), 143114 (2013).
    [Crossref]
  26. A. Bednarkiewicz, E. M. Chan, A. Kotulska, L. Marciniak, and K. Prorok, “Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging,” Nanoscale Horiz. 4(4), 881–889 (2019).
    [Crossref]
  27. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref]
  28. F. Auzel, “Upconversion and Anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref]
  29. J. E. Moffatt, G. Tsiminis, E. Klantsataya, T. J. de Prinse, D. Ottaway, and N. A. Spooner, “A practical review of shorter than excitation wavelength light emission processes,” Appl. Spectrosc. Rev. 55(4), 327–349 (2020).
    [Crossref]
  30. H. Dong, L.-D. Sun, and C.-H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
    [Crossref]
  31. E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
    [Crossref]
  32. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [Crossref]
  33. G. T. Barry and W. F. Goebel, “Colominic acid, a substance of bacterial origin related to sialic acid,” Nature 179(4552), 206 (1957).
    [Crossref]
  34. E. Gascon, L. Vutskits, and J. Z. Kiss, “Polysialic acid-neural cell adhesion molecule in brain plasticity: From synapses to integration of new neurons,” Brain Res. Rev. 56(1), 101–118 (2007).
    [Crossref]
  35. U. Rutishauser, “Polysialic acid at the cell surface: Biophysics in service of cell interactions and tissue plasticity,” J. Cell. Biochem. 70(3), 304–312 (1998).
    [Crossref]
  36. P. A. Demina, N. V. Sholina, R. A. Akasov, D. A. Khochenkov, N. A. Arkharova, A. V. Nechaev, E. V. Khaydukov, and A. N. Generalova, “A versatile platform for bioimaging based on colominic acid-decorated upconversion nanoparticles,” Biomater. Sci. 41, 2656 (2020).
    [Crossref]
  37. Q. Liu, Y. Zhang, C. S. Peng, T. Yang, L.-M. Joubert, and S. Chu, “Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance,” Nat. Photonics 12(9), 548–553 (2018).
    [Crossref]
  38. S. De Camillis, P. Ren, Y. Cao, M. Plöschner, D. Denkova, X. Zheng, Y. Lu, and J. A. Piper, “Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance,” https://arxiv.org/abs/2007.11754 .
  39. S. Wilhelm, “Perspectives for upconverting nanoparticles,” ACS Nano 11(11), 10644–10653 (2017).
    [Crossref]

2020 (5)

C. Ma, C. Shana, K. Park, A. T. Mok, P. J. Antonick, and X. Yang, “Enhancing the generating and collecting efficiency of single particle upconverting luminescence at low power excitation,” Nanophotonics 9(7), 1993–2000 (2020).
[Crossref]

H. Li, X. Wang, D. Huang, and G. Chen, “Recent advances of lanthanide-doped upconversion nanoparticles for biological applications,” Nanotechnology 31(7), 072001 (2020).
[Crossref]

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

J. E. Moffatt, G. Tsiminis, E. Klantsataya, T. J. de Prinse, D. Ottaway, and N. A. Spooner, “A practical review of shorter than excitation wavelength light emission processes,” Appl. Spectrosc. Rev. 55(4), 327–349 (2020).
[Crossref]

P. A. Demina, N. V. Sholina, R. A. Akasov, D. A. Khochenkov, N. A. Arkharova, A. V. Nechaev, E. V. Khaydukov, and A. N. Generalova, “A versatile platform for bioimaging based on colominic acid-decorated upconversion nanoparticles,” Biomater. Sci. 41, 2656 (2020).
[Crossref]

2019 (6)

D. Denkova, M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer, and J. A. Piper, “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters,” Nat. Commun. 10(1), 3695 (2019).
[Crossref]

X. Peng, B. Huang, R. Pu, H. Liu, T. Zhang, J. Widengren, Q. Zhan, and H. Ågren, “Fast upconversion super-resolution microscopy with 10 µs per pixel dwell times,” Nanoscale 11(4), 1563–1569 (2019).
[Crossref]

A. Bednarkiewicz, E. M. Chan, A. Kotulska, L. Marciniak, and K. Prorok, “Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging,” Nanoscale Horiz. 4(4), 881–889 (2019).
[Crossref]

B. del Rosal and D. Jaque, “Upconversion nanoparticles for in vivo applications: limitations and future perspectives,” Methods Appl. Fluoresc. 7(2), 022001 (2019).
[Crossref]

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

2018 (3)

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, and D. Jin, “Advances in highly doped upconversion nanoparticles,” Nat. Commun. 9(1), 2415 (2018).
[Crossref]

Q. Liu, Y. Zhang, C. S. Peng, T. Yang, L.-M. Joubert, and S. Chu, “Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance,” Nat. Photonics 12(9), 548–553 (2018).
[Crossref]

2017 (5)

S. Wilhelm, “Perspectives for upconverting nanoparticles,” ACS Nano 11(11), 10644–10653 (2017).
[Crossref]

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1(1), 0010 (2017).
[Crossref]

2016 (3)

E. Ruggiero, S. Alonso-de Castro, A. Habtemariamb, and L. Salassa, “Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry,” Dalton Trans. 45(33), 13012–13020 (2016).
[Crossref]

A. Bagheri, H. Arandiyan, C. Boyer, and M. Lim, “Lanthanide-doped upconversion nanoparticles: Emerging intelligent light-activated drug delivery systems,” Adv. Sci. 3(7), 1500437 (2016).
[Crossref]

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

2015 (3)

H. Dong, L.-D. Sun, and C.-H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref]

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

G. Chen, H. Ågren, T. Y. Ohulchanskyy, and P. N. Prasad, “Light upconverting core-shell nanostructures: nanophotonic control for emerging applications,” Chem. Soc. Rev. 44(6), 1680–1713 (2015).
[Crossref]

2014 (2)

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref]

2013 (2)

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, and F. Pellé, “Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy,” Appl. Phys. Lett. 102(14), 143114 (2013).
[Crossref]

2011 (2)

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. 50(26), 5808–5829 (2011).
[Crossref]

S. H. Nam, Y. M. Bae, Y. Il Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T. Lee, T. Hyeon, and Y. D. Suh, “Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells,” Angew. Chem. Int. Ed. 50(27), 6093–6097 (2011).
[Crossref]

2010 (1)

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135(8), 1839 (2010).
[Crossref]

2007 (1)

E. Gascon, L. Vutskits, and J. Z. Kiss, “Polysialic acid-neural cell adhesion molecule in brain plasticity: From synapses to integration of new neurons,” Brain Res. Rev. 56(1), 101–118 (2007).
[Crossref]

2004 (1)

F. Auzel, “Upconversion and Anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref]

2000 (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

1998 (1)

U. Rutishauser, “Polysialic acid at the cell surface: Biophysics in service of cell interactions and tissue plasticity,” J. Cell. Biochem. 70(3), 304–312 (1998).
[Crossref]

1994 (1)

1957 (1)

G. T. Barry and W. F. Goebel, “Colominic acid, a substance of bacterial origin related to sialic acid,” Nature 179(4552), 206 (1957).
[Crossref]

Ågren, H.

X. Peng, B. Huang, R. Pu, H. Liu, T. Zhang, J. Widengren, Q. Zhan, and H. Ågren, “Fast upconversion super-resolution microscopy with 10 µs per pixel dwell times,” Nanoscale 11(4), 1563–1569 (2019).
[Crossref]

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
[Crossref]

G. Chen, H. Ågren, T. Y. Ohulchanskyy, and P. N. Prasad, “Light upconverting core-shell nanostructures: nanophotonic control for emerging applications,” Chem. Soc. Rev. 44(6), 1680–1713 (2015).
[Crossref]

Akasov, R. A.

P. A. Demina, N. V. Sholina, R. A. Akasov, D. A. Khochenkov, N. A. Arkharova, A. V. Nechaev, E. V. Khaydukov, and A. N. Generalova, “A versatile platform for bioimaging based on colominic acid-decorated upconversion nanoparticles,” Biomater. Sci. 41, 2656 (2020).
[Crossref]

All, A. H.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Alonso-de Castro, S.

E. Ruggiero, S. Alonso-de Castro, A. Habtemariamb, and L. Salassa, “Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry,” Dalton Trans. 45(33), 13012–13020 (2016).
[Crossref]

Antaris, A. L.

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1(1), 0010 (2017).
[Crossref]

Antonick, P. J.

C. Ma, C. Shana, K. Park, A. T. Mok, P. J. Antonick, and X. Yang, “Enhancing the generating and collecting efficiency of single particle upconverting luminescence at low power excitation,” Nanophotonics 9(7), 1993–2000 (2020).
[Crossref]

Ao, Y.

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Arandiyan, H.

A. Bagheri, H. Arandiyan, C. Boyer, and M. Lim, “Lanthanide-doped upconversion nanoparticles: Emerging intelligent light-activated drug delivery systems,” Adv. Sci. 3(7), 1500437 (2016).
[Crossref]

Arkharova, N. A.

P. A. Demina, N. V. Sholina, R. A. Akasov, D. A. Khochenkov, N. A. Arkharova, A. V. Nechaev, E. V. Khaydukov, and A. N. Generalova, “A versatile platform for bioimaging based on colominic acid-decorated upconversion nanoparticles,” Biomater. Sci. 41, 2656 (2020).
[Crossref]

Arvanitis, D. N.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and Anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref]

Bae, Y. M.

S. H. Nam, Y. M. Bae, Y. Il Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T. Lee, T. Hyeon, and Y. D. Suh, “Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells,” Angew. Chem. Int. Ed. 50(27), 6093–6097 (2011).
[Crossref]

Bagheri, A.

A. Bagheri, H. Arandiyan, C. Boyer, and M. Lim, “Lanthanide-doped upconversion nanoparticles: Emerging intelligent light-activated drug delivery systems,” Adv. Sci. 3(7), 1500437 (2016).
[Crossref]

Banerjee, D.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135(8), 1839 (2010).
[Crossref]

Barry, G. T.

G. T. Barry and W. F. Goebel, “Colominic acid, a substance of bacterial origin related to sialic acid,” Nature 179(4552), 206 (1957).
[Crossref]

Beaudry, F.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Bednarkiewicz, A.

A. Bednarkiewicz, E. M. Chan, A. Kotulska, L. Marciniak, and K. Prorok, “Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging,” Nanoscale Horiz. 4(4), 881–889 (2019).
[Crossref]

S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, and D. Jin, “Advances in highly doped upconversion nanoparticles,” Nat. Commun. 9(1), 2415 (2018).
[Crossref]

Ben Salem, J.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Bischof, T. S.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

Boyer, C.

A. Bagheri, H. Arandiyan, C. Boyer, and M. Lim, “Lanthanide-doped upconversion nanoparticles: Emerging intelligent light-activated drug delivery systems,” Adv. Sci. 3(7), 1500437 (2016).
[Crossref]

Caillat, L.

L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, and F. Pellé, “Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy,” Appl. Phys. Lett. 102(14), 143114 (2013).
[Crossref]

Calise, D.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Cao, Y.

S. De Camillis, P. Ren, Y. Cao, M. Plöschner, D. Denkova, X. Zheng, Y. Lu, and J. A. Piper, “Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance,” https://arxiv.org/abs/2007.11754 .

Chamanzar, M.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

Chan, E. M.

A. Bednarkiewicz, E. M. Chan, A. Kotulska, L. Marciniak, and K. Prorok, “Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging,” Nanoscale Horiz. 4(4), 881–889 (2019).
[Crossref]

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

Chang, Y.

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

Chauvat, D.

L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, and F. Pellé, “Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy,” Appl. Phys. Lett. 102(14), 143114 (2013).
[Crossref]

Chen, C.

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

Chen, G.

H. Li, X. Wang, D. Huang, and G. Chen, “Recent advances of lanthanide-doped upconversion nanoparticles for biological applications,” Nanotechnology 31(7), 072001 (2020).
[Crossref]

G. Chen, H. Ågren, T. Y. Ohulchanskyy, and P. N. Prasad, “Light upconverting core-shell nanostructures: nanophotonic control for emerging applications,” Chem. Soc. Rev. 44(6), 1680–1713 (2015).
[Crossref]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref]

Chen, S.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Chen, X.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135(8), 1839 (2010).
[Crossref]

Choi, J. S.

S. H. Nam, Y. M. Bae, Y. Il Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T. Lee, T. Hyeon, and Y. D. Suh, “Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells,” Angew. Chem. Int. Ed. 50(27), 6093–6097 (2011).
[Crossref]

Chu, S.

Q. Liu, Y. Zhang, C. S. Peng, T. Yang, L.-M. Joubert, and S. Chu, “Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance,” Nat. Photonics 12(9), 548–553 (2018).
[Crossref]

Cohen, B. E.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

Corrêa, I. R.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Coudret, C.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Dai, H.

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1(1), 0010 (2017).
[Crossref]

Das, M.

D. Denkova, M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer, and J. A. Piper, “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters,” Nat. Commun. 10(1), 3695 (2019).
[Crossref]

De Camillis, S.

S. De Camillis, P. Ren, Y. Cao, M. Plöschner, D. Denkova, X. Zheng, Y. Lu, and J. A. Piper, “Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance,” https://arxiv.org/abs/2007.11754 .

de Prinse, T. J.

J. E. Moffatt, G. Tsiminis, E. Klantsataya, T. J. de Prinse, D. Ottaway, and N. A. Spooner, “A practical review of shorter than excitation wavelength light emission processes,” Appl. Spectrosc. Rev. 55(4), 327–349 (2020).
[Crossref]

del Rosal, B.

B. del Rosal and D. Jaque, “Upconversion nanoparticles for in vivo applications: limitations and future perspectives,” Methods Appl. Fluoresc. 7(2), 022001 (2019).
[Crossref]

Demina, P. A.

P. A. Demina, N. V. Sholina, R. A. Akasov, D. A. Khochenkov, N. A. Arkharova, A. V. Nechaev, E. V. Khaydukov, and A. N. Generalova, “A versatile platform for bioimaging based on colominic acid-decorated upconversion nanoparticles,” Biomater. Sci. 41, 2656 (2020).
[Crossref]

Denkova, D.

D. Denkova, M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer, and J. A. Piper, “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters,” Nat. Commun. 10(1), 3695 (2019).
[Crossref]

S. De Camillis, P. Ren, Y. Cao, M. Plöschner, D. Denkova, X. Zheng, Y. Lu, and J. A. Piper, “Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance,” https://arxiv.org/abs/2007.11754 .

Di, X.

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

Dong, H.

H. Dong, L.-D. Sun, and C.-H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref]

Eggeling, C.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Feng, W.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Fernandez-Bravo, A.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

Gales, C.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Gao, S.

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Garfield, D. J.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

Gascon, E.

E. Gascon, L. Vutskits, and J. Z. Kiss, “Polysialic acid-neural cell adhesion molecule in brain plasticity: From synapses to integration of new neurons,” Brain Res. Rev. 56(1), 101–118 (2007).
[Crossref]

Generalova, A. N.

P. A. Demina, N. V. Sholina, R. A. Akasov, D. A. Khochenkov, N. A. Arkharova, A. V. Nechaev, E. V. Khaydukov, and A. N. Generalova, “A versatile platform for bioimaging based on colominic acid-decorated upconversion nanoparticles,” Biomater. Sci. 41, 2656 (2020).
[Crossref]

Goebel, W. F.

G. T. Barry and W. F. Goebel, “Colominic acid, a substance of bacterial origin related to sialic acid,” Nature 179(4552), 206 (1957).
[Crossref]

Goldys, E. M.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Haase, M.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. 50(26), 5808–5829 (2011).
[Crossref]

Habtemariamb, A.

E. Ruggiero, S. Alonso-de Castro, A. Habtemariamb, and L. Salassa, “Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry,” Dalton Trans. 45(33), 13012–13020 (2016).
[Crossref]

Hajj, B.

L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, and F. Pellé, “Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy,” Appl. Phys. Lett. 102(14), 143114 (2013).
[Crossref]

Hashimotodani, Y.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

He, L.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

He, S.

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
[Crossref]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Hell, S. W.

Heppenstall, P.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Hong, G.

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1(1), 0010 (2017).
[Crossref]

Honigmann, A.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Huang, A. J. Y.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Huang, B.

X. Peng, B. Huang, R. Pu, H. Liu, T. Zhang, J. Widengren, Q. Zhan, and H. Ågren, “Fast upconversion super-resolution microscopy with 10 µs per pixel dwell times,” Nanoscale 11(4), 1563–1569 (2019).
[Crossref]

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
[Crossref]

Huang, D.

H. Li, X. Wang, D. Huang, and G. Chen, “Recent advances of lanthanide-doped upconversion nanoparticles for biological applications,” Nanotechnology 31(7), 072001 (2020).
[Crossref]

Hung, W.

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Huo, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Hyeon, T.

S. H. Nam, Y. M. Bae, Y. Il Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T. Lee, T. Hyeon, and Y. D. Suh, “Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells,” Angew. Chem. Int. Ed. 50(27), 6093–6097 (2011).
[Crossref]

Iafrati, J.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

Il Park, Y.

S. H. Nam, Y. M. Bae, Y. Il Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T. Lee, T. Hyeon, and Y. D. Suh, “Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells,” Angew. Chem. Int. Ed. 50(27), 6093–6097 (2011).
[Crossref]

Iwasaki, H.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Jaque, D.

B. del Rosal and D. Jaque, “Upconversion nanoparticles for in vivo applications: limitations and future perspectives,” Methods Appl. Fluoresc. 7(2), 022001 (2019).
[Crossref]

Jin, D.

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, and D. Jin, “Advances in highly doped upconversion nanoparticles,” Nat. Commun. 9(1), 2415 (2018).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Johnsson, K.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Joubert, L.-M.

Q. Liu, Y. Zhang, C. S. Peng, T. Yang, L.-M. Joubert, and S. Chu, “Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance,” Nat. Photonics 12(9), 548–553 (2018).
[Crossref]

Ju, L. A.

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

Kano, M.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Kermorgant, M.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Khaydukov, E. V.

P. A. Demina, N. V. Sholina, R. A. Akasov, D. A. Khochenkov, N. A. Arkharova, A. V. Nechaev, E. V. Khaydukov, and A. N. Generalova, “A versatile platform for bioimaging based on colominic acid-decorated upconversion nanoparticles,” Biomater. Sci. 41, 2656 (2020).
[Crossref]

Khochenkov, D. A.

P. A. Demina, N. V. Sholina, R. A. Akasov, D. A. Khochenkov, N. A. Arkharova, A. V. Nechaev, E. V. Khaydukov, and A. N. Generalova, “A versatile platform for bioimaging based on colominic acid-decorated upconversion nanoparticles,” Biomater. Sci. 41, 2656 (2020).
[Crossref]

Kim, H. M.

S. H. Nam, Y. M. Bae, Y. Il Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T. Lee, T. Hyeon, and Y. D. Suh, “Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells,” Angew. Chem. Int. Ed. 50(27), 6093–6097 (2011).
[Crossref]

Kim, J. H.

S. H. Nam, Y. M. Bae, Y. Il Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T. Lee, T. Hyeon, and Y. D. Suh, “Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells,” Angew. Chem. Int. Ed. 50(27), 6093–6097 (2011).
[Crossref]

Kiss, J. Z.

E. Gascon, L. Vutskits, and J. Z. Kiss, “Polysialic acid-neural cell adhesion molecule in brain plasticity: From synapses to integration of new neurons,” Brain Res. Rev. 56(1), 101–118 (2007).
[Crossref]

Klantsataya, E.

J. E. Moffatt, G. Tsiminis, E. Klantsataya, T. J. de Prinse, D. Ottaway, and N. A. Spooner, “A practical review of shorter than excitation wavelength light emission processes,” Appl. Spectrosc. Rev. 55(4), 327–349 (2020).
[Crossref]

Kong, X.

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

Kotulska, A.

A. Bednarkiewicz, E. M. Chan, A. Kotulska, L. Marciniak, and K. Prorok, “Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging,” Nanoscale Horiz. 4(4), 881–889 (2019).
[Crossref]

Lairez, O.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Lee, K. T.

S. H. Nam, Y. M. Bae, Y. Il Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T. Lee, T. Hyeon, and Y. D. Suh, “Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells,” Angew. Chem. Int. Ed. 50(27), 6093–6097 (2011).
[Crossref]

Leif, R. C.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Lemke, E. A.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Levy, E. S.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

Li, C.

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

Li, F.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Li, H.

H. Li, X. Wang, D. Huang, and G. Chen, “Recent advances of lanthanide-doped upconversion nanoparticles for biological applications,” Nanotechnology 31(7), 072001 (2020).
[Crossref]

Li, X.

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

Liao, J.

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

Lim, M.

A. Bagheri, H. Arandiyan, C. Boyer, and M. Lim, “Lanthanide-doped upconversion nanoparticles: Emerging intelligent light-activated drug delivery systems,” Adv. Sci. 3(7), 1500437 (2016).
[Crossref]

Liu, B.

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

Liu, D.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Liu, H.

X. Peng, B. Huang, R. Pu, H. Liu, T. Zhang, J. Widengren, Q. Zhan, and H. Ågren, “Fast upconversion super-resolution microscopy with 10 µs per pixel dwell times,” Nanoscale 11(4), 1563–1569 (2019).
[Crossref]

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
[Crossref]

Liu, Q.

Q. Liu, Y. Zhang, C. S. Peng, T. Yang, L.-M. Joubert, and S. Chu, “Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance,” Nat. Photonics 12(9), 548–553 (2018).
[Crossref]

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Liu, X.

S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, and D. Jin, “Advances in highly doped upconversion nanoparticles,” Nat. Commun. 9(1), 2415 (2018).
[Crossref]

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135(8), 1839 (2010).
[Crossref]

Liu, Y.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135(8), 1839 (2010).
[Crossref]

Loong Teh, D. B.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Lu, J.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Lu, Y.

D. Denkova, M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer, and J. A. Piper, “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters,” Nat. Commun. 10(1), 3695 (2019).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

S. De Camillis, P. Ren, Y. Cao, M. Plöschner, D. Denkova, X. Zheng, Y. Lu, and J. A. Piper, “Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance,” https://arxiv.org/abs/2007.11754 .

Lukinavicius, G.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Luo, Z. G.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Ma, C.

C. Ma, C. Shana, K. Park, A. T. Mok, P. J. Antonick, and X. Yang, “Enhancing the generating and collecting efficiency of single particle upconverting luminescence at low power excitation,” Nanophotonics 9(7), 1993–2000 (2020).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Maharbiz, M. M.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

Manley, S.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Marciniak, L.

A. Bednarkiewicz, E. M. Chan, A. Kotulska, L. Marciniak, and K. Prorok, “Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging,” Nanoscale Horiz. 4(4), 881–889 (2019).
[Crossref]

Mauricot, R.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

McHugh, T. J.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Mi, C.

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

Miao, Y.

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Michely, L.

L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, and F. Pellé, “Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy,” Appl. Phys. Lett. 102(14), 143114 (2013).
[Crossref]

Moffatt, J. E.

J. E. Moffatt, G. Tsiminis, E. Klantsataya, T. J. de Prinse, D. Ottaway, and N. A. Spooner, “A practical review of shorter than excitation wavelength light emission processes,” Appl. Spectrosc. Rev. 55(4), 327–349 (2020).
[Crossref]

Mok, A. T.

C. Ma, C. Shana, K. Park, A. T. Mok, P. J. Antonick, and X. Yang, “Enhancing the generating and collecting efficiency of single particle upconverting luminescence at low power excitation,” Nanophotonics 9(7), 1993–2000 (2020).
[Crossref]

Mueller, V.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Nam, S. H.

S. H. Nam, Y. M. Bae, Y. Il Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T. Lee, T. Hyeon, and Y. D. Suh, “Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells,” Angew. Chem. Int. Ed. 50(27), 6093–6097 (2011).
[Crossref]

Nechaev, A. V.

P. A. Demina, N. V. Sholina, R. A. Akasov, D. A. Khochenkov, N. A. Arkharova, A. V. Nechaev, E. V. Khaydukov, and A. N. Generalova, “A versatile platform for bioimaging based on colominic acid-decorated upconversion nanoparticles,” Biomater. Sci. 41, 2656 (2020).
[Crossref]

Ohulchanskyy, T. Y.

G. Chen, H. Ågren, T. Y. Ohulchanskyy, and P. N. Prasad, “Light upconverting core-shell nanostructures: nanophotonic control for emerging applications,” Chem. Soc. Rev. 44(6), 1680–1713 (2015).
[Crossref]

Okabe, S.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Olivier, N.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Orth, A.

D. Denkova, M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer, and J. A. Piper, “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters,” Nat. Commun. 10(1), 3695 (2019).
[Crossref]

Oster, A.-C.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Ottaway, D.

J. E. Moffatt, G. Tsiminis, E. Klantsataya, T. J. de Prinse, D. Ottaway, and N. A. Spooner, “A practical review of shorter than excitation wavelength light emission processes,” Appl. Spectrosc. Rev. 55(4), 327–349 (2020).
[Crossref]

Packer, N. H.

D. Denkova, M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer, and J. A. Piper, “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters,” Nat. Commun. 10(1), 3695 (2019).
[Crossref]

Parajuli, L. K.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Park, K.

C. Ma, C. Shana, K. Park, A. T. Mok, P. J. Antonick, and X. Yang, “Enhancing the generating and collecting efficiency of single particle upconverting luminescence at low power excitation,” Nanophotonics 9(7), 1993–2000 (2020).
[Crossref]

Parker, L. M.

D. Denkova, M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer, and J. A. Piper, “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters,” Nat. Commun. 10(1), 3695 (2019).
[Crossref]

Pavy-Le Traon, A.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Pellé, F.

L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, and F. Pellé, “Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy,” Appl. Phys. Lett. 102(14), 143114 (2013).
[Crossref]

Peng, C. S.

Q. Liu, Y. Zhang, C. S. Peng, T. Yang, L.-M. Joubert, and S. Chu, “Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance,” Nat. Photonics 12(9), 548–553 (2018).
[Crossref]

Peng, X.

X. Peng, B. Huang, R. Pu, H. Liu, T. Zhang, J. Widengren, Q. Zhan, and H. Ågren, “Fast upconversion super-resolution microscopy with 10 µs per pixel dwell times,” Nanoscale 11(4), 1563–1569 (2019).
[Crossref]

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
[Crossref]

Piper, J. A.

D. Denkova, M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer, and J. A. Piper, “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters,” Nat. Commun. 10(1), 3695 (2019).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

S. De Camillis, P. Ren, Y. Cao, M. Plöschner, D. Denkova, X. Zheng, Y. Lu, and J. A. Piper, “Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance,” https://arxiv.org/abs/2007.11754 .

Plass, T.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Ploschner, M.

D. Denkova, M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer, and J. A. Piper, “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters,” Nat. Commun. 10(1), 3695 (2019).
[Crossref]

Plöschner, M.

S. De Camillis, P. Ren, Y. Cao, M. Plöschner, D. Denkova, X. Zheng, Y. Lu, and J. A. Piper, “Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance,” https://arxiv.org/abs/2007.11754 .

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Prasad, P. N.

G. Chen, H. Ågren, T. Y. Ohulchanskyy, and P. N. Prasad, “Light upconverting core-shell nanostructures: nanophotonic control for emerging applications,” Chem. Soc. Rev. 44(6), 1680–1713 (2015).
[Crossref]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref]

Prorok, K.

A. Bednarkiewicz, E. M. Chan, A. Kotulska, L. Marciniak, and K. Prorok, “Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging,” Nanoscale Horiz. 4(4), 881–889 (2019).
[Crossref]

Pu, R.

X. Peng, B. Huang, R. Pu, H. Liu, T. Zhang, J. Widengren, Q. Zhan, and H. Ågren, “Fast upconversion super-resolution microscopy with 10 µs per pixel dwell times,” Nanoscale 11(4), 1563–1569 (2019).
[Crossref]

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
[Crossref]

Qiu, H.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref]

Ren, P.

S. De Camillis, P. Ren, Y. Cao, M. Plöschner, D. Denkova, X. Zheng, Y. Lu, and J. A. Piper, “Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance,” https://arxiv.org/abs/2007.11754 .

Reymond, L.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Robinson, J. P.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Roux, C.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Ruggiero, E.

E. Ruggiero, S. Alonso-de Castro, A. Habtemariamb, and L. Salassa, “Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry,” Dalton Trans. 45(33), 13012–13020 (2016).
[Crossref]

Rutishauser, U.

U. Rutishauser, “Polysialic acid at the cell surface: Biophysics in service of cell interactions and tissue plasticity,” J. Cell. Biochem. 70(3), 304–312 (1998).
[Crossref]

Salassa, L.

E. Ruggiero, S. Alonso-de Castro, A. Habtemariamb, and L. Salassa, “Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry,” Dalton Trans. 45(33), 13012–13020 (2016).
[Crossref]

Santelli, J.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Schäfer, H.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. 50(26), 5808–5829 (2011).
[Crossref]

Schuck, P. J.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

Schultz, C.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Sénard, J.-M.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Shan, X.

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

Shana, C.

C. Ma, C. Shana, K. Park, A. T. Mok, P. J. Antonick, and X. Yang, “Enhancing the generating and collecting efficiency of single particle upconverting luminescence at low power excitation,” Nanophotonics 9(7), 1993–2000 (2020).
[Crossref]

Shen, J.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Shi, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Sholina, N. V.

P. A. Demina, N. V. Sholina, R. A. Akasov, D. A. Khochenkov, N. A. Arkharova, A. V. Nechaev, E. V. Khaydukov, and A. N. Generalova, “A versatile platform for bioimaging based on colominic acid-decorated upconversion nanoparticles,” Biomater. Sci. 41, 2656 (2020).
[Crossref]

Shynkar, V.

L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, and F. Pellé, “Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy,” Appl. Phys. Lett. 102(14), 143114 (2013).
[Crossref]

Sohal, V. S.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

Spooner, N. A.

J. E. Moffatt, G. Tsiminis, E. Klantsataya, T. J. de Prinse, D. Ottaway, and N. A. Spooner, “A practical review of shorter than excitation wavelength light emission processes,” Appl. Spectrosc. Rev. 55(4), 327–349 (2020).
[Crossref]

Su, Q. P.

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

Suh, Y. D.

S. H. Nam, Y. M. Bae, Y. Il Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T. Lee, T. Hyeon, and Y. D. Suh, “Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells,” Angew. Chem. Int. Ed. 50(27), 6093–6097 (2011).
[Crossref]

Sun, L.-D.

H. Dong, L.-D. Sun, and C.-H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref]

Sun, Y.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Sunna, A.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Tajon, C. A.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

Tan, T. T. Y.

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Tanaka, K. F.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Tao, Y.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Tsiminis, G.

J. E. Moffatt, G. Tsiminis, E. Klantsataya, T. J. de Prinse, D. Ottaway, and N. A. Spooner, “A practical review of shorter than excitation wavelength light emission processes,” Appl. Spectrosc. Rev. 55(4), 327–349 (2020).
[Crossref]

Tsutsui-Kimura, I.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Tu, L.

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

Umezawa, K.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Verelst, M.

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Vidal, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Vutskits, L.

E. Gascon, L. Vutskits, and J. Z. Kiss, “Polysialic acid-neural cell adhesion molecule in brain plasticity: From synapses to integration of new neurons,” Brain Res. Rev. 56(1), 101–118 (2007).
[Crossref]

Wang, B.

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
[Crossref]

Wang, F.

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135(8), 1839 (2010).
[Crossref]

Wang, X.

H. Li, X. Wang, D. Huang, and G. Chen, “Recent advances of lanthanide-doped upconversion nanoparticles for biological applications,” Nanotechnology 31(7), 072001 (2020).
[Crossref]

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Weitemier, A. Z.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Wen, S.

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, and D. Jin, “Advances in highly doped upconversion nanoparticles,” Nat. Commun. 9(1), 2415 (2018).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Wichmann, J.

Widengren, J.

X. Peng, B. Huang, R. Pu, H. Liu, T. Zhang, J. Widengren, Q. Zhan, and H. Ågren, “Fast upconversion super-resolution microscopy with 10 µs per pixel dwell times,” Nanoscale 11(4), 1563–1569 (2019).
[Crossref]

Wilhelm, S.

S. Wilhelm, “Perspectives for upconverting nanoparticles,” ACS Nano 11(11), 10644–10653 (2017).
[Crossref]

Wu, Q.

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
[Crossref]

Xi, P.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Xia, L.

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

Xu, T.

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Xu, Z.-Q.

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

Xue, B.

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

Xue, Y.

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Yan, C.-H.

H. Dong, L.-D. Sun, and C.-H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref]

Yang, G.

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Yang, T.

Q. Liu, Y. Zhang, C. S. Peng, T. Yang, L.-M. Joubert, and S. Chu, “Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance,” Nat. Photonics 12(9), 548–553 (2018).
[Crossref]

Yang, X.

C. Ma, C. Shana, K. Park, A. T. Mok, P. J. Antonick, and X. Yang, “Enhancing the generating and collecting efficiency of single particle upconverting luminescence at low power excitation,” Nanophotonics 9(7), 1993–2000 (2020).
[Crossref]

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Yu, B.

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Yu, Z.

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Zeng, K.

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Zeng, X.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Zhan, Q.

X. Peng, B. Huang, R. Pu, H. Liu, T. Zhang, J. Widengren, Q. Zhan, and H. Ågren, “Fast upconversion super-resolution microscopy with 10 µs per pixel dwell times,” Nanoscale 11(4), 1563–1569 (2019).
[Crossref]

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
[Crossref]

Zhang, H.

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

Zhang, L.

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

Zhang, R.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Zhang, T.

X. Peng, B. Huang, R. Pu, H. Liu, T. Zhang, J. Widengren, Q. Zhan, and H. Ågren, “Fast upconversion super-resolution microscopy with 10 µs per pixel dwell times,” Nanoscale 11(4), 1563–1569 (2019).
[Crossref]

Zhang, Y.

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Q. Liu, Y. Zhang, C. S. Peng, T. Yang, L.-M. Joubert, and S. Chu, “Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance,” Nat. Photonics 12(9), 548–553 (2018).
[Crossref]

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

Zhao, H.

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

Zhao, J.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Zhen, M.

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

Zheng, K.

S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, and D. Jin, “Advances in highly doped upconversion nanoparticles,” Nat. Commun. 9(1), 2415 (2018).
[Crossref]

Zheng, X.

D. Denkova, M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer, and J. A. Piper, “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters,” Nat. Commun. 10(1), 3695 (2019).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

S. De Camillis, P. Ren, Y. Cao, M. Plöschner, D. Denkova, X. Zheng, Y. Lu, and J. A. Piper, “Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance,” https://arxiv.org/abs/2007.11754 .

Zhou, C.

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
[Crossref]

Zhou, J.

S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, and D. Jin, “Advances in highly doped upconversion nanoparticles,” Nat. Commun. 9(1), 2415 (2018).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Zhou, Z.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

Zyss, J.

L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, and F. Pellé, “Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy,” Appl. Phys. Lett. 102(14), 143114 (2013).
[Crossref]

ACS Nano (3)

Y. Ao, K. Zeng, B. Yu, Y. Miao, W. Hung, Z. Yu, Y. Xue, T. T. Y. Tan, T. Xu, M. Zhen, X. Yang, Y. Zhang, and S. Gao, “An upconversion nanoparticle enables near infrared-optogenetic manipulation of the caenorhabditis elegans motor circuit,” ACS Nano 13(3), 3373–3386 (2019).
[Crossref]

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati, A. Fernandez-Bravo, D. J. Garfield, M. Chamanzar, M. M. Maharbiz, V. S. Sohal, P. J. Schuck, B. E. Cohen, and E. M. Chan, “Energy-looping nanoparticles: Harnessing excited-state absorption for deep-tissue imaging,” ACS Nano 10(9), 8423–8433 (2016).
[Crossref]

S. Wilhelm, “Perspectives for upconverting nanoparticles,” ACS Nano 11(11), 10644–10653 (2017).
[Crossref]

Adv. Sci. (1)

A. Bagheri, H. Arandiyan, C. Boyer, and M. Lim, “Lanthanide-doped upconversion nanoparticles: Emerging intelligent light-activated drug delivery systems,” Adv. Sci. 3(7), 1500437 (2016).
[Crossref]

Analyst (1)

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135(8), 1839 (2010).
[Crossref]

Angew. Chem. (1)

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. 50(26), 5808–5829 (2011).
[Crossref]

Angew. Chem. Int. Ed. (1)

S. H. Nam, Y. M. Bae, Y. Il Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T. Lee, T. Hyeon, and Y. D. Suh, “Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells,” Angew. Chem. Int. Ed. 50(27), 6093–6097 (2011).
[Crossref]

Appl. Phys. Lett. (1)

L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, and F. Pellé, “Multiphoton upconversion in rare earth doped nanocrystals for sub-diffractive microscopy,” Appl. Phys. Lett. 102(14), 143114 (2013).
[Crossref]

Appl. Spectrosc. Rev. (1)

J. E. Moffatt, G. Tsiminis, E. Klantsataya, T. J. de Prinse, D. Ottaway, and N. A. Spooner, “A practical review of shorter than excitation wavelength light emission processes,” Appl. Spectrosc. Rev. 55(4), 327–349 (2020).
[Crossref]

Biomater. Sci. (1)

P. A. Demina, N. V. Sholina, R. A. Akasov, D. A. Khochenkov, N. A. Arkharova, A. V. Nechaev, E. V. Khaydukov, and A. N. Generalova, “A versatile platform for bioimaging based on colominic acid-decorated upconversion nanoparticles,” Biomater. Sci. 41, 2656 (2020).
[Crossref]

Brain Res. Rev. (1)

E. Gascon, L. Vutskits, and J. Z. Kiss, “Polysialic acid-neural cell adhesion molecule in brain plasticity: From synapses to integration of new neurons,” Brain Res. Rev. 56(1), 101–118 (2007).
[Crossref]

Chem. Rev. (3)

F. Auzel, “Upconversion and Anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref]

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref]

Chem. Soc. Rev. (2)

G. Chen, H. Ågren, T. Y. Ohulchanskyy, and P. N. Prasad, “Light upconverting core-shell nanostructures: nanophotonic control for emerging applications,” Chem. Soc. Rev. 44(6), 1680–1713 (2015).
[Crossref]

H. Dong, L.-D. Sun, and C.-H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref]

Dalton Trans. (1)

E. Ruggiero, S. Alonso-de Castro, A. Habtemariamb, and L. Salassa, “Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry,” Dalton Trans. 45(33), 13012–13020 (2016).
[Crossref]

J. Cell. Biochem. (1)

U. Rutishauser, “Polysialic acid at the cell surface: Biophysics in service of cell interactions and tissue plasticity,” J. Cell. Biochem. 70(3), 304–312 (1998).
[Crossref]

Methods Appl. Fluoresc. (1)

B. del Rosal and D. Jaque, “Upconversion nanoparticles for in vivo applications: limitations and future perspectives,” Methods Appl. Fluoresc. 7(2), 022001 (2019).
[Crossref]

Nano Lett. (1)

B. Liu, C. Chen, X. Di, J. Liao, S. Wen, Q. P. Su, X. Shan, Z.-Q. Xu, L. A. Ju, C. Mi, F. Wang, and D. Jin, “Upconversion nonlinear structured illumination microscopy,” Nano Lett. 20(7), 4775–4781 (2020).
[Crossref]

Nanophotonics (1)

C. Ma, C. Shana, K. Park, A. T. Mok, P. J. Antonick, and X. Yang, “Enhancing the generating and collecting efficiency of single particle upconverting luminescence at low power excitation,” Nanophotonics 9(7), 1993–2000 (2020).
[Crossref]

Nanoscale (1)

X. Peng, B. Huang, R. Pu, H. Liu, T. Zhang, J. Widengren, Q. Zhan, and H. Ågren, “Fast upconversion super-resolution microscopy with 10 µs per pixel dwell times,” Nanoscale 11(4), 1563–1569 (2019).
[Crossref]

Nanoscale Horiz. (1)

A. Bednarkiewicz, E. M. Chan, A. Kotulska, L. Marciniak, and K. Prorok, “Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging,” Nanoscale Horiz. 4(4), 881–889 (2019).
[Crossref]

Nanotechnology (1)

H. Li, X. Wang, D. Huang, and G. Chen, “Recent advances of lanthanide-doped upconversion nanoparticles for biological applications,” Nanotechnology 31(7), 072001 (2020).
[Crossref]

Nat. Biomed. Eng. (1)

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1(1), 0010 (2017).
[Crossref]

Nat. Chem. (1)

G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo, C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley, and K. Johnsson, “A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins,” Nat. Chem. 5(2), 132–139 (2013).
[Crossref]

Nat. Commun. (3)

D. Denkova, M. Ploschner, M. Das, L. M. Parker, X. Zheng, Y. Lu, A. Orth, N. H. Packer, and J. A. Piper, “3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters,” Nat. Commun. 10(1), 3695 (2019).
[Crossref]

S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, and D. Jin, “Advances in highly doped upconversion nanoparticles,” Nat. Commun. 9(1), 2415 (2018).
[Crossref]

Q. Zhan, H. Liu, B. Wang, Q. Wu, R. Pu, C. Zhou, B. Huang, X. Peng, H. Ågren, and S. He, “Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles,” Nat. Commun. 8(1), 1058 (2017).
[Crossref]

Nat. Photonics (2)

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. M. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable lifetime multiplexing using luminescent nanocrystals,” Nat. Photonics 8(1), 32–36 (2014).
[Crossref]

Q. Liu, Y. Zhang, C. S. Peng, T. Yang, L.-M. Joubert, and S. Chu, “Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance,” Nat. Photonics 12(9), 548–553 (2018).
[Crossref]

Nature (2)

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref]

G. T. Barry and W. F. Goebel, “Colominic acid, a substance of bacterial origin related to sialic acid,” Nature 179(4552), 206 (1957).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

PLoS One (1)

M. Kermorgant, J. Ben Salem, J. Santelli, D. Calise, A.-C. Oster, O. Lairez, C. Coudret, M. Verelst, C. Gales, J.-M. Sénard, F. Beaudry, A. Pavy-Le Traon, C. Roux, R. Mauricot, and D. N. Arvanitis, “Evaluation of upconverting nanoparticles towards heart theranostics,” PLoS One 14(12), e0225729 (2019).
[Crossref]

Sci. Rep. (1)

Y. Chang, X. Li, L. Zhang, L. Xia, X. Liu, C. Li, Y. Zhang, L. Tu, B. Xue, H. Zhao, H. Zhang, and X. Kong, “Precise photodynamic therapy of cancer via subcellular dynamic tracing of dual-loaded upconversion nanophotosensitizers,” Sci. Rep. 7(1), 45633 (2017).
[Crossref]

Science (1)

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics,” Science 359(6376), 679–684 (2018).
[Crossref]

Other (1)

S. De Camillis, P. Ren, Y. Cao, M. Plöschner, D. Denkova, X. Zheng, Y. Lu, and J. A. Piper, “Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance,” https://arxiv.org/abs/2007.11754 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The photo-physics of $\rm {NaYF_4: 20\%~Yb, 8\%~Tm}$ UCNPs allows both super-linear excitation-emission and efficient emission depletion, respectively enabling uSEE and STED super-resolution microscopy. (a) Transmission electron microscopy image of the UCNPs shows average particle size of $46~\rm {nm}$. (b) The $976~\rm {nm}$ excitation can be upconverted through a variety of energy transfer processes to $455~\rm {nm}$ emission. The $455~\rm {nm}$ can be depleted by $808~\rm {nm}$ co-irradiation. (c) The super-linearity of the $455~\rm {nm}$ emission, for example, compared to the $695~\rm {nm}$ emission and the $455~\rm {nm}$ emission depletion can be observed in the corresponding spectra. (d) The $455~\rm {nm}$ excitation-emission curve shows a strong super-linearity with slope reaching $6.4$. The super-linear regime is active at peak power density below $5.5~\rm {mW/\mu m^2}$, at which point the slope flattens to linear.
Fig. 2.
Fig. 2. The home-made setup allows imaging in uSEE, STED and combined uSEE-STED mode. (a) For confocal and uSEE modes, the UCNPs are excited at the corresponding $976~\rm {nm}$ power, while the $808~\rm {nm}$ beam is blocked. Combining the $808~\rm {nm}$ annular depletion beam with the respective $976~\rm {nm}$ excitation power allows imaging in STED and uSEE-STED modes. The different PSF cross-sections are shown in (b) for the $976~\rm {nm}$ excitation beam, in (c) for the $808~\rm {nm}$ depletion beam and in (d) for the $808~\rm {nm}$ depletion beam with inserted vortex plate.
Fig. 3.
Fig. 3. Comparison of UCNP imaging in confocal, uSEE, STED and uSEE-STED modes. (a) The PSF and the resolution of the microscope are obtained by imaging a linear (gold) particle. (b) UCNP imaged in confocal mode at $6.7~\rm {mW/\mu m^2}$ peak excitation power density and resolution $401~\rm {nm}$, close to the lateral diffraction limit. (c) UCNP imaged in uSEE mode at peak excitation power density of $2~\rm {mW/\mu m^2}$, with resolution of $248~\rm {nm}$ in lateral and $599~\rm {nm}$ in axial direction (twice better than the respective diffraction limit). (d) UCNP imaged in STED mode, at $6.7~\rm {mW/\mu m^2}$ excitation and $94~\rm {mW/\mu m^2}$ depletion peak power density yields lateral improvement of the resolution down to $132~\rm {nm}$, while the axial resolution shows negligible improvement. (e) UCNP imaged in uSEE-STED mode, at $2~\rm {mW/\mu m^2}$ excitation and $94~\rm {mW/\mu m^2}$ depletion peak power density yields lateral resolution improvement down to $79~\rm {nm}$ and axial resolution improvement down to $502~\rm {nm}$. The black dashed line in (c), (d), and (e) outlines the measured area. The space outside of the dashed lines is filled with a median value of the measured background to facilitate visual comparison of the resolution across the different panels.
Fig. 4.
Fig. 4. Dependence of the UCNP imaging resolution on the excitation/ depletion power for confocal, uSEE, STED and uSEE-STED mode imaging. (a) The excitation power affects the lateral resolution for all imaging modes. For STED and uSEE-STED modes both the excitation and depletion power influence the lateral resolution. The highest lateral resolution is achieved at the lowest studied excitation power and at the highest studied depletion power. (b) For all imaging modes, the axial resolution is predominantly determined by the excitation power. (c) The signal-to-noise ratio (SNR) deteriorates at lower excitation powers, with a downward SNR trend observed for increasing the depletion power at a fixed, low excitation power.
Fig. 5.
Fig. 5. Super-resolution uSEE-STED imaging of UCNPs endocytosed by a neuron phenotype cell. (a) Cell overview, where the cell membrane is tagged by WGA - Alexa Fluor 647. (b) Overlay of the Alexa Fluor 647 (yellow-purple color scale) and the particle distribution (green-blue colorscale) images, taken in uSEE mode at $1.7\,\rm {mW/\mu m^2}$ excitation power density, illustrates that the imaged particles (green square) are located inside the cell. The orange dashed line in the zoomed-in green window marks the position of the axial scan in (c) and (d). (c) Axial scan of the Alexa Fluor 647 along the dashed orange line in (b). (d) uSEE-STED axial scan along the dashed orange line in (b). The white dashed curves mark the area of the cell, which was determined from the Alexa Fluor 647 distribution (c). The image in panel (d) is taken at $2.3~\rm {mW/ \mu m^2}$ excitation and $87.9~\rm {mW/ \mu m^2}$ depletion peak power density, yielding a lateral resolution of $84\,\rm {nm}$ (e) and an axial resolution of $543\,\rm {nm}$ (f).
Fig. 6.
Fig. 6. FWHM (resolution) and error determination. (a) the measured image with the axial/lateral cross-sectional lines marked. (b,c) axial and lateral image profiles comparing Gaussian model fit (brown curve) with the spline interpolation (green curve), with error estimation curves $S_{-\sigma }$, $S_{+\sigma }$ in blue and $S_\textrm {{high}}$, $S_\textrm {{low}}$ in black.