Abstract

It is generally believed that the depolarization effect in light scattering of a nanostructure is mainly caused by its anisotropy, and in the case of an isotropic structure, e.g. a nanosphere, the depolarized signal will be too weak to be detected. In this work, we experimentally demonstrate that even a totally symmetric Au nanosphere exhibits sophisticated depolarization effects. The scattering image is not only dependent on the detailed excitation-observation polarization configuration but also related to the numerical aperture of the observation system. The depolarization effect of a single gold nanosphere was also confirmed with a reflective polarized light microscope. This is contrary to the commonly used image interpretation theory in polarized light microscopy that the image contrast is solely caused by the anisotropy of the sample.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
    [Crossref]
  2. J. L. McHale, Molecular spectroscopy (CRC Press, 2017).
  3. W. Burns, R. Möller, and C.-l. J. J. o. L. T. Chen, “Depolarization in a single-mode optical fiber,” J. Lightwave Technol. 1(1), 44–50 (1983).
    [Crossref]
  4. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. J. A. O. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
    [Crossref]
  5. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref]
  6. J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
    [Crossref]
  7. M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5(1), 5386 (2014).
    [Crossref]
  8. R. N. Smartt and W. H. Steel, “Birefringence of Quartz and Calcite,” J. Opt. Soc. Am. 49(7), 710–712 (1959).
    [Crossref]
  9. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
    [Crossref]
  10. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996).
    [Crossref]
  11. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
    [Crossref]
  12. D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
    [Crossref]
  13. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
    [Crossref]
  14. Y. Yang, W. Wang, P. Moitra, II Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref]
  15. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer Science & Business Media, 2013), Vol. 25.
  16. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayad, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
    [Crossref]
  17. J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44(1), 40–57 (2015).
    [Crossref]
  18. J. C. Heckel and G. Chumanov, “Depolarized Light Scattering From Single Silver Nanoparticles,” J. Phys. Chem. C 115(15), 7261–7269 (2011).
    [Crossref]
  19. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
    [Crossref]
  20. C. Sonnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5(2), 301–304 (2005).
    [Crossref]
  21. C. L. Du, Y. M. You, X. J. Zhang, J. Kasim, and Z. X. Shen, “Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles,” Plasmonics 4(3), 217–222 (2009).
    [Crossref]
  22. O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sonnichsen, “Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry,” Nano Lett. 8(8), 2345–2350 (2008).
    [Crossref]
  23. J. Aaron, E. de la Rosa, K. Travis, N. Harrison, J. Burt, M. Jose-Yacaman, and K. Sokolov, “Polarization microscopy with stellated gold nanoparticles for robust monitoring of molecular assemblies and single biomolecules,” Opt. Express 16(3), 2153–2167 (2008).
    [Crossref]
  24. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
  25. V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications (Springer Science & Business Media, 2006).
  26. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
    [Crossref]
  27. J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Lett. 12(6), 2817–2821 (2012).
    [Crossref]
  28. X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light: Sci. Appl. 3(6), e179 (2014).
    [Crossref]
  29. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University2012).
    [Crossref]
  30. K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
    [Crossref]

2017 (1)

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

2015 (3)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44(1), 40–57 (2015).
[Crossref]

2014 (3)

Y. Yang, W. Wang, P. Moitra, II Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5(1), 5386 (2014).
[Crossref]

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light: Sci. Appl. 3(6), e179 (2014).
[Crossref]

2013 (1)

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref]

2012 (1)

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Lett. 12(6), 2817–2821 (2012).
[Crossref]

2011 (1)

J. C. Heckel and G. Chumanov, “Depolarized Light Scattering From Single Silver Nanoparticles,” J. Phys. Chem. C 115(15), 7261–7269 (2011).
[Crossref]

2010 (1)

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

2009 (1)

C. L. Du, Y. M. You, X. J. Zhang, J. Kasim, and Z. X. Shen, “Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles,” Plasmonics 4(3), 217–222 (2009).
[Crossref]

2008 (2)

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sonnichsen, “Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry,” Nano Lett. 8(8), 2345–2350 (2008).
[Crossref]

J. Aaron, E. de la Rosa, K. Travis, N. Harrison, J. Burt, M. Jose-Yacaman, and K. Sokolov, “Polarization microscopy with stellated gold nanoparticles for robust monitoring of molecular assemblies and single biomolecules,” Opt. Express 16(3), 2153–2167 (2008).
[Crossref]

2007 (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayad, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

2005 (3)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. J. A. O. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
[Crossref]

C. Sonnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5(2), 301–304 (2005).
[Crossref]

2003 (2)

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[Crossref]

2000 (1)

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref]

1999 (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

1996 (1)

1983 (1)

W. Burns, R. Möller, and C.-l. J. J. o. L. T. Chen, “Depolarization in a single-mode optical fiber,” J. Lightwave Technol. 1(1), 44–50 (1983).
[Crossref]

1959 (1)

Aaron, J.

Alivisatos, A. P.

C. Sonnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5(2), 301–304 (2005).
[Crossref]

Alù, A. J. A. M.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Balthasar Mueller, J. P.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Bao, J.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Lett. 12(6), 2817–2821 (2012).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Bao, K.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Lett. 12(6), 2817–2821 (2012).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Becker, J.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sonnichsen, “Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry,” Nano Lett. 8(8), 2345–2350 (2008).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

Boyer, C.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, II Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Burns, W.

W. Burns, R. Möller, and C.-l. J. J. o. L. T. Chen, “Depolarization in a single-mode optical fiber,” J. Lightwave Technol. 1(1), 44–50 (1983).
[Crossref]

Burokur, S. N.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Burt, J.

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Capasso, F.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Lett. 12(6), 2817–2821 (2012).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Carbone, L.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sonnichsen, “Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry,” Nano Lett. 8(8), 2345–2350 (2008).
[Crossref]

Chang, W. S.

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44(1), 40–57 (2015).
[Crossref]

Chattham, N.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Chen, C.-l. J. J. o. L. T.

W. Burns, R. Möller, and C.-l. J. J. o. L. T. Chen, “Depolarization in a single-mode optical fiber,” J. Lightwave Technol. 1(1), 44–50 (1983).
[Crossref]

Chien, L. C.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Chumanov, G.

J. C. Heckel and G. Chumanov, “Depolarized Light Scattering From Single Silver Nanoparticles,” J. Phys. Chem. C 115(15), 7261–7269 (2011).
[Crossref]

Clark, N. A.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Coleman, D. A.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Crawford, G. P.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Crozier, K. B.

M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5(1), 5386 (2014).
[Crossref]

de la Rosa, E.

de Lustrac, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Devlin, R. C.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Ding, X.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Dominguez-Medina, S.

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44(1), 40–57 (2015).
[Crossref]

Dong, X. J. A. O.

Du, C. L.

C. L. Du, Y. M. You, X. J. Zhang, J. Kasim, and Z. X. Shen, “Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles,” Plasmonics 4(3), 217–222 (2009).
[Crossref]

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

El-Sayad, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayad, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayad, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Esumi, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[Crossref]

Fan, J. A.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Lett. 12(6), 2817–2821 (2012).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Fan, X.

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light: Sci. Appl. 3(6), e179 (2014).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Feng, X.

Fernsler, J.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Gao, D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Groever, B.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Halas, N. J.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Lett. 12(6), 2817–2821 (2012).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Harrison, N.

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref]

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University2012).
[Crossref]

Heckel, J. C.

J. C. Heckel and G. Chumanov, “Depolarized Light Scattering From Single Silver Nanoparticles,” J. Phys. Chem. C 115(15), 7261–7269 (2011).
[Crossref]

Hoggard, A.

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44(1), 40–57 (2015).
[Crossref]

Hong, X.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayad, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayad, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Jang, W. G.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Jin, C.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref]

Jose-Yacaman, M.

Kai, G.

Kasim, J.

C. L. Du, Y. M. You, X. J. Zhang, J. Kasim, and Z. X. Shen, “Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles,” Plasmonics 4(3), 217–222 (2009).
[Crossref]

Khalavka, Y.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sonnichsen, “Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry,” Nano Lett. 8(8), 2345–2350 (2008).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5(1), 5386 (2014).
[Crossref]

Korblova, E.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Kravchenko, II

Y. Yang, W. Wang, P. Moitra, II Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer Science & Business Media, 2013), Vol. 25.

Kuwata, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[Crossref]

Lassiter, J. B.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Lett. 12(6), 2817–2821 (2012).
[Crossref]

Li, J.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref]

Link, D. R.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Link, S.

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44(1), 40–57 (2015).
[Crossref]

Liu, B.

Liu, J.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref]

Liu, K.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref]

Liu, Y.

Maclennan, J. E.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

McHale, J. L.

J. L. McHale, Molecular spectroscopy (CRC Press, 2017).

Miyano, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[Crossref]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, II Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Möller, R.

W. Burns, R. Möller, and C.-l. J. J. o. L. T. Chen, “Depolarization in a single-mode optical fiber,” J. Lightwave Technol. 1(1), 44–50 (1983).
[Crossref]

Mondainn-Monval, O.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Monticone, F.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Nakata, M.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Nordlander, P.

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Lett. 12(6), 2817–2821 (2012).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Novotny, L.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref]

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University2012).
[Crossref]

Olson, J.

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44(1), 40–57 (2015).
[Crossref]

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Pelzl, G.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Provalska, T.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sonnichsen, “Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry,” Nano Lett. 8(8), 2345–2350 (2008).
[Crossref]

Qiu, C. W.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Rubin, N. A.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

Schadt, M.

Schubert, O.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sonnichsen, “Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry,” Nano Lett. 8(8), 2345–2350 (2008).
[Crossref]

Shao, R. F.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Shen, Z. X.

C. L. Du, Y. M. You, X. J. Zhang, J. Kasim, and Z. X. Shen, “Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles,” Plasmonics 4(3), 217–222 (2009).
[Crossref]

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Sick, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref]

Singh, D. J.

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light: Sci. Appl. 3(6), e179 (2014).
[Crossref]

Smartt, R. N.

Sokolov, K.

Sonnichsen, C.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sonnichsen, “Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry,” Nano Lett. 8(8), 2345–2350 (2008).
[Crossref]

C. Sonnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5(2), 301–304 (2005).
[Crossref]

Stalder, M.

Steel, W. H.

Takanishi, Y.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Takezoe, H.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Tamaru, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[Crossref]

Travis, K.

Tuchin, V. V.

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications (Springer Science & Business Media, 2006).

Valentine, J.

Y. Yang, W. Wang, P. Moitra, II Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer Science & Business Media, 2013), Vol. 25.

Walba, D. M.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Wang, E.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref]

Wang, F.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref]

Wang, L.

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications (Springer Science & Business Media, 2006).

Wang, L. Y.

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44(1), 40–57 (2015).
[Crossref]

Wang, W.

Y. Yang, W. Wang, P. Moitra, II Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Watanabe, J.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Weissflog, W.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Wu, C.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Wu, Q.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, II Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

You, Y. M.

C. L. Du, Y. M. You, X. J. Zhang, J. Kasim, and Z. X. Shen, “Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles,” Plasmonics 4(3), 217–222 (2009).
[Crossref]

Yuan, S.

Zasadzinski, J.

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

Zettl, A.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref]

Zhang, K.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Zhang, L.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Zhang, W.

Zhang, X. J.

C. L. Du, Y. M. You, X. J. Zhang, J. Kasim, and Z. X. Shen, “Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles,” Plasmonics 4(3), 217–222 (2009).
[Crossref]

Zheng, W.

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light: Sci. Appl. 3(6), e179 (2014).
[Crossref]

Zhou, G.

Zhou, Q.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref]

Zhou, W.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref]

Zimnyakov, D. A.

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications (Springer Science & Business Media, 2006).

Zins, I.

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sonnichsen, “Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry,” Nano Lett. 8(8), 2345–2350 (2008).
[Crossref]

Adv. Mater. (1)

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. J. A. M. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83(22), 4625–4627 (2003).
[Crossref]

Chem. Soc. Rev. (1)

J. Olson, S. Dominguez-Medina, A. Hoggard, L. Y. Wang, W. S. Chang, and S. Link, “Optical characterization of single plasmonic nanoparticles,” Chem. Soc. Rev. 44(1), 40–57 (2015).
[Crossref]

J. Appl. Phys. (1)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

J. Lightwave Technol. (1)

W. Burns, R. Möller, and C.-l. J. J. o. L. T. Chen, “Depolarization in a single-mode optical fiber,” J. Lightwave Technol. 1(1), 44–50 (1983).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

J. C. Heckel and G. Chumanov, “Depolarized Light Scattering From Single Silver Nanoparticles,” J. Phys. Chem. C 115(15), 7261–7269 (2011).
[Crossref]

Light: Sci. Appl. (1)

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light: Sci. Appl. 3(6), e179 (2014).
[Crossref]

Nano Lett. (4)

J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano Lett. 12(6), 2817–2821 (2012).
[Crossref]

C. Sonnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5(2), 301–304 (2005).
[Crossref]

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sonnichsen, “Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry,” Nano Lett. 8(8), 2345–2350 (2008).
[Crossref]

Y. Yang, W. Wang, P. Moitra, II Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Nat. Commun. (1)

M. Khorasaninejad and K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5(1), 5386 (2014).
[Crossref]

Nat. Nanotechnol. (2)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref]

Opt. Commun. (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000).
[Crossref]

Plasmonics (2)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayad, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

C. L. Du, Y. M. You, X. J. Zhang, J. Kasim, and Z. X. Shen, “Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles,” Plasmonics 4(3), 217–222 (2009).
[Crossref]

Science (2)

D. A. Coleman, J. Fernsler, N. Chattham, M. Nakata, Y. Takanishi, E. Korblova, D. R. Link, R. F. Shao, W. G. Jang, J. E. Maclennan, O. Mondainn-Monval, C. Boyer, W. Weissflog, G. Pelzl, L. C. Chien, J. Zasadzinski, J. Watanabe, D. M. Walba, H. Takezoe, and N. A. Clark, “Polarization-modulated smectic liquid crystal phases,” Science 301(5637), 1204–1211 (2003).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Other (5)

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University2012).
[Crossref]

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer Science & Business Media, 2013), Vol. 25.

J. L. McHale, Molecular spectroscopy (CRC Press, 2017).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications (Springer Science & Business Media, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Depolarization effect of single Au nanospheres. (a) Schematic of the oblique-incidence dark field microscope. P1: polarizer 1 for controlling the illumination light to be s or p polarization. P2: polarizer 2 for detecting polarization components along the x or y direction. In the dashed frame is the three dimensional coordinate system. (b) SEM image of monodispersed Au nanospheres (diameter=80 ± 6 nm) on a cover glass. The inset is an enlarged image of one nanosphere. (c) Measured (black) and calculated (blue) scattering spectra of a 80 nm Au nanosphere, as well as the calculated (red) extinction spectra. All the curves are normalized. (d) and (e) Polarized dark field images of single Au nanospheres with P2 along the x-axis and y-axis, respectively. In both cases P1 was along the x-axis. The exposure times are labeled at the upper-left corner of each panel. (f and g) Simulated scattering images of the Ex and Ey component of a dipole excited along the x-axis, respectively.
Fig. 2.
Fig. 2. Scattering images of different excitation-observation polarization configurations. The first, second, and third rows respectively represent the case where P1 is along the z, x axis and removed. The first, second, and third columns respectively represent the cases where P2 is along the x, y direction and removed. In order to ensure the signal-to-noise ratio, different exposure times were used for different configurations. The exposure times are labeled at the upper-left corner of each panel.
Fig. 3.
Fig. 3. Theoretical model of the depolarization effect in light scattering of single Au nanospheres. (a) Schematic of the imaging process of a dipole excited along the x (red) or z (blue) axis. The arrows indicate the polarization direction of light in the x-z plane. (b), (c) and (d) depict the distributions of the scattered light of an Au NS in the objective plane, Fourier plane and image plane, respectively. The upper panels in (b), (c), (d) are the results for the x-excited dipole, and the lower panels are the results of z-excited dipole. The insets in the corner of (d) are the simulated results of the case where the dipole is excited along the direction which is 20 degrees off the z-axis. (c) is drawn in polar coordinate and its polar diameter is sinθ. Here we assume the focal length of the objective lens is 1. (d) is drawn in rectangular coordinate.
Fig. 4.
Fig. 4. NA-dependent depolarization effect. (a) Dark field images of a single Au nanosphere excited along the x-axis with different effective numerical apertures. The first and second row are images of |Ex|2 and |Ey|2, respectively. (b) and (c) are the total signal intensity of |Ex|2 and |Ey|2 pattern as a function of NA2, respectively. The experimental data (squares) are in line with the theoretical calculations (black lines).
Fig. 5.
Fig. 5. Polarization effects of single Au nanospheres with a smaller diameter (40 nm). (a) SEM image of monodispersed Au nanospheres with a diameter of 40 nm on a cover glass. The inset is an enlarged image of one nanosphere. (b) Scattering images of a single Au nanosphere with a diameter of 40 nm with different excitation-observation polarization configurations. The first, second, and third rows respectively represent the case where P1 is along the z, x axis and removed. The first, second, and third columns respectively represent the cases where P2 is along the x, y direction and removed. The patterns are almost the same as those of a single Au NS with a diameter of 80 nm except the signal intensity is weaker. The exposure time of each image is labeled at the upper-left corner of each panel.
Fig. 6.
Fig. 6. Imaging single Au nanospheres with a polarized light microscope. (a) Schematic diagram of the reflective polarized light microscope. P1 and P2 are polarizers for excitation and detection, respectively. (b) and (c) Extinction images of a single Au nanosphere with a diameter of 80 nm. In (b), the polarization axes of P1 and P2 were parallel to each other; In (c), the polarization axes of P1 and P2 were perpendicular to each other. The exposure time of (b) and (c) were 0.2s and 90 s, respectively.