Abstract

We investigated the selective excitation of localized surface plasmons by structured light. We derive selection rules using group theory and propose a fitting integral to quantify the contribution of the eigenmodes to the absorption spectra. Based on the result we investigate three nano oligomers of different symmetry (trimer, quadrumer, and hexamer) in detail using finite-difference time-domain simulations. We show that by controlling the incident light polarization and phase pattern we are able to control the absorption and scattering spectra. Additionally, we demonstrate that the fitting between the incident light and the oligomer modes may favor a number of modes to oscillate. Dark modes produce strong changes in the absorption spectrum and bright modes in the scattering spectrum. The experimental precision (axial shift error) may be on the same order as the oligomer diameter making the orbital angular momentum selection rules robust enough for experimental observation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  3. E. L. Ru and P. Etchegoin, “Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects,” Elsevier (2008).
  4. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
    [Crossref]
  5. S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
    [Crossref]
  6. N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, and S. Reich, “Direct optical excitation of dark plasmons for hot electron generation,” Faraday Discuss. 214, 159–173 (2019).
    [Crossref]
  7. L. Mingzhao, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
    [Crossref]
  8. K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for quadrupolar light-matter interactions,” Sci. Rep. 8(1), 7746 (2018).
    [Crossref]
  9. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref]
  10. N. S. Mueller, B. G. M. Vieira, F. Schulz, P. Kusch, V. Oddone, E. B. Barros, H. Lange, and S. Reich, “Dark interlayer plasmons in colloidal gold nanoparticle bi-and few-layers,” ACS Photonics 5(10), 3962–3969 (2018).
    [Crossref]
  11. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
    [Crossref]
  12. F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector Vortex Beam Generation with a Single Plasmonic Metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
    [Crossref]
  13. N. A. Chaitanya, P. Wozniak, P. Banzer, and I. De Leon, “Generation of Vortex Beams using a Plasmonic Quadrumer Nanocluster,” in Conference on Lasers and Electro-Optics, OSA Terchnical Digest FM2G.4. (2018).
  14. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
    [Crossref]
  15. G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
    [Crossref]
  16. J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2(1), 582 (2011).
    [Crossref]
  17. R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1(1), 87 (2018).
    [Crossref]
  18. D. K. Sharma, V. Kumar, A. B. Vasista, S. K. Chaubey, and G. V. P. Kumar, “Spin-Hall effect in the scattering of structured light from plasmonic nanowire,” Opt. Lett. 43(11), 2474–2477 (2018).
    [Crossref]
  19. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
    [Crossref]
  20. M. Hentschel, J. Dorfmüller, H. Giessen, S. Jäger, A. M. Kern, K. Braun, D. Zhang, and A. J. Meixner, “Plasmonic oligomers in cylindrical vector light beams,” Beilstein J. Nanotechnol. 4, 57–65 (2013).
    [Crossref]
  21. A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and Far-Field Properties of Plasmonic Oligomers under Radially and Azimuthally Polarized Light Excitation,” ACS Nano 8(5), 4969–4974 (2014).
    [Crossref]
  22. G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, and X.-C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
    [Crossref]
  23. K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for quadrupolar light-matter interactions,” Sci. Rep. 8(1), 7746 (2018).
    [Crossref]
  24. S. Lee, Y. Park, J. Kim, Y. G. Roh, and Q. Park, “Selective bright and dark mode excitation in coupled nanoantennas,” Opt. Express 26(17), 21537–21545 (2018).
    [Crossref]
  25. J. A. Hachtel, S. Y. Cho, R. B. Davidson, M. A. Feldman, M. F. Chisholm, R. F. Haglund, J. C. Idrobo, S. T. Pantelides, and B. J. Lawrie, “Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators,” Light: Sci. Appl. 8(1), 33 (2019).
    [Crossref]
  26. S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
    [Crossref]
  27. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
    [Crossref]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  29. E. Le Ru and P. Etchegoin, Principles of surface enhanced Raman spectroscopy: and related plasmonic effects. (Elsevier Science, New York, 2008).
  30. R. W. Yu, L. M. Liz-Marzán, and J. F. Garía de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46(22), 6710–6724 (2017).
    [Crossref]
  31. T. J. Davis and D. E. Goméz, “Colloquium: An algebraic model of localized surface plasmons and their interactions,” Rev. Mod. Phys. 89(1), 011003 (2017).
    [Crossref]
  32. N. A. Butakov and J. A. Schuller, “Designing Multipolar Resonances in Dielectric Metamaterials,” Sci. Rep. 6(1), 38487 (2016).
    [Crossref]
  33. C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88(15), 155411 (2013).
    [Crossref]
  34. U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B 72(19), 195429 (2005).
    [Crossref]
  35. S. Reich, N. S. Mueller, and M. Bubula, “Selection Rules for Structured Light in Nanooligomers and Other Nanosystems,” ACS Photonics 7(6), 1537–1550 (2020).
    [Crossref]
  36. I. Teturo, Y. Tanabe, and Y. Onodera. “Group theory and its applications in physics,” Springer Science & Business Media 78, (2012).
  37. U. Hohenester and A. Trügler, “MNPBEM–A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
    [Crossref]
  38. J. D Jackson, Classical Electrodynamics (Wiley, New York), 3rd ed. (1999).
  39. Z. Nir, L. Chuntonov, and G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol., C 21, 26–39 (2014).
    [Crossref]
  40. S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, A. A. Maier, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
    [Crossref]
  41. S. Reich, C. Thomsen, and J. Maultzsch, “Carbon nanotubes: basic concepts and physical properties,” John Wiley & Sons (2008).
  42. N. I. Bozovic and M. Damnjanovic, “Selection rules for polymers and quasi-one-dimensional crystals. IV. Kronecker products for the line groups isogonal to Dnh,” J. Phys. A: Math. Gen. 18(6), 923–937 (1985).
    [Crossref]
  43. M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 23 (2017).
    [Crossref]
  44. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]

2020 (1)

S. Reich, N. S. Mueller, and M. Bubula, “Selection Rules for Structured Light in Nanooligomers and Other Nanosystems,” ACS Photonics 7(6), 1537–1550 (2020).
[Crossref]

2019 (2)

J. A. Hachtel, S. Y. Cho, R. B. Davidson, M. A. Feldman, M. F. Chisholm, R. F. Haglund, J. C. Idrobo, S. T. Pantelides, and B. J. Lawrie, “Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators,” Light: Sci. Appl. 8(1), 33 (2019).
[Crossref]

N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, and S. Reich, “Direct optical excitation of dark plasmons for hot electron generation,” Faraday Discuss. 214, 159–173 (2019).
[Crossref]

2018 (8)

K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for quadrupolar light-matter interactions,” Sci. Rep. 8(1), 7746 (2018).
[Crossref]

N. S. Mueller, B. G. M. Vieira, F. Schulz, P. Kusch, V. Oddone, E. B. Barros, H. Lange, and S. Reich, “Dark interlayer plasmons in colloidal gold nanoparticle bi-and few-layers,” ACS Photonics 5(10), 3962–3969 (2018).
[Crossref]

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref]

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1(1), 87 (2018).
[Crossref]

D. K. Sharma, V. Kumar, A. B. Vasista, S. K. Chaubey, and G. V. P. Kumar, “Spin-Hall effect in the scattering of structured light from plasmonic nanowire,” Opt. Lett. 43(11), 2474–2477 (2018).
[Crossref]

S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
[Crossref]

K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for quadrupolar light-matter interactions,” Sci. Rep. 8(1), 7746 (2018).
[Crossref]

S. Lee, Y. Park, J. Kim, Y. G. Roh, and Q. Park, “Selective bright and dark mode excitation in coupled nanoantennas,” Opt. Express 26(17), 21537–21545 (2018).
[Crossref]

2017 (3)

R. W. Yu, L. M. Liz-Marzán, and J. F. Garía de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46(22), 6710–6724 (2017).
[Crossref]

T. J. Davis and D. E. Goméz, “Colloquium: An algebraic model of localized surface plasmons and their interactions,” Rev. Mod. Phys. 89(1), 011003 (2017).
[Crossref]

M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 23 (2017).
[Crossref]

2016 (3)

N. A. Butakov and J. A. Schuller, “Designing Multipolar Resonances in Dielectric Metamaterials,” Sci. Rep. 6(1), 38487 (2016).
[Crossref]

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector Vortex Beam Generation with a Single Plasmonic Metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

2015 (1)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]

2014 (2)

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and Far-Field Properties of Plasmonic Oligomers under Radially and Azimuthally Polarized Light Excitation,” ACS Nano 8(5), 4969–4974 (2014).
[Crossref]

Z. Nir, L. Chuntonov, and G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol., C 21, 26–39 (2014).
[Crossref]

2013 (3)

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, A. A. Maier, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref]

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88(15), 155411 (2013).
[Crossref]

M. Hentschel, J. Dorfmüller, H. Giessen, S. Jäger, A. M. Kern, K. Braun, D. Zhang, and A. J. Meixner, “Plasmonic oligomers in cylindrical vector light beams,” Beilstein J. Nanotechnol. 4, 57–65 (2013).
[Crossref]

2012 (4)

U. Hohenester and A. Trügler, “MNPBEM–A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
[Crossref]

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, and X.-C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

2011 (3)

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2(1), 582 (2011).
[Crossref]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

2010 (3)

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

2009 (1)

L. Mingzhao, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref]

2005 (1)

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B 72(19), 195429 (2005).
[Crossref]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

1985 (1)

N. I. Bozovic and M. Damnjanovic, “Selection rules for polymers and quasi-one-dimensional crystals. IV. Kronecker products for the line groups isogonal to Dnh,” J. Phys. A: Math. Gen. 18(6), 923–937 (1985).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Alfano, R. R.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Banzer, P.

N. A. Chaitanya, P. Wozniak, P. Banzer, and I. De Leon, “Generation of Vortex Beams using a Plasmonic Quadrumer Nanocluster,” in Conference on Lasers and Electro-Optics, OSA Terchnical Digest FM2G.4. (2018).

Bao, Y.

S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Barros, E. B.

N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, and S. Reich, “Direct optical excitation of dark plasmons for hot electron generation,” Faraday Discuss. 214, 159–173 (2019).
[Crossref]

N. S. Mueller, B. G. M. Vieira, F. Schulz, P. Kusch, V. Oddone, E. B. Barros, H. Lange, and S. Reich, “Dark interlayer plasmons in colloidal gold nanoparticle bi-and few-layers,” ACS Photonics 5(10), 3962–3969 (2018).
[Crossref]

Bautista, G.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Bozovic, N. I.

N. I. Bozovic and M. Damnjanovic, “Selection rules for polymers and quasi-one-dimensional crystals. IV. Kronecker products for the line groups isogonal to Dnh,” J. Phys. A: Math. Gen. 18(6), 923–937 (1985).
[Crossref]

Braun, K.

M. Hentschel, J. Dorfmüller, H. Giessen, S. Jäger, A. M. Kern, K. Braun, D. Zhang, and A. J. Meixner, “Plasmonic oligomers in cylindrical vector light beams,” Beilstein J. Nanotechnol. 4, 57–65 (2013).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Bubula, M.

S. Reich, N. S. Mueller, and M. Bubula, “Selection Rules for Structured Light in Nanooligomers and Other Nanosystems,” ACS Photonics 7(6), 1537–1550 (2020).
[Crossref]

Butakov, N. A.

N. A. Butakov and J. A. Schuller, “Designing Multipolar Resonances in Dielectric Metamaterials,” Sci. Rep. 6(1), 38487 (2016).
[Crossref]

Cai, B.

S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Cao, Y.

S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
[Crossref]

Chaitanya, N. A.

N. A. Chaitanya, P. Wozniak, P. Banzer, and I. De Leon, “Generation of Vortex Beams using a Plasmonic Quadrumer Nanocluster,” in Conference on Lasers and Electro-Optics, OSA Terchnical Digest FM2G.4. (2018).

Chaubey, S. K.

Chen, X.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector Vortex Beam Generation with a Single Plasmonic Metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Chisholm, M. F.

J. A. Hachtel, S. Y. Cho, R. B. Davidson, M. A. Feldman, M. F. Chisholm, R. F. Haglund, J. C. Idrobo, S. T. Pantelides, and B. J. Lawrie, “Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators,” Light: Sci. Appl. 8(1), 33 (2019).
[Crossref]

Cho, S. Y.

J. A. Hachtel, S. Y. Cho, R. B. Davidson, M. A. Feldman, M. F. Chisholm, R. F. Haglund, J. C. Idrobo, S. T. Pantelides, and B. J. Lawrie, “Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators,” Light: Sci. Appl. 8(1), 33 (2019).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chuntonov, L.

Z. Nir, L. Chuntonov, and G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol., C 21, 26–39 (2014).
[Crossref]

Dal Negro, L.

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88(15), 155411 (2013).
[Crossref]

Damnjanovic, M.

N. I. Bozovic and M. Damnjanovic, “Selection rules for polymers and quasi-one-dimensional crystals. IV. Kronecker products for the line groups isogonal to Dnh,” J. Phys. A: Math. Gen. 18(6), 923–937 (1985).
[Crossref]

Davidson, R. B.

J. A. Hachtel, S. Y. Cho, R. B. Davidson, M. A. Feldman, M. F. Chisholm, R. F. Haglund, J. C. Idrobo, S. T. Pantelides, and B. J. Lawrie, “Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators,” Light: Sci. Appl. 8(1), 33 (2019).
[Crossref]

Davis, T. J.

T. J. Davis and D. E. Goméz, “Colloquium: An algebraic model of localized surface plasmons and their interactions,” Rev. Mod. Phys. 89(1), 011003 (2017).
[Crossref]

De Leon, I.

N. A. Chaitanya, P. Wozniak, P. Banzer, and I. De Leon, “Generation of Vortex Beams using a Plasmonic Quadrumer Nanocluster,” in Conference on Lasers and Electro-Optics, OSA Terchnical Digest FM2G.4. (2018).

Deng, Z. L.

S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
[Crossref]

Dorfmüller, J.

M. Hentschel, J. Dorfmüller, H. Giessen, S. Jäger, A. M. Kern, K. Braun, D. Zhang, and A. J. Meixner, “Plasmonic oligomers in cylindrical vector light beams,” Beilstein J. Nanotechnol. 4, 57–65 (2013).
[Crossref]

Dreser, C.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref]

Dudley, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Ee, H. S.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2(1), 582 (2011).
[Crossref]

Etchegoin, P.

E. L. Ru and P. Etchegoin, “Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects,” Elsevier (2008).

E. Le Ru and P. Etchegoin, Principles of surface enhanced Raman spectroscopy: and related plasmonic effects. (Elsevier Science, New York, 2008).

Fang, H.

M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 23 (2017).
[Crossref]

Feldman, M. A.

J. A. Hachtel, S. Y. Cho, R. B. Davidson, M. A. Feldman, M. F. Chisholm, R. F. Haglund, J. C. Idrobo, S. T. Pantelides, and B. J. Lawrie, “Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators,” Light: Sci. Appl. 8(1), 33 (2019).
[Crossref]

Fernandez-Garcia, R.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, A. A. Maier, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref]

Fitzgerald, J. M.

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1(1), 87 (2018).
[Crossref]

Fleischer, M.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref]

Forbes, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Forestiere, C.

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88(15), 155411 (2013).
[Crossref]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Garía de Abajo, J. F.

R. W. Yu, L. M. Liz-Marzán, and J. F. Garía de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46(22), 6710–6724 (2017).
[Crossref]

Gerardot, B. D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector Vortex Beam Generation with a Single Plasmonic Metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Giessen, H.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and Far-Field Properties of Plasmonic Oligomers under Radially and Azimuthally Polarized Light Excitation,” ACS Nano 8(5), 4969–4974 (2014).
[Crossref]

M. Hentschel, J. Dorfmüller, H. Giessen, S. Jäger, A. M. Kern, K. Braun, D. Zhang, and A. J. Meixner, “Plasmonic oligomers in cylindrical vector light beams,” Beilstein J. Nanotechnol. 4, 57–65 (2013).
[Crossref]

Goméz, D. E.

T. J. Davis and D. E. Goméz, “Colloquium: An algebraic model of localized surface plasmons and their interactions,” Rev. Mod. Phys. 89(1), 011003 (2017).
[Crossref]

Grajower, M.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and Far-Field Properties of Plasmonic Oligomers under Radially and Azimuthally Polarized Light Excitation,” ACS Nano 8(5), 4969–4974 (2014).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Gray, S. K.

L. Mingzhao, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref]

Green, M. A.

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[Crossref]

Guyot-Sionnest, P.

L. Mingzhao, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref]

Hachtel, J. A.

J. A. Hachtel, S. Y. Cho, R. B. Davidson, M. A. Feldman, M. F. Chisholm, R. F. Haglund, J. C. Idrobo, S. T. Pantelides, and B. J. Lawrie, “Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators,” Light: Sci. Appl. 8(1), 33 (2019).
[Crossref]

Haglund, R. F.

J. A. Hachtel, S. Y. Cho, R. B. Davidson, M. A. Feldman, M. F. Chisholm, R. F. Haglund, J. C. Idrobo, S. T. Pantelides, and B. J. Lawrie, “Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators,” Light: Sci. Appl. 8(1), 33 (2019).
[Crossref]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Haran, G.

Z. Nir, L. Chuntonov, and G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol., C 21, 26–39 (2014).
[Crossref]

Heeg, S.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, A. A. Maier, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref]

Henry, A. I.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Hentschel, M.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and Far-Field Properties of Plasmonic Oligomers under Radially and Azimuthally Polarized Light Excitation,” ACS Nano 8(5), 4969–4974 (2014).
[Crossref]

M. Hentschel, J. Dorfmüller, H. Giessen, S. Jäger, A. M. Kern, K. Braun, D. Zhang, and A. J. Meixner, “Plasmonic oligomers in cylindrical vector light beams,” Beilstein J. Nanotechnol. 4, 57–65 (2013).
[Crossref]

Hess, O.

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1(1), 87 (2018).
[Crossref]

Hohenester, U.

U. Hohenester and A. Trügler, “MNPBEM–A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
[Crossref]

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B 72(19), 195429 (2005).
[Crossref]

Höing, D.

N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, and S. Reich, “Direct optical excitation of dark plasmons for hot electron generation,” Faraday Discuss. 214, 159–173 (2019).
[Crossref]

Hu, D.

S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
[Crossref]

Idrobo, J. C.

J. A. Hachtel, S. Y. Cho, R. B. Davidson, M. A. Feldman, M. F. Chisholm, R. F. Haglund, J. C. Idrobo, S. T. Pantelides, and B. J. Lawrie, “Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators,” Light: Sci. Appl. 8(1), 33 (2019).
[Crossref]

Jackson, J. D

J. D Jackson, Classical Electrodynamics (Wiley, New York), 3rd ed. (1999).

Jäger, S.

M. Hentschel, J. Dorfmüller, H. Giessen, S. Jäger, A. M. Kern, K. Braun, D. Zhang, and A. J. Meixner, “Plasmonic oligomers in cylindrical vector light beams,” Beilstein J. Nanotechnol. 4, 57–65 (2013).
[Crossref]

Jin, L.

S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Kang, J. H.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2(1), 582 (2011).
[Crossref]

Kauranen, M.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref]

Kerber, R. M.

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1(1), 87 (2018).
[Crossref]

Kern, A. M.

M. Hentschel, J. Dorfmüller, H. Giessen, S. Jäger, A. M. Kern, K. Braun, D. Zhang, and A. J. Meixner, “Plasmonic oligomers in cylindrical vector light beams,” Beilstein J. Nanotechnol. 4, 57–65 (2013).
[Crossref]

Kern, D. P.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref]

Kim, J.

Kim, K.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2(1), 582 (2011).
[Crossref]

Krenn, J.

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B 72(19), 195429 (2005).
[Crossref]

Kumar, G. V. P.

Kumar, V.

Kusch, P.

N. S. Mueller, B. G. M. Vieira, F. Schulz, P. Kusch, V. Oddone, E. B. Barros, H. Lange, and S. Reich, “Dark interlayer plasmons in colloidal gold nanoparticle bi-and few-layers,” ACS Photonics 5(10), 3962–3969 (2018).
[Crossref]

Lange, H.

N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, and S. Reich, “Direct optical excitation of dark plasmons for hot electron generation,” Faraday Discuss. 214, 159–173 (2019).
[Crossref]

N. S. Mueller, B. G. M. Vieira, F. Schulz, P. Kusch, V. Oddone, E. B. Barros, H. Lange, and S. Reich, “Dark interlayer plasmons in colloidal gold nanoparticle bi-and few-layers,” ACS Photonics 5(10), 3962–3969 (2018).
[Crossref]

Lawrie, B. J.

J. A. Hachtel, S. Y. Cho, R. B. Davidson, M. A. Feldman, M. F. Chisholm, R. F. Haglund, J. C. Idrobo, S. T. Pantelides, and B. J. Lawrie, “Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators,” Light: Sci. Appl. 8(1), 33 (2019).
[Crossref]

Le Ru, E.

E. Le Ru and P. Etchegoin, Principles of surface enhanced Raman spectroscopy: and related plasmonic effects. (Elsevier Science, New York, 2008).

Lee, S.

Lee, T.-W.

L. Mingzhao, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref]

Lee, Y. H.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2(1), 582 (2011).
[Crossref]

Lerman, G. M.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and Far-Field Properties of Plasmonic Oligomers under Radially and Azimuthally Polarized Light Excitation,” ACS Nano 8(5), 4969–4974 (2014).
[Crossref]

Levy, U.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and Far-Field Properties of Plasmonic Oligomers under Radially and Azimuthally Polarized Light Excitation,” ACS Nano 8(5), 4969–4974 (2014).
[Crossref]

Li, J.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector Vortex Beam Generation with a Single Plasmonic Metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Li, M.

M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 23 (2017).
[Crossref]

Li, X.

S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
[Crossref]

M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 23 (2017).
[Crossref]

Lin, J.

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, and X.-C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[Crossref]

Litvin, I.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Liz-Marzán, L. M.

R. W. Yu, L. M. Liz-Marzán, and J. F. Garía de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46(22), 6710–6724 (2017).
[Crossref]

Maier, A. A.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, A. A. Maier, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref]

Marrucci, L.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Maultzsch, J.

S. Reich, C. Thomsen, and J. Maultzsch, “Carbon nanotubes: basic concepts and physical properties,” John Wiley & Sons (2008).

Meixner, A. J.

M. Hentschel, J. Dorfmüller, H. Giessen, S. Jäger, A. M. Kern, K. Braun, D. Zhang, and A. J. Meixner, “Plasmonic oligomers in cylindrical vector light beams,” Beilstein J. Nanotechnol. 4, 57–65 (2013).
[Crossref]

Miano, G.

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88(15), 155411 (2013).
[Crossref]

Milione, G.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Mingzhao, L.

L. Mingzhao, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref]

Miyamoto, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Morita, R.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Mueller, N. S.

S. Reich, N. S. Mueller, and M. Bubula, “Selection Rules for Structured Light in Nanooligomers and Other Nanosystems,” ACS Photonics 7(6), 1537–1550 (2020).
[Crossref]

N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, and S. Reich, “Direct optical excitation of dark plasmons for hot electron generation,” Faraday Discuss. 214, 159–173 (2019).
[Crossref]

N. S. Mueller, B. G. M. Vieira, F. Schulz, P. Kusch, V. Oddone, E. B. Barros, H. Lange, and S. Reich, “Dark interlayer plasmons in colloidal gold nanoparticle bi-and few-layers,” ACS Photonics 5(10), 3962–3969 (2018).
[Crossref]

Naidoo, D.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Narula, R.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, A. A. Maier, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref]

Nir, Z.

Z. Nir, L. Chuntonov, and G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol., C 21, 26–39 (2014).
[Crossref]

Nolan, D. A.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Oddone, V.

N. S. Mueller, B. G. M. Vieira, F. Schulz, P. Kusch, V. Oddone, E. B. Barros, H. Lange, and S. Reich, “Dark interlayer plasmons in colloidal gold nanoparticle bi-and few-layers,” ACS Photonics 5(10), 3962–3969 (2018).
[Crossref]

Oh, S. S.

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1(1), 87 (2018).
[Crossref]

Oikonomou, A.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, A. A. Maier, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref]

Omatsu, T.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Onodera, Y.

I. Teturo, Y. Tanabe, and Y. Onodera. “Group theory and its applications in physics,” Springer Science & Business Media 78, (2012).

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Pantelides, S. T.

J. A. Hachtel, S. Y. Cho, R. B. Davidson, M. A. Feldman, M. F. Chisholm, R. F. Haglund, J. C. Idrobo, S. T. Pantelides, and B. J. Lawrie, “Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators,” Light: Sci. Appl. 8(1), 33 (2019).
[Crossref]

Park, H. G.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2(1), 582 (2011).
[Crossref]

Park, Q.

Park, Y.

Pelton, M.

L. Mingzhao, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref]

Piccirillo, B.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Pillai, S.

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Reich, S.

S. Reich, N. S. Mueller, and M. Bubula, “Selection Rules for Structured Light in Nanooligomers and Other Nanosystems,” ACS Photonics 7(6), 1537–1550 (2020).
[Crossref]

N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, and S. Reich, “Direct optical excitation of dark plasmons for hot electron generation,” Faraday Discuss. 214, 159–173 (2019).
[Crossref]

N. S. Mueller, B. G. M. Vieira, F. Schulz, P. Kusch, V. Oddone, E. B. Barros, H. Lange, and S. Reich, “Dark interlayer plasmons in colloidal gold nanoparticle bi-and few-layers,” ACS Photonics 5(10), 3962–3969 (2018).
[Crossref]

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, A. A. Maier, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref]

S. Reich, C. Thomsen, and J. Maultzsch, “Carbon nanotubes: basic concepts and physical properties,” John Wiley & Sons (2008).

Reiter, D. E.

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1(1), 87 (2018).
[Crossref]

Ringe, E.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Roh, Y. G.

Roux, F. S.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Ru, E. L.

E. L. Ru and P. Etchegoin, “Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects,” Elsevier (2008).

Sakai, K.

K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for quadrupolar light-matter interactions,” Sci. Rep. 8(1), 7746 (2018).
[Crossref]

K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for quadrupolar light-matter interactions,” Sci. Rep. 8(1), 7746 (2018).
[Crossref]

Sasaki, K.

K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for quadrupolar light-matter interactions,” Sci. Rep. 8(1), 7746 (2018).
[Crossref]

K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for quadrupolar light-matter interactions,” Sci. Rep. 8(1), 7746 (2018).
[Crossref]

Schedin, F.

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, A. A. Maier, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref]

Schuller, J. A.

N. A. Butakov and J. A. Schuller, “Designing Multipolar Resonances in Dielectric Metamaterials,” Sci. Rep. 6(1), 38487 (2016).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Schulz, F.

N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, and S. Reich, “Direct optical excitation of dark plasmons for hot electron generation,” Faraday Discuss. 214, 159–173 (2019).
[Crossref]

N. S. Mueller, B. G. M. Vieira, F. Schulz, P. Kusch, V. Oddone, E. B. Barros, H. Lange, and S. Reich, “Dark interlayer plasmons in colloidal gold nanoparticle bi-and few-layers,” ACS Photonics 5(10), 3962–3969 (2018).
[Crossref]

Seo, M. K.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2(1), 582 (2011).
[Crossref]

Sharma, B.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Sharma, D. K.

Sztul, H. I.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Tan, P. S.

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, and X.-C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[Crossref]

Tanabe, Y.

I. Teturo, Y. Tanabe, and Y. Onodera. “Group theory and its applications in physics,” Springer Science & Business Media 78, (2012).

Teturo, I.

I. Teturo, Y. Tanabe, and Y. Onodera. “Group theory and its applications in physics,” Springer Science & Business Media 78, (2012).

Thomsen, C.

S. Reich, C. Thomsen, and J. Maultzsch, “Carbon nanotubes: basic concepts and physical properties,” John Wiley & Sons (2008).

Toyoda, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Trügler, A.

U. Hohenester and A. Trügler, “MNPBEM–A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
[Crossref]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Vasista, A. B.

Vieira, B. G. M.

N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, and S. Reich, “Direct optical excitation of dark plasmons for hot electron generation,” Faraday Discuss. 214, 159–173 (2019).
[Crossref]

N. S. Mueller, B. G. M. Vieira, F. Schulz, P. Kusch, V. Oddone, E. B. Barros, H. Lange, and S. Reich, “Dark interlayer plasmons in colloidal gold nanoparticle bi-and few-layers,” ACS Photonics 5(10), 3962–3969 (2018).
[Crossref]

Wang, Q.

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, and X.-C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[Crossref]

Wang, S.

S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
[Crossref]

Wang, X.

S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
[Crossref]

Wen, D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector Vortex Beam Generation with a Single Plasmonic Metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Wozniak, P.

N. A. Chaitanya, P. Wozniak, P. Banzer, and I. De Leon, “Generation of Vortex Beams using a Plasmonic Quadrumer Nanocluster,” in Conference on Lasers and Electro-Optics, OSA Terchnical Digest FM2G.4. (2018).

Xin, J.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector Vortex Beam Generation with a Single Plasmonic Metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Xu, Y.

S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
[Crossref]

Yamamoto, T.

K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for quadrupolar light-matter interactions,” Sci. Rep. 8(1), 7746 (2018).
[Crossref]

K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for quadrupolar light-matter interactions,” Sci. Rep. 8(1), 7746 (2018).
[Crossref]

Yanai, A.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and Far-Field Properties of Plasmonic Oligomers under Radially and Azimuthally Polarized Light Excitation,” ACS Nano 8(5), 4969–4974 (2014).
[Crossref]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yoon, T. Y.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2(1), 582 (2011).
[Crossref]

Yu, R. W.

R. W. Yu, L. M. Liz-Marzán, and J. F. Garía de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46(22), 6710–6724 (2017).
[Crossref]

Yuan, G. H.

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, and X.-C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[Crossref]

Yuan, X.

M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 23 (2017).
[Crossref]

Yuan, X.-C.

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, and X.-C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[Crossref]

Yue, F.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector Vortex Beam Generation with a Single Plasmonic Metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Zang, X.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref]

Zhang, D.

M. Hentschel, J. Dorfmüller, H. Giessen, S. Jäger, A. M. Kern, K. Braun, D. Zhang, and A. J. Meixner, “Plasmonic oligomers in cylindrical vector light beams,” Beilstein J. Nanotechnol. 4, 57–65 (2013).
[Crossref]

ACS Nano (1)

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and Far-Field Properties of Plasmonic Oligomers under Radially and Azimuthally Polarized Light Excitation,” ACS Nano 8(5), 4969–4974 (2014).
[Crossref]

ACS Photonics (3)

N. S. Mueller, B. G. M. Vieira, F. Schulz, P. Kusch, V. Oddone, E. B. Barros, H. Lange, and S. Reich, “Dark interlayer plasmons in colloidal gold nanoparticle bi-and few-layers,” ACS Photonics 5(10), 3962–3969 (2018).
[Crossref]

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector Vortex Beam Generation with a Single Plasmonic Metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

S. Reich, N. S. Mueller, and M. Bubula, “Selection Rules for Structured Light in Nanooligomers and Other Nanosystems,” ACS Photonics 7(6), 1537–1550 (2020).
[Crossref]

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Beilstein J. Nanotechnol. (1)

M. Hentschel, J. Dorfmüller, H. Giessen, S. Jäger, A. M. Kern, K. Braun, D. Zhang, and A. J. Meixner, “Plasmonic oligomers in cylindrical vector light beams,” Beilstein J. Nanotechnol. 4, 57–65 (2013).
[Crossref]

Chem. Soc. Rev. (1)

R. W. Yu, L. M. Liz-Marzán, and J. F. Garía de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” Chem. Soc. Rev. 46(22), 6710–6724 (2017).
[Crossref]

Commun. Phys. (1)

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1(1), 87 (2018).
[Crossref]

Comput. Phys. Commun. (1)

U. Hohenester and A. Trügler, “MNPBEM–A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
[Crossref]

Faraday Discuss. (1)

N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, and S. Reich, “Direct optical excitation of dark plasmons for hot electron generation,” Faraday Discuss. 214, 159–173 (2019).
[Crossref]

IEEE Photonics J. (1)

S. Wang, Z. L. Deng, Y. Cao, D. Hu, Y. Xu, B. Cai, L. Jin, Y. Bao, X. Wang, and X. Li, “Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring,” IEEE Photonics J. 10(1), 1–9 (2018).7
[Crossref]

J. Eur. Opt. Soc.-Rapid Publ. (1)

M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc.-Rapid Publ. 13(1), 23 (2017).
[Crossref]

J. Photochem. Photobiol., C (1)

Z. Nir, L. Chuntonov, and G. Haran, “The simplest plasmonic molecules: Metal nanoparticle dimers and trimers,” J. Photochem. Photobiol., C 21, 26–39 (2014).
[Crossref]

J. Phys. A: Math. Gen. (1)

N. I. Bozovic and M. Damnjanovic, “Selection rules for polymers and quasi-one-dimensional crystals. IV. Kronecker products for the line groups isogonal to Dnh,” J. Phys. A: Math. Gen. 18(6), 923–937 (1985).
[Crossref]

Light: Sci. Appl. (1)

J. A. Hachtel, S. Y. Cho, R. B. Davidson, M. A. Feldman, M. F. Chisholm, R. F. Haglund, J. C. Idrobo, S. T. Pantelides, and B. J. Lawrie, “Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators,” Light: Sci. Appl. 8(1), 33 (2019).
[Crossref]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Nano Lett. (3)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers,” Nano Lett. 18(4), 2571–2580 (2018).
[Crossref]

S. Heeg, R. Fernandez-Garcia, A. Oikonomou, F. Schedin, R. Narula, A. A. Maier, and S. Reich, “Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene,” Nano Lett. 13(1), 301–308 (2013).
[Crossref]

Nanotechnology (1)

G. H. Yuan, Q. Wang, P. S. Tan, J. Lin, and X.-C. Yuan, “A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam,” Nanotechnology 23(38), 385204 (2012).
[Crossref]

Nat. Commun. (1)

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2(1), 582 (2011).
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]

Nat. Nanotechnol. (1)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88(15), 155411 (2013).
[Crossref]

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach,” Phys. Rev. B 72(19), 195429 (2005).
[Crossref]

Phys. Rev. Lett. (2)

L. Mingzhao, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Rev. Mod. Phys. (1)

T. J. Davis and D. E. Goméz, “Colloquium: An algebraic model of localized surface plasmons and their interactions,” Rev. Mod. Phys. 89(1), 011003 (2017).
[Crossref]

Sci. Rep. (3)

N. A. Butakov and J. A. Schuller, “Designing Multipolar Resonances in Dielectric Metamaterials,” Sci. Rep. 6(1), 38487 (2016).
[Crossref]

K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for quadrupolar light-matter interactions,” Sci. Rep. 8(1), 7746 (2018).
[Crossref]

K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for quadrupolar light-matter interactions,” Sci. Rep. 8(1), 7746 (2018).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[Crossref]

Other (6)

E. L. Ru and P. Etchegoin, “Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects,” Elsevier (2008).

N. A. Chaitanya, P. Wozniak, P. Banzer, and I. De Leon, “Generation of Vortex Beams using a Plasmonic Quadrumer Nanocluster,” in Conference on Lasers and Electro-Optics, OSA Terchnical Digest FM2G.4. (2018).

E. Le Ru and P. Etchegoin, Principles of surface enhanced Raman spectroscopy: and related plasmonic effects. (Elsevier Science, New York, 2008).

S. Reich, C. Thomsen, and J. Maultzsch, “Carbon nanotubes: basic concepts and physical properties,” John Wiley & Sons (2008).

J. D Jackson, Classical Electrodynamics (Wiley, New York), 3rd ed. (1999).

I. Teturo, Y. Tanabe, and Y. Onodera. “Group theory and its applications in physics,” Springer Science & Business Media 78, (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Geometry of the gold nanodisk quadrumer considered in this work. (b) Schematic of the excitation of plasmonic modes in a gold quadrumer with an orbital angular momentum (OAM) light beam (l = 1 and linearly polarized). (c) Intensity profile and (d) phase profile of the incident light beam.
Fig. 2.
Fig. 2. Charge density plot of the lowest energy quadrumer eigenmodes obtained by boundary elements simulations. The eigenmodes are labeled by their symmetries within the D4h point group of the quadrumer.
Fig. 3.
Fig. 3. Electric field distribution of a linearly polarized light beam with OAM shown at specific times over one oscillation period T (top row); oscillation of the surface charge density of the A2g (second row), B2g (third row), Eu (bottom row) modes over one period. White arrows show the direction of the electric field vector at the “hot spots” (bottom rows) and the incident beam (top row).
Fig. 4.
Fig. 4. The x (a, e) and y (b, f) components of the electric field vector of an incident light beam with OAM (l = 1) and SAM σ = +1 in (a, b) and σ = -1 in (e, f). It is compared to the electric near field of the plasmonic quadrumer modes A2g (c, d) and B2g (g, h) obtained from FDTD simulations.
Fig. 5.
Fig. 5. (a) Absorption (black) and scattering (brown) cross section of a quadrumer excited with linearly polarized light and (b) linearly polarized light with OAM. Electric near field of the A2g (c) and B2g (e) modes and respective surface charge densities (d, f) obtained from FDTD simulations.
Fig. 6.
Fig. 6. (a) Oscillation of the electric near field amplitude at point A in Fig. 1(b) as a function of time, for a linearly polarized incident beam with OAM and (b) for an incident beam with OAM and SAM; (c) associated Fourier spectrum of the field oscillations in (a) and (b).
Fig. 7.
Fig. 7. Absorption and scattering cross-sections obtained by FDTD simulations for a quadrumer illuminated by OAM beams with (a) l = 1 and σ = -1, and (b) l = 1, and σ = 1.
Fig. 8.
Fig. 8. (a) Normalized solutions of the fitting integral, Eq. (2), for incident beams with l=1, σ=-1 (blue); l=1 (linearly polarized) (red); l=1, σ=+1 (green) and 7 quadrumer modes with lowest energy eigenvalues (excitation energies below 2 eV). (b) Absorption and scattering cross-sections obtained by FDTD simulations of the quadrumer illuminated by a beam with OAM (l=1), SAM (σ=-1) (dashed) and with azimuthal polarization (solid).
Fig. 9.
Fig. 9. Normalized solution of the fitting integral, Eq. (2), for the first five trimer modes (a) and seven hexamer modes (at the eigenenergies of the respective plasmonic modes) (d) with lowest eigenenergies below 2 eV for incident beams with OAM and SAM: l=1, σ=+1 (green); l=1, σ=-1 (blue); l=0, (linearly polarized) (red). (b) Absorption (b, e) and scattering (c, f) cross-sections obtained by FDTD simulations for a trimer (b,c) and hexamer (e,f) illuminated by beams with similar OAM and SAM.
Fig. 10.
Fig. 10. (a) Electric field intensity as a function of position, obtained by FDTD simulations. The oligomer is shifted with respect to the beam center along the x axis. (b) Normalized solutions of the fitting integral, Eq. (2), for the first six quadrumer modes with lowest excitation energy below 2 eV. The incident beams with OAM and SAM are shifted by 120 nm from the oligomer inversion center. (c) Dependence of the fitting integral on the axial oligomer shift for the first three quadrumer modes and a linearly polarized beam with OAM. (d, e) Evolution of the absorption (d) and scattering (e) cross-sections obtained by FDTD simulations of the quadrumer illuminated by an axially shifted beam with OAM (l=1 and linearly polarized).

Tables (1)

Tables Icon

Table 1. Optical selection rules for a trimer, quadrumer, and hexamer for different light beams.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E j ( x , y , ω , t , l , φ j s ) = E j 0 ( x , y ) exp ( i ( ω t + l a r c t a n ( y / x ) + φ j s ) ) ,
F i ( φ 0 ) = 0 T d t V d r 3 M i ( r , t ) E ( r , t , φ 0 ) / 0 T d t V d r 3 | E ( r , t , φ 0 ) | 2
F j i ( φ 0 ) = T j ( φ 0 ) d x d y M j i ( x , y ) E j 0 ( x , y ) / d x d y | E j 0 ( x , y ) | 2 ,
T j ( φ 0 ) = sin ( l a r c t a n ( y / x ) + α j s π 2 + φ 0 ) .