Abstract

Optimizing the shape of metasurface unit cells can lead to tremendous performance gains in several critically important areas. This paper presents a method of generating and optimizing freeform shapes to improve efficiency and achieve multiple metasurface functionalities (e.g., different polarization responses). The designs are generated using a three-dimensional surface contour method, which can produce an extensive range of nearly arbitrary shapes using only a few variables. Unlike gradient-based topology optimization, the proposed method is compatible with existing global optimization techniques that have been shown to significantly outperform local optimization algorithms, especially in complex and multimodal design spaces.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient Metasurfaces: A Review of Fundamentals and Applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
    [Crossref]
  2. S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, “Electromagnetic Metasurfaces: Physics and Applications,” Adv. Opt. Photonics 11(2), 380–479 (2019).
    [Crossref]
  3. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
    [Crossref]
  4. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-Thick Lenses with High Numerical Apertures and Large Efficiency Based on High-Contrast Transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
    [Crossref]
  5. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref]
  6. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A Broadband Achromatic Metalens for Focusing and Imaging in the Visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
    [Crossref]
  7. J. Nagar, S. D. Campbell, and D. H. Werner, “Apochromatic Singlets Enabled by Metasurface-Augmented GRIN Lenses,” Optica 5(2), 99–102 (2018).
    [Crossref]
  8. L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
    [Crossref]
  9. M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode,” Nano Lett. 15(9), 6261–6266 (2015).
    [Crossref]
  10. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface Holograms Reaching 80% Efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref]
  11. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
    [Crossref]
  12. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref]
  13. V. Egorov, M. Eitan, and J. Scheuer, “Genetically Optimized All-Dielectric Metasurfaces,” Opt. Express 25(3), 2583–2593 (2017).
    [Crossref]
  14. L. Hsu, M. Dupré, A. Ndao, J. Yellowhair, and B. Kanté, “Local Phase Method for Designing and Optimizing Metasurface Devices,” Opt. Express 25(21), 24974–24982 (2017).
    [Crossref]
  15. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
    [Crossref]
  16. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref]
  17. S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of Numerical Optimization Techniques for Meta-Device Design [Invited],” Opt. Mater. Express 9(4), 1842–1863 (2019).
    [Crossref]
  18. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary Optimization of Optical Antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
    [Crossref]
  19. F. Babaei, M. Javidnasab, and A. Rezaei, “Supershape Nanoparticle Plasmons,” Plasmonics 13(4), 1491–1497 (2018).
    [Crossref]
  20. C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm Optimization of Broadband Nanoplasmonic Arrays,” Opt. Lett. 35(2), 133–135 (2010).
    [Crossref]
  21. C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
    [Crossref]
  22. C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
    [Crossref]
  23. P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
    [Crossref]
  24. J. R. Ong, H. S. Chu, V. H. Chen, A. Y. Zhu, and P. Genevet, “Freestanding Dielectric Nanohole Array Metasurface for Mid-infrared Wavelength Applications,” Opt. Lett. 42(13), 2639–2642 (2017).
    [Crossref]
  25. A. Zhan, T. K. Fryett, S. Colburn, and A. Majumdar, “Inverse Design of Optical Elements Based on Arrays of Dielectric Spheres,” Appl. Opt. 57(6), 1437–1446 (2018).
    [Crossref]
  26. Q. Zhang, X. Wan, S. Liu, J. Yuan Yin, L. Zhang, and T. J. Cui, “Shaping Electromagnetic Waves using Software-Automatically-Designed Metasurfaces,” Sci. Rep. 7(1), 3588 (2017).
    [Crossref]
  27. D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
    [Crossref]
  28. D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High-Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
    [Crossref]
  29. Z. Lin, V. Liu, R. Pestourie, and S. G. Johnson, “Topology Optimization of Freeform Large-Area Metasurfaces,” Opt. Express 27(11), 15765–15775 (2019).
    [Crossref]
  30. J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
    [Crossref]
  31. Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine-Learning-Assisted Metasurface Design for High- Efficiency Thermal Emitter Optimization,” arXiv 28 (2019).
  32. S. Inampudi and H. Mosallaei, “Neural Network Based Design of Metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
    [Crossref]
  33. Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative Model for the Inverse Design of Metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).
    [Crossref]
  34. W. Ma, F. Cheng, and Y. Liu, “Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
    [Crossref]
  35. P. R. Wiecha and O. L. Muskens, “Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures,” Nano Lett. 20(1), 329–338 (2020).
    [Crossref]
  36. C. C. Nadell, B. Huang, J. M. Malof, and W. J. Padilla, “Deep Learning for Accelerated All-Dielectric Metasurface Design,” Opt. Express 27(20), 27523–27535 (2019).
    [Crossref]
  37. S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
    [Crossref]
  38. Q. Zhang, C. Liu, X. Wan, L. Zhang, S. Liu, Y. Yang, and T. J. Cui, “Machine-Learning Designs of Anisotropic Digital Coding Metasurfaces,” Adv. Theory Simul. 2(2), 1800132 (2019).
    [Crossref]
  39. T. Qiu, X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, “Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design,” Adv. Sci. 6(12), 1900128 (2019).
    [Crossref]
  40. E. S. Harper, E. J. Coyle, J. P. Vernon, and M. S. Mills, “Inverse Design of Broadband Highly Reflective Metasurfaces Using Neural Networks,” Phys. Rev. B 101(19), 195104 (2020).
    [Crossref]
  41. J. S. Jensen and O. Sigmund, “Topology Optimization for Nano-Photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
    [Crossref]
  42. C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint Shape Optimization Applied to Electromagnetic Design,” Opt. Express 21(18), 21693–21701 (2013).
    [Crossref]
  43. M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods, and Applications, Second edition, corrected printing, Engineering Online Library (Springer, 2011).
  44. J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
    [Crossref]
  45. S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive Genetic Algorithm for Optical Metasurfaces Design,” Sci. Rep. 8(1), 11040–16 (2018).
    [Crossref]
  46. B. Adomanis, D. Bruce Burckel, and M. Marciniak, “3D Plasmonic Design Approach for Efficient Transmissive Huygens Metasurfaces,” Opt. Express 27(15), 20928–20937 (2019).
    [Crossref]
  47. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-Index Meta-surfaces as a Bridge Linking Propagating Waves and Surface Waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref]
  48. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
    [Crossref]
  49. M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast Optimization of Electromagnetic Design Problems Using the Covariance Matrix Adaptation Evolutionary Strategy,” IEEE Trans. Antennas Propag. 59(4), 1275–1285 (2011).
    [Crossref]
  50. N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES),” Evolutionary Comput. 11(1), 1–18 (2003).
    [Crossref]
  51. P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary Multi-Objective Optimization of Colour Pixels Based on Dielectric Nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
    [Crossref]
  52. P.-I. Schneider, X. Garcia Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics 6(11), 2726–2733 (2019).
    [Crossref]
  53. K. Deb and H. Jain, “An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints,” IEEE Trans. Evol. Computat. 18(4), 577–601 (2014).
    [Crossref]
  54. C. Igel, N. Hansen, and S. Roth, “Covariance Matrix Adaptation for Multi-objective Optimization,” Evolutionary Comput. 15(1), 1–28 (2007).
    [Crossref]
  55. D. Hadka and P. Reed, “Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework,” Evolutionary Comput. 21(2), 231–259 (2013).
    [Crossref]
  56. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref]
  57. COMSOL Multiphysics v. 5.3 (COMSOL AB, 2017).
  58. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative Index of Refraction in Optical Metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [Crossref]
  59. R. E. Christiansen, J. Vester-Petersen, S. P. Madsen, and O. Sigmund, “A Non-linear Material Interpolation for Design of Metallic Nano-particles Using Topology Optimization,” Comput. Methods Appl. Mech. Eng. 343, 23–39 (2019).
    [Crossref]
  60. Z. Guo, L. Zhu, F. Shen, H. Zhou, and R. Gao, “Dielectric Metasurface Based High-efficiency Polarization Splitters,” RSC Adv. 7(16), 9872–9879 (2017).
    [Crossref]
  61. Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of Beam Deflector, Splitters, Wave Plates and Metalens Using Photonic Elements with Dielectric Metasurface,” Opt. Commun. 411, 93–100 (2018).
    [Crossref]
  62. J. P. Hugonin and P. Lalanne, Reticolo Software for Grating Analysis (Institut d’Optique, 2005).

2020 (2)

P. R. Wiecha and O. L. Muskens, “Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures,” Nano Lett. 20(1), 329–338 (2020).
[Crossref]

E. S. Harper, E. J. Coyle, J. P. Vernon, and M. S. Mills, “Inverse Design of Broadband Highly Reflective Metasurfaces Using Neural Networks,” Phys. Rev. B 101(19), 195104 (2020).
[Crossref]

2019 (11)

B. Adomanis, D. Bruce Burckel, and M. Marciniak, “3D Plasmonic Design Approach for Efficient Transmissive Huygens Metasurfaces,” Opt. Express 27(15), 20928–20937 (2019).
[Crossref]

P.-I. Schneider, X. Garcia Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics 6(11), 2726–2733 (2019).
[Crossref]

R. E. Christiansen, J. Vester-Petersen, S. P. Madsen, and O. Sigmund, “A Non-linear Material Interpolation for Design of Metallic Nano-particles Using Topology Optimization,” Comput. Methods Appl. Mech. Eng. 343, 23–39 (2019).
[Crossref]

C. C. Nadell, B. Huang, J. M. Malof, and W. J. Padilla, “Deep Learning for Accelerated All-Dielectric Metasurface Design,” Opt. Express 27(20), 27523–27535 (2019).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

Q. Zhang, C. Liu, X. Wan, L. Zhang, S. Liu, Y. Yang, and T. J. Cui, “Machine-Learning Designs of Anisotropic Digital Coding Metasurfaces,” Adv. Theory Simul. 2(2), 1800132 (2019).
[Crossref]

T. Qiu, X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, “Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design,” Adv. Sci. 6(12), 1900128 (2019).
[Crossref]

Z. Lin, V. Liu, R. Pestourie, and S. G. Johnson, “Topology Optimization of Freeform Large-Area Metasurfaces,” Opt. Express 27(11), 15765–15775 (2019).
[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, “Electromagnetic Metasurfaces: Physics and Applications,” Adv. Opt. Photonics 11(2), 380–479 (2019).
[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of Numerical Optimization Techniques for Meta-Device Design [Invited],” Opt. Mater. Express 9(4), 1842–1863 (2019).
[Crossref]

2018 (11)

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient Metasurfaces: A Review of Fundamentals and Applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A Broadband Achromatic Metalens for Focusing and Imaging in the Visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

J. Nagar, S. D. Campbell, and D. H. Werner, “Apochromatic Singlets Enabled by Metasurface-Augmented GRIN Lenses,” Optica 5(2), 99–102 (2018).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

S. Inampudi and H. Mosallaei, “Neural Network Based Design of Metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative Model for the Inverse Design of Metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).
[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

F. Babaei, M. Javidnasab, and A. Rezaei, “Supershape Nanoparticle Plasmons,” Plasmonics 13(4), 1491–1497 (2018).
[Crossref]

A. Zhan, T. K. Fryett, S. Colburn, and A. Majumdar, “Inverse Design of Optical Elements Based on Arrays of Dielectric Spheres,” Appl. Opt. 57(6), 1437–1446 (2018).
[Crossref]

Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of Beam Deflector, Splitters, Wave Plates and Metalens Using Photonic Elements with Dielectric Metasurface,” Opt. Commun. 411, 93–100 (2018).
[Crossref]

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive Genetic Algorithm for Optical Metasurfaces Design,” Sci. Rep. 8(1), 11040–16 (2018).
[Crossref]

2017 (8)

J. R. Ong, H. S. Chu, V. H. Chen, A. Y. Zhu, and P. Genevet, “Freestanding Dielectric Nanohole Array Metasurface for Mid-infrared Wavelength Applications,” Opt. Lett. 42(13), 2639–2642 (2017).
[Crossref]

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary Multi-Objective Optimization of Colour Pixels Based on Dielectric Nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Z. Guo, L. Zhu, F. Shen, H. Zhou, and R. Gao, “Dielectric Metasurface Based High-efficiency Polarization Splitters,” RSC Adv. 7(16), 9872–9879 (2017).
[Crossref]

Q. Zhang, X. Wan, S. Liu, J. Yuan Yin, L. Zhang, and T. J. Cui, “Shaping Electromagnetic Waves using Software-Automatically-Designed Metasurfaces,” Sci. Rep. 7(1), 3588 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High-Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

V. Egorov, M. Eitan, and J. Scheuer, “Genetically Optimized All-Dielectric Metasurfaces,” Opt. Express 25(3), 2583–2593 (2017).
[Crossref]

L. Hsu, M. Dupré, A. Ndao, J. Yellowhair, and B. Kanté, “Local Phase Method for Designing and Optimizing Metasurface Devices,” Opt. Express 25(21), 24974–24982 (2017).
[Crossref]

2016 (3)

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

2015 (5)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface Holograms Reaching 80% Efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-Thick Lenses with High Numerical Apertures and Large Efficiency Based on High-Contrast Transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref]

2014 (2)

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

K. Deb and H. Jain, “An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints,” IEEE Trans. Evol. Computat. 18(4), 577–601 (2014).
[Crossref]

2013 (3)

D. Hadka and P. Reed, “Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework,” Evolutionary Comput. 21(2), 231–259 (2013).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint Shape Optimization Applied to Electromagnetic Design,” Opt. Express 21(18), 21693–21701 (2013).
[Crossref]

2012 (5)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-Index Meta-surfaces as a Bridge Linking Propagating Waves and Surface Waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary Optimization of Optical Antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref]

2011 (4)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast Optimization of Electromagnetic Design Problems Using the Covariance Matrix Adaptation Evolutionary Strategy,” IEEE Trans. Antennas Propag. 59(4), 1275–1285 (2011).
[Crossref]

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref]

J. S. Jensen and O. Sigmund, “Topology Optimization for Nano-Photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

2010 (1)

2007 (1)

C. Igel, N. Hansen, and S. Roth, “Covariance Matrix Adaptation for Multi-objective Optimization,” Evolutionary Comput. 15(1), 1–28 (2007).
[Crossref]

2005 (1)

2003 (1)

N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES),” Evolutionary Comput. 11(1), 1–18 (2003).
[Crossref]

Adomanis, B.

Agarwal, A. M.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

An, S.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-Thick Lenses with High Numerical Apertures and Large Efficiency Based on High-Contrast Transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Arbouet, A.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary Multi-Objective Optimization of Colour Pixels Based on Dielectric Nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Babaei, F.

F. Babaei, M. Javidnasab, and A. Rezaei, “Supershape Nanoparticle Plasmons,” Plasmonics 13(4), 1491–1497 (2018).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-Thick Lenses with High Numerical Apertures and Large Efficiency Based on High-Contrast Transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-Thick Lenses with High Numerical Apertures and Large Efficiency Based on High-Contrast Transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref]

Bayraktar, Z.

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast Optimization of Electromagnetic Design Problems Using the Covariance Matrix Adaptation Evolutionary Strategy,” IEEE Trans. Antennas Propag. 59(4), 1275–1285 (2011).
[Crossref]

Bendsøe, M. P.

M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods, and Applications, Second edition, corrected printing, Engineering Online Library (Springer, 2011).

Berkovitch, N.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref]

Bhargava, S.

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine-Learning-Assisted Metasurface Design for High- Efficiency Thermal Emitter Optimization,” arXiv 28 (2019).

Bossard, J. A.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

Bozhevolnyi, S. I.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient Metasurfaces: A Review of Fundamentals and Applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Bruce Burckel, D.

Burger, S.

P.-I. Schneider, X. Garcia Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics 6(11), 2726–2733 (2019).
[Crossref]

Cai, W.

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative Model for the Inverse Design of Metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).
[Crossref]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative Index of Refraction in Optical Metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[Crossref]

Campbell, S. D.

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A Broadband Achromatic Metalens for Focusing and Imaging in the Visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Capretti, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref]

Chen, L.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Chen, V. H.

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A Broadband Achromatic Metalens for Focusing and Imaging in the Visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Cheng, F.

W. Ma, F. Cheng, and Y. Liu, “Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

Cheng, Q.

T. Qiu, X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, “Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design,” Adv. Sci. 6(12), 1900128 (2019).
[Crossref]

Chettiar, U. K.

Christiansen, R. E.

R. E. Christiansen, J. Vester-Petersen, S. P. Madsen, and O. Sigmund, “A Non-linear Material Interpolation for Design of Metallic Nano-particles Using Topology Optimization,” Comput. Methods Appl. Mech. Eng. 343, 23–39 (2019).
[Crossref]

Chu, H. S.

Colburn, S.

Coyle, E. J.

E. S. Harper, E. J. Coyle, J. P. Vernon, and M. S. Mills, “Inverse Design of Broadband Highly Reflective Metasurfaces Using Neural Networks,” Phys. Rev. B 101(19), 195104 (2020).
[Crossref]

Cui, T.

T. Qiu, X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, “Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design,” Adv. Sci. 6(12), 1900128 (2019).
[Crossref]

Cui, T. J.

Q. Zhang, C. Liu, X. Wan, L. Zhang, S. Liu, Y. Yang, and T. J. Cui, “Machine-Learning Designs of Anisotropic Digital Coding Metasurfaces,” Adv. Theory Simul. 2(2), 1800132 (2019).
[Crossref]

Q. Zhang, X. Wan, S. Liu, J. Yuan Yin, L. Zhang, and T. J. Cui, “Shaping Electromagnetic Waves using Software-Automatically-Designed Metasurfaces,” Sci. Rep. 7(1), 3588 (2017).
[Crossref]

Cui, X.

Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of Beam Deflector, Splitters, Wave Plates and Metalens Using Photonic Elements with Dielectric Metasurface,” Opt. Commun. 411, 93–100 (2018).
[Crossref]

Dal Negro, L.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref]

C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm Optimization of Broadband Nanoplasmonic Arrays,” Opt. Lett. 35(2), 133–135 (2010).
[Crossref]

Deb, K.

K. Deb and H. Jain, “An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints,” IEEE Trans. Evol. Computat. 18(4), 577–601 (2014).
[Crossref]

Decker, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Deng, L.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Ding, F.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient Metasurfaces: A Review of Fundamentals and Applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Ding, J.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Donelli, M.

Doshay, S.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High-Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

Drachev, V. P.

Du, Q.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Dupré, M.

Egorov, V.

Eitan, M.

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Fan, J. A.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of Numerical Optimization Techniques for Meta-Device Design [Invited],” Opt. Mater. Express 9(4), 1842–1863 (2019).
[Crossref]

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High-Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

Fang, Z.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-Thick Lenses with High Numerical Apertures and Large Efficiency Based on High-Contrast Transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Feichtner, T.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary Optimization of Optical Antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref]

Forestiere, C.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref]

C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm Optimization of Broadband Nanoplasmonic Arrays,” Opt. Lett. 35(2), 133–135 (2010).
[Crossref]

Fowler, C.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

Fryett, T. K.

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gao, R.

Z. Guo, L. Zhu, F. Shen, H. Zhou, and R. Gao, “Dielectric Metasurface Based High-efficiency Polarization Splitters,” RSC Adv. 7(16), 9872–9879 (2017).
[Crossref]

Garcia Santiago, X.

P.-I. Schneider, X. Garcia Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics 6(11), 2726–2733 (2019).
[Crossref]

Genevet, P.

J. R. Ong, H. S. Chu, V. H. Chen, A. Y. Zhu, and P. Genevet, “Freestanding Dielectric Nanohole Array Metasurface for Mid-infrared Wavelength Applications,” Opt. Lett. 42(13), 2639–2642 (2017).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Ginzburg, P.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref]

Girard, C.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary Multi-Objective Optimization of Colour Pixels Based on Dielectric Nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Gregory, M. D.

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast Optimization of Electromagnetic Design Problems Using the Covariance Matrix Adaptation Evolutionary Strategy,” IEEE Trans. Antennas Propag. 59(4), 1275–1285 (2011).
[Crossref]

Gu, J.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Gu, T.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Guo, G.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Guo, Z.

Z. Guo, L. Zhu, F. Shen, H. Zhou, and R. Gao, “Dielectric Metasurface Based High-efficiency Polarization Splitters,” RSC Adv. 7(16), 9872–9879 (2017).
[Crossref]

Hadka, D.

D. Hadka and P. Reed, “Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework,” Evolutionary Comput. 21(2), 231–259 (2013).
[Crossref]

Hammerschmidt, M.

P.-I. Schneider, X. Garcia Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics 6(11), 2726–2733 (2019).
[Crossref]

Han, J.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Hansen, N.

C. Igel, N. Hansen, and S. Roth, “Covariance Matrix Adaptation for Multi-objective Optimization,” Evolutionary Comput. 15(1), 1–28 (2007).
[Crossref]

N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES),” Evolutionary Comput. 11(1), 1–18 (2003).
[Crossref]

Hao, J.

S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, “Electromagnetic Metasurfaces: Physics and Applications,” Adv. Opt. Photonics 11(2), 380–479 (2019).
[Crossref]

Harper, E. S.

E. S. Harper, E. J. Coyle, J. P. Vernon, and M. S. Mills, “Inverse Design of Broadband Highly Reflective Metasurfaces Using Neural Networks,” Phys. Rev. B 101(19), 195104 (2020).
[Crossref]

He, Q.

S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, “Electromagnetic Metasurfaces: Physics and Applications,” Adv. Opt. Photonics 11(2), 380–479 (2019).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-Index Meta-surfaces as a Bridge Linking Propagating Waves and Surface Waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

He, Y.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

Hecht, B.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary Optimization of Optical Antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref]

Hickey, J.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

Hong, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-Thick Lenses with High Numerical Apertures and Large Efficiency Based on High-Contrast Transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Hoyer, S.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

Hsu, L.

Hu, J.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Huang, B.

Hugonin, J. P.

J. P. Hugonin and P. Lalanne, Reticolo Software for Grating Analysis (Institut d’Optique, 2005).

Igel, C.

C. Igel, N. Hansen, and S. Roth, “Covariance Matrix Adaptation for Multi-objective Optimization,” Evolutionary Comput. 15(1), 1–28 (2007).
[Crossref]

Inampudi, S.

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive Genetic Algorithm for Optical Metasurfaces Design,” Sci. Rep. 8(1), 11040–16 (2018).
[Crossref]

S. Inampudi and H. Mosallaei, “Neural Network Based Design of Metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
[Crossref]

Jafar-Zanjani, S.

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive Genetic Algorithm for Optical Metasurfaces Design,” Sci. Rep. 8(1), 11040–16 (2018).
[Crossref]

Jain, H.

K. Deb and H. Jain, “An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints,” IEEE Trans. Evol. Computat. 18(4), 577–601 (2014).
[Crossref]

Javidnasab, M.

F. Babaei, M. Javidnasab, and A. Rezaei, “Supershape Nanoparticle Plasmons,” Plasmonics 13(4), 1491–1497 (2018).
[Crossref]

Jenkins, R. P.

Jensen, J. S.

J. S. Jensen and O. Sigmund, “Topology Optimization for Nano-Photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

Jiang, J.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

Johnson, S. G.

Juan, T.-K.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Kanté, B.

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface Holograms Reaching 80% Efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A Broadband Achromatic Metalens for Focusing and Imaging in the Visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Kildishev, A. V.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative Index of Refraction in Optical Metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[Crossref]

Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine-Learning-Assisted Metasurface Design for High- Efficiency Thermal Emitter Optimization,” arXiv 28 (2019).

Kirby, R. M.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

Kiunke, M.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary Optimization of Optical Antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref]

Kivshar, Y. S.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Koumoutsakos, P.

N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES),” Evolutionary Comput. 11(1), 1–18 (2003).
[Crossref]

Kudyshev, Z. A.

Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine-Learning-Assisted Metasurface Design for High- Efficiency Thermal Emitter Optimization,” arXiv 28 (2019).

Kung, W.-T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Lalanne, P.

J. P. Hugonin and P. Lalanne, Reticolo Software for Grating Analysis (Institut d’Optique, 2005).

Lalau-Keraly, C. M.

Larrieu, G.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary Multi-Objective Optimization of Colour Pixels Based on Dielectric Nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Lecestre, A.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary Multi-Objective Optimization of Colour Pixels Based on Dielectric Nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A Broadband Achromatic Metalens for Focusing and Imaging in the Visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Lee, K.-T.

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative Model for the Inverse Design of Metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).
[Crossref]

Lee, S. Y.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface Holograms Reaching 80% Efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Li, H.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

Li, M.

Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of Beam Deflector, Splitters, Wave Plates and Metalens Using Photonic Elements with Dielectric Metasurface,” Opt. Commun. 411, 93–100 (2018).
[Crossref]

Li, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-Index Meta-surfaces as a Bridge Linking Propagating Waves and Surface Waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Li, Y.

T. Qiu, X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, “Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design,” Adv. Sci. 6(12), 1900128 (2019).
[Crossref]

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Liao, C. Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Liao, T.

Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of Beam Deflector, Splitters, Wave Plates and Metalens Using Photonic Elements with Dielectric Metasurface,” Opt. Commun. 411, 93–100 (2018).
[Crossref]

Lin, H.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Lin, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

Lin, Z.

Litchinitser, N. M.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref]

Liu, C.

Q. Zhang, C. Liu, X. Wan, L. Zhang, S. Liu, Y. Yang, and T. J. Cui, “Machine-Learning Designs of Anisotropic Digital Coding Metasurfaces,” Adv. Theory Simul. 2(2), 1800132 (2019).
[Crossref]

Liu, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

Liu, S.

Q. Zhang, C. Liu, X. Wan, L. Zhang, S. Liu, Y. Yang, and T. J. Cui, “Machine-Learning Designs of Anisotropic Digital Coding Metasurfaces,” Adv. Theory Simul. 2(2), 1800132 (2019).
[Crossref]

Q. Zhang, X. Wan, S. Liu, J. Yuan Yin, L. Zhang, and T. J. Cui, “Shaping Electromagnetic Waves using Software-Automatically-Designed Metasurfaces,” Sci. Rep. 7(1), 3588 (2017).
[Crossref]

Liu, V.

Liu, Y.

W. Ma, F. Cheng, and Y. Liu, “Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

Liu, Z.

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative Model for the Inverse Design of Metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).
[Crossref]

Luo, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Ma, W.

W. Ma, F. Cheng, and Y. Liu, “Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

Ma, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Madsen, S. P.

R. E. Christiansen, J. Vester-Petersen, S. P. Madsen, and O. Sigmund, “A Non-linear Material Interpolation for Design of Metallic Nano-particles Using Topology Optimization,” Comput. Methods Appl. Mech. Eng. 343, 23–39 (2019).
[Crossref]

Majumdar, A.

Malof, J. M.

Marciniak, M.

Mayer, T. S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

Miano, G.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref]

C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm Optimization of Broadband Nanoplasmonic Arrays,” Opt. Lett. 35(2), 133–135 (2010).
[Crossref]

Michon, J.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Miller, O. D.

Mills, M. S.

E. S. Harper, E. J. Coyle, J. P. Vernon, and M. S. Mills, “Inverse Design of Broadband Highly Reflective Metasurfaces Using Neural Networks,” Phys. Rev. B 101(19), 195104 (2020).
[Crossref]

Mosallaei, H.

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive Genetic Algorithm for Optical Metasurfaces Design,” Sci. Rep. 8(1), 11040–16 (2018).
[Crossref]

S. Inampudi and H. Mosallaei, “Neural Network Based Design of Metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface Holograms Reaching 80% Efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Müller, S. D.

N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES),” Evolutionary Comput. 11(1), 1–18 (2003).
[Crossref]

Muskens, O. L.

P. R. Wiecha and O. L. Muskens, “Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures,” Nano Lett. 20(1), 329–338 (2020).
[Crossref]

Nadell, C. C.

Nagar, J.

Ndao, A.

Neshev, D. N.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Nevet, A.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref]

Ni, X.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

Nikolskiy, K.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Ong, J. R.

Orenstein, M.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref]

Padilla, W. J.

Paillard, V.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary Multi-Objective Optimization of Colour Pixels Based on Dielectric Nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Pandey, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref]

Pasquale, A. J.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Pestourie, R.

Pors, A.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient Metasurfaces: A Review of Fundamentals and Applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Pu, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Qiu, T.

T. Qiu, X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, “Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design,” Adv. Sci. 6(12), 1900128 (2019).
[Crossref]

Qu, S.

T. Qiu, X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, “Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design,” Adv. Sci. 6(12), 1900128 (2019).
[Crossref]

Reed, P.

D. Hadka and P. Reed, “Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework,” Evolutionary Comput. 21(2), 231–259 (2013).
[Crossref]

Reinhard, B. M.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref]

Rezaei, A.

F. Babaei, M. Javidnasab, and A. Rezaei, “Supershape Nanoparticle Plasmons,” Plasmonics 13(4), 1491–1497 (2018).
[Crossref]

Richardson, K. A.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

Rivero-Baleine, C.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

Rockstuhl, C.

P.-I. Schneider, X. Garcia Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics 6(11), 2726–2733 (2019).
[Crossref]

Rodrigues, S. P.

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative Model for the Inverse Design of Metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).
[Crossref]

Roth, S.

C. Igel, N. Hansen, and S. Roth, “Covariance Matrix Adaptation for Multi-objective Optimization,” Evolutionary Comput. 15(1), 1–28 (2007).
[Crossref]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A Broadband Achromatic Metalens for Focusing and Imaging in the Visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Sarychev, A. K.

Scheuer, J.

Schneider, P.-I.

P.-I. Schneider, X. Garcia Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics 6(11), 2726–2733 (2019).
[Crossref]

Selig, O.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary Optimization of Optical Antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref]

Sell, D.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of Numerical Optimization Techniques for Meta-Device Design [Invited],” Opt. Mater. Express 9(4), 1842–1863 (2019).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High-Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

Shalaev, M. I.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref]

Shalaev, V. M.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative Index of Refraction in Optical Metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[Crossref]

Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine-Learning-Assisted Metasurface Design for High- Efficiency Thermal Emitter Optimization,” arXiv 28 (2019).

Shalaginov, M. Y.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Shen, F.

Z. Guo, L. Zhu, F. Shen, H. Zhou, and R. Gao, “Dielectric Metasurface Based High-efficiency Polarization Splitters,” RSC Adv. 7(16), 9872–9879 (2017).
[Crossref]

Shi, X.

T. Qiu, X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, “Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design,” Adv. Sci. 6(12), 1900128 (2019).
[Crossref]

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A Broadband Achromatic Metalens for Focusing and Imaging in the Visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Shor, I.

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref]

Sigmund, O.

R. E. Christiansen, J. Vester-Petersen, S. P. Madsen, and O. Sigmund, “A Non-linear Material Interpolation for Design of Metallic Nano-particles Using Topology Optimization,” Comput. Methods Appl. Mech. Eng. 343, 23–39 (2019).
[Crossref]

J. S. Jensen and O. Sigmund, “Topology Optimization for Nano-Photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods, and Applications, Second edition, corrected printing, Engineering Online Library (Springer, 2011).

Soltwisch, V.

P.-I. Schneider, X. Garcia Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics 6(11), 2726–2733 (2019).
[Crossref]

Staude, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Sui, S.

T. Qiu, X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, “Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design,” Adv. Sci. 6(12), 1900128 (2019).
[Crossref]

Sun, J.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref]

Sun, S.

S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, “Electromagnetic Metasurfaces: Physics and Applications,” Adv. Opt. Photonics 11(2), 380–479 (2019).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-Index Meta-surfaces as a Bridge Linking Propagating Waves and Surface Waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Tamburrino, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref]

Tang, H.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Tian, Z.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Tsai, D. P.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Tsukernik, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref]

Vernon, J. P.

E. S. Harper, E. J. Coyle, J. P. Vernon, and M. S. Mills, “Inverse Design of Broadband Highly Reflective Metasurfaces Using Neural Networks,” Phys. Rev. B 101(19), 195104 (2020).
[Crossref]

Vester-Petersen, J.

R. E. Christiansen, J. Vester-Petersen, S. P. Madsen, and O. Sigmund, “A Non-linear Material Interpolation for Design of Metallic Nano-particles Using Topology Optimization,” Comput. Methods Appl. Mech. Eng. 343, 23–39 (2019).
[Crossref]

Walsh, G. F.

Wan, X.

Q. Zhang, C. Liu, X. Wan, L. Zhang, S. Liu, Y. Yang, and T. J. Cui, “Machine-Learning Designs of Anisotropic Digital Coding Metasurfaces,” Adv. Theory Simul. 2(2), 1800132 (2019).
[Crossref]

Q. Zhang, X. Wan, S. Liu, J. Yuan Yin, L. Zhang, and T. J. Cui, “Shaping Electromagnetic Waves using Software-Automatically-Designed Metasurfaces,” Sci. Rep. 7(1), 3588 (2017).
[Crossref]

Wang, C.-M.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Wang, J.

T. Qiu, X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, “Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design,” Adv. Sci. 6(12), 1900128 (2019).
[Crossref]

Wang, R.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

Wang, Y.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Werner, D. H.

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of Numerical Optimization Techniques for Meta-Device Design [Invited],” Opt. Mater. Express 9(4), 1842–1863 (2019).
[Crossref]

J. Nagar, S. D. Campbell, and D. H. Werner, “Apochromatic Singlets Enabled by Metasurface-Augmented GRIN Lenses,” Optica 5(2), 99–102 (2018).
[Crossref]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast Optimization of Electromagnetic Design Problems Using the Covariance Matrix Adaptation Evolutionary Strategy,” IEEE Trans. Antennas Propag. 59(4), 1275–1285 (2011).
[Crossref]

Whiting, E. B.

Wiecha, P. R.

P. R. Wiecha and O. L. Muskens, “Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures,” Nano Lett. 20(1), 329–338 (2020).
[Crossref]

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary Multi-Objective Optimization of Colour Pixels Based on Dielectric Nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

Xiao, S.

S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, “Electromagnetic Metasurfaces: Physics and Applications,” Adv. Opt. Photonics 11(2), 380–479 (2019).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-Index Meta-surfaces as a Bridge Linking Propagating Waves and Surface Waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-Index Meta-surfaces as a Bridge Linking Propagating Waves and Surface Waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Yablonovitch, E.

Yang, J.

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High-Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

Yang, K.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Yang, R.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

Yang, Y.

Q. Zhang, C. Liu, X. Wan, L. Zhang, S. Liu, Y. Yang, and T. J. Cui, “Machine-Learning Designs of Anisotropic Digital Coding Metasurfaces,” Adv. Theory Simul. 2(2), 1800132 (2019).
[Crossref]

Yellowhair, J.

Yin, G.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Yuan, H.-K.

Yuan Yin, J.

Q. Zhang, X. Wan, S. Liu, J. Yuan Yin, L. Zhang, and T. J. Cui, “Shaping Electromagnetic Waves using Software-Automatically-Designed Metasurfaces,” Sci. Rep. 7(1), 3588 (2017).
[Crossref]

Yue, W.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Yun, S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

Zeni, E.

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface Holograms Reaching 80% Efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zhan, A.

Zhang, H.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Zhang, L.

Q. Zhang, C. Liu, X. Wan, L. Zhang, S. Liu, Y. Yang, and T. J. Cui, “Machine-Learning Designs of Anisotropic Digital Coding Metasurfaces,” Adv. Theory Simul. 2(2), 1800132 (2019).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Q. Zhang, X. Wan, S. Liu, J. Yuan Yin, L. Zhang, and T. J. Cui, “Shaping Electromagnetic Waves using Software-Automatically-Designed Metasurfaces,” Sci. Rep. 7(1), 3588 (2017).
[Crossref]

Zhang, Q.

Q. Zhang, C. Liu, X. Wan, L. Zhang, S. Liu, Y. Yang, and T. J. Cui, “Machine-Learning Designs of Anisotropic Digital Coding Metasurfaces,” Adv. Theory Simul. 2(2), 1800132 (2019).
[Crossref]

Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of Beam Deflector, Splitters, Wave Plates and Metalens Using Photonic Elements with Dielectric Metasurface,” Opt. Commun. 411, 93–100 (2018).
[Crossref]

Q. Zhang, X. Wan, S. Liu, J. Yuan Yin, L. Zhang, and T. J. Cui, “Shaping Electromagnetic Waves using Software-Automatically-Designed Metasurfaces,” Sci. Rep. 7(1), 3588 (2017).
[Crossref]

Zhang, S.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface Holograms Reaching 80% Efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Zhang, W.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Zhang, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Zhang, Y.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Zhao, Z.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Zheng, B.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface Holograms Reaching 80% Efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zheng, H.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Zhou, H.

Z. Guo, L. Zhu, F. Shen, H. Zhou, and R. Gao, “Dielectric Metasurface Based High-efficiency Polarization Splitters,” RSC Adv. 7(16), 9872–9879 (2017).
[Crossref]

Zhou, L.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, “Electromagnetic Metasurfaces: Physics and Applications,” Adv. Opt. Photonics 11(2), 380–479 (2019).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-Index Meta-surfaces as a Bridge Linking Propagating Waves and Surface Waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A Broadband Achromatic Metalens for Focusing and Imaging in the Visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

J. R. Ong, H. S. Chu, V. H. Chen, A. Y. Zhu, and P. Genevet, “Freestanding Dielectric Nanohole Array Metasurface for Mid-infrared Wavelength Applications,” Opt. Lett. 42(13), 2639–2642 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Zhu, D.

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative Model for the Inverse Design of Metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).
[Crossref]

Zhu, L.

Z. Guo, L. Zhu, F. Shen, H. Zhou, and R. Gao, “Dielectric Metasurface Based High-efficiency Polarization Splitters,” RSC Adv. 7(16), 9872–9879 (2017).
[Crossref]

ACS Nano (3)

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks,” ACS Nano 13(8), 8872–8878 (2019).
[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref]

ACS Photonics (3)

P.-I. Schneider, X. Garcia Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger, and C. Rockstuhl, “Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction,” ACS Photonics 6(11), 2726–2733 (2019).
[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design,” ACS Photonics 6(12), 3196–3207 (2019).
[Crossref]

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

Adv. Mater. (1)

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref]

Adv. Opt. Mater. (2)

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic Dielectric Metasurfaces with High-Efficiency, Multiwavelength Functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-Efficiency Dielectric Huygens’ Surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Adv. Opt. Photonics (1)

S. Sun, Q. He, J. Hao, S. Xiao, and L. Zhou, “Electromagnetic Metasurfaces: Physics and Applications,” Adv. Opt. Photonics 11(2), 380–479 (2019).
[Crossref]

Adv. Sci. (1)

T. Qiu, X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, “Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design,” Adv. Sci. 6(12), 1900128 (2019).
[Crossref]

Adv. Theory Simul. (1)

Q. Zhang, C. Liu, X. Wan, L. Zhang, S. Liu, Y. Yang, and T. J. Cui, “Machine-Learning Designs of Anisotropic Digital Coding Metasurfaces,” Adv. Theory Simul. 2(2), 1800132 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Inampudi and H. Mosallaei, “Neural Network Based Design of Metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
[Crossref]

Comput. Methods Appl. Mech. Eng. (1)

R. E. Christiansen, J. Vester-Petersen, S. P. Madsen, and O. Sigmund, “A Non-linear Material Interpolation for Design of Metallic Nano-particles Using Topology Optimization,” Comput. Methods Appl. Mech. Eng. 343, 23–39 (2019).
[Crossref]

Evolutionary Comput. (3)

C. Igel, N. Hansen, and S. Roth, “Covariance Matrix Adaptation for Multi-objective Optimization,” Evolutionary Comput. 15(1), 1–28 (2007).
[Crossref]

D. Hadka and P. Reed, “Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework,” Evolutionary Comput. 21(2), 231–259 (2013).
[Crossref]

N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES),” Evolutionary Comput. 11(1), 1–18 (2003).
[Crossref]

IEEE Trans. Antennas Propag. (1)

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast Optimization of Electromagnetic Design Problems Using the Covariance Matrix Adaptation Evolutionary Strategy,” IEEE Trans. Antennas Propag. 59(4), 1275–1285 (2011).
[Crossref]

IEEE Trans. Evol. Computat. (1)

K. Deb and H. Jain, “An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints,” IEEE Trans. Evol. Computat. 18(4), 577–601 (2014).
[Crossref]

Laser Photonics Rev. (1)

J. S. Jensen and O. Sigmund, “Topology Optimization for Nano-Photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

Nano Lett. (7)

P. R. Wiecha and O. L. Muskens, “Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures,” Nano Lett. 20(1), 329–338 (2020).
[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative Model for the Inverse Design of Metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett. 11(6), 2329–2333 (2011).
[Crossref]

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically Engineered Plasmonic Nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Nat. Commun. (2)

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-Thin High-Efficiency Mid-Infrared Transmissive Huygens Meta-Optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-Thick Lenses with High Numerical Apertures and Large Efficiency Based on High-Contrast Transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref]

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-Index Meta-surfaces as a Bridge Linking Propagating Waves and Surface Waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Nat. Nanotechnol. (4)

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary Multi-Objective Optimization of Colour Pixels Based on Dielectric Nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2017).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface Holograms Reaching 80% Efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A Broadband Achromatic Metalens for Focusing and Imaging in the Visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Opt. Commun. (1)

Q. Zhang, M. Li, T. Liao, and X. Cui, “Design of Beam Deflector, Splitters, Wave Plates and Metalens Using Photonic Elements with Dielectric Metasurface,” Opt. Commun. 411, 93–100 (2018).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B (1)

E. S. Harper, E. J. Coyle, J. P. Vernon, and M. S. Mills, “Inverse Design of Broadband Highly Reflective Metasurfaces Using Neural Networks,” Phys. Rev. B 101(19), 195104 (2020).
[Crossref]

Phys. Rev. Lett. (1)

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary Optimization of Optical Antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref]

Plasmonics (1)

F. Babaei, M. Javidnasab, and A. Rezaei, “Supershape Nanoparticle Plasmons,” Plasmonics 13(4), 1491–1497 (2018).
[Crossref]

Rep. Prog. Phys. (1)

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient Metasurfaces: A Review of Fundamentals and Applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

RSC Adv. (1)

Z. Guo, L. Zhu, F. Shen, H. Zhou, and R. Gao, “Dielectric Metasurface Based High-efficiency Polarization Splitters,” RSC Adv. 7(16), 9872–9879 (2017).
[Crossref]

Sci. Adv. (1)

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D Meta-Holography by Broadband Plasmonic Modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref]

Sci. Rep. (2)

Q. Zhang, X. Wan, S. Liu, J. Yuan Yin, L. Zhang, and T. J. Cui, “Shaping Electromagnetic Waves using Software-Automatically-Designed Metasurfaces,” Sci. Rep. 7(1), 3588 (2017).
[Crossref]

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive Genetic Algorithm for Optical Metasurfaces Design,” Sci. Rep. 8(1), 11040–16 (2018).
[Crossref]

Science (3)

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science 335(6067), 427 (2012).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Other (4)

Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine-Learning-Assisted Metasurface Design for High- Efficiency Thermal Emitter Optimization,” arXiv 28 (2019).

M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods, and Applications, Second edition, corrected printing, Engineering Online Library (Springer, 2011).

J. P. Hugonin and P. Lalanne, Reticolo Software for Grating Analysis (Institut d’Optique, 2005).

COMSOL Multiphysics v. 5.3 (COMSOL AB, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Flowchart showing the procedure for creating freeform meta-atoms.
Fig. 2.
Fig. 2. A demonstration of traditional and uniquely shaped meta-atom designs generated by the surface contour method. The control points (pink spheres) shape the surface topology and, thus, the meta-atom geometry.
Fig. 3.
Fig. 3. Depiction of the relationship between the transformed objectives and (a) transmittance and (b) transmission phase.
Fig. 4.
Fig. 4. (a) The unit cell arrangement. Lx = 120 nm, Ly = 300 nm, tgp = 130 nm, ts = 50 nm, tms = 30 nm, and Lms = 90 nm. (b) A comparison between the shape optimization designs and the rectangular nanodisk designs. Each circle dot represents an individual unit cell design, and each black diamond represents the solution from sweeping the length of a rectangular nanodisk. The white triangles represent the meta-atoms chosen to construct the nanodisk supercell, and the light pink triangles represent the meta-atoms chosen for the shape-optimized supercell design.
Fig. 5.
Fig. 5. (a) The shape-optimized supercell design. (b) The reflectance from the simulated nanodisk design and the shape-optimized supercell design. (c) The field plot showing the reflected field from the shape-optimized supercell.
Fig. 6.
Fig. 6. The reflectance into the +1 diffraction order as a function of (a) wavelength and (b) incidence angle.
Fig. 7.
Fig. 7. The geometry setup of the (a) elliptical pillar and (c) shape-optimized unit cells. The dimensions are Λx = Λy = 775 nm and h = 700 nm. The transmission behaviors are mapped out in (b) and (d) for the elliptical and shape-optimized designs, respectively. Each circle represents a unique unit cell design and its position indicates the co-polarization transmission phase for x- and y-polarized light. The color indicates the unit cell’s minimum transmittance for x- and y-polarized light.
Fig. 8.
Fig. 8. Pareto Fronts from the multi-objective optimization of the 4-element supercell using (blue) elliptical pillars and (red) shape-optimized meta-atoms.
Fig. 9.
Fig. 9. Silicon metasurface supercell performance summary. (a) The diffraction efficiencies for the shape-optimized supercell polarization-dependent beam splitter. The inset shows the shape-optimized supercell with its individual meta-atom elements. (b) The field plots for the optimized design for (left) x- and (right) y-polarized light.

Tables (1)

Tables Icon

Table 1. Comparison of different meta-atom topology design strategies

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( Ob j 1 Ob j 2 ) = [ 1 + 1 1 1 ] ( T 0.5 ϕ / 360 ) + 1