Abstract

We propose the far-infrared and terahertz emitting diodes (FIR-EDs and THz-EDs) based on the graphene-layer/black phosphorus (GL/b-P) and graphene-layer/MoS2 (GL/MoS2) heterostructures with the lateral hole and vertical electron injection and develop their device models. In these EDs, the GL serves as an active region emitting the FIR and THz photons. Depending on the material of the electron injector, the carriers in the GL can be either cooled or heated dictated by the interplay of the vertical electron injection and optical phonon recombination. The proposed EDs based on GL/b-P heterostructures can be efficient sources of the FIP and THz radiation operating at room temperature.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101(8), 083114 (2007).
    [Crossref]
  2. V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
    [Crossref]
  3. T. Otsuji, S. B. Tombet, A. Satou, M. Ryzhii, and V. Ryzhii, “Terahertz wave generation using graphene: toward new types of terahertz lasers,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400209 (2013).
    [Crossref]
  4. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  5. V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107(5), 054512 (2010).
    [Crossref]
  6. V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–25 (2012).
    [Crossref]
  7. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref]
  8. A. Tredicucci and M. S. Vitiello, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 130–138 (2014).
    [Crossref]
  9. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref]
  10. M. Ryzhii and V. Ryzhii, “Injection and population inversion in electrically induced p–n junction in graphene with split gates,” Jpn. J. Appl. Phys. 46(No. 8), L151–L153 (2007).
    [Crossref]
  11. V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110(9), 094503 (2011).
    [Crossref]
  12. A. A. Dubinov, A. Bylinkin, V. Ya. Aleshkin, V. Ryzhii, T. Otsuji, and D. Svintsov, “Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-later structures,” Opt. Express 24(26), 29603 (2016).
    [Crossref]
  13. D. Yadav, S. Boubanga Tombet, T. Watanabe, S. Arnold, V. Ryzhii, and T. Otsuji, “Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures,” 2D Mater. 3(4), 045009 (2016).
    [Crossref]
  14. D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
    [Crossref]
  15. V. Ryzhii, I. Semenikhin, M. Ryzhii, D. Svintsov, V. Vyurkov, A. Satou, and T. Otsuji, “Double injection in graphene p-i-n structures,” J. Appl. Phys. 113(24), 244505 (2013).
    [Crossref]
  16. V. Ryzhii, T. Otsuji, M. Ryzhii, V. E. Karasik, and M. S. Shur, “Negative terahertz conductivity and amplification of surface plasmons in graphene–black phosphorus injection laser heterostructures,” Phys. Rev. B 100(11), 115436 (2019).
    [Crossref]
  17. V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9), 094001 (2011).
    [Crossref]
  18. M. Yu. Morozov, V. V. Popov, M. Ryzhii, V. G. Leiman, V. Mitin, M. S. Shur, T. Otsuji, and V. Ryzhii, “Optical pumping through a black-As absorbing-cooling layer in graphene-based heterostructure: thermo-diffusion model,” Opt. Mater. Express 9(10), 4061–4069 (2019).
    [Crossref]
  19. Y. Cai, G. Zhang, and Y.-W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4(1), 6677 (2015).
    [Crossref]
  20. F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorous as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
    [Crossref]
  21. Ling Xi, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U. S. A. 112(15), 4523–4530 (2015).
    [Crossref]
  22. R. W. Keyes, “The electrical properties of black phosphorous,” Phys. Rev. 92(3), 580–584 (1953).
    [Crossref]
  23. H. Asahina and A. Morita, “Band structure and optical properties of black phosphorus,” J. Phys. C: Solid State Phys. 17(11), 1839–1852 (1984).
    [Crossref]
  24. A. Morita, “Semiconducting black phosphorus,” Appl. Phys. A 39(4), 227–242 (1986).
    [Crossref]
  25. M. Batmunkh, M. Bat-Erdene, and J. G. Shapter, “Phosphorene and phosphorene-based materials - prospects for future applications,” Adv. Mater. 28(39), 8586–8617 (2016).
    [Crossref]
  26. M. Engel, M. Steiner, and P. Avouris, “A black phosphorus photo-detector for multispectral high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
    [Crossref]
  27. Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
    [Crossref]
  28. A. Castellanos-Gomez, “Black phosphorus: narrow gap, wide applications,” J. Phys. Chem. Lett. 6(21), 4280–4291 (2015).
    [Crossref]
  29. F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
    [Crossref]
  30. K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, “Band alignment in WSe2–Graphene heterostructures,” ACS Nano 9(4), 4527–4532 (2015).
    [Crossref]
  31. E. Leong, R. J. Suess, A. B. Sushkov, H. D. Drew, T. E. Murphy, and M. Mittendorff, “Terahertz photoresponse of black phosphorus,” Opt. Express 25(11), 12666–12674 (2017).
    [Crossref]
  32. Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
    [Crossref]
  33. Tian He, “Novel field-effect schottky barrier transistors based on Graphene-MoS2 heterojunctions,” Sci. Rep. 4(1), 5951 (2015).
    [Crossref]
  34. V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasil, V. Leiman, V. Mitin, and M. S. Shur, “Multiple graphene-layer-based heterostructures with van der Waals barrier layers for terahertz superluminescent and laser diodes with lateral/vertical injection,” Semicond. Sci. Technol. 35 (2018) (accepted May 15, 2020, doi: 10.1088/1361-6641/ab9398).
  35. A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C 2(34), 6940–6945 (2014).
    [Crossref]
  36. A. A. Dubinov, V. Ya. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Terahertz laser with optically pumped graphene layers and Fabri-Perot resonator,” Appl. Phys. Express 2(9), 092301 (2009).
    [Crossref]
  37. F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
    [Crossref]
  38. G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
    [Crossref]
  39. J. Zheng, H. Y. Hoh, Y. Zhang, and Q. Bao, “Graphene-based light-emitting diodes,” in “Graphene Photonics, Optoelectronics, and Plasmonics”, Q. Bao, H. Hoh, and Y. Zhang eds., Chapter 9 (Jenny Stanford Publ., New York, 2017).
  40. C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
    [Crossref]
  41. S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
    [Crossref]
  42. M. Freitag, H.-Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
    [Crossref]
  43. Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
    [Crossref]
  44. H. M. Dong, W. Xu, and F. M. Peeters, “Electrical generation of terahertz blackbody radiation from graphene,” Opt. Express 26(19), 24621–24626 (2018).
    [Crossref]
  45. R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, and D. Englund, “Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity,” Nat. Commun. 10(1), 109 (2019).
    [Crossref]
  46. I. V. Oladyshkin, S. B. Bodrov, Y. A. Sergeev, A. I. Korytin, M. D. Tokman, and A. N. Stepanov, “Optical emission of graphene and electron-hole pair production induced by a strong terahertz field,” Phys. Rev. B 96(15), 155401 (2017).
    [Crossref]
  47. A. Blicher, “Field-effect and Bipolar Power Transistor Physics,” (Academ Press, New York, 1986), p.104.
  48. L. Wang, Z.-H. Zhang, and N. Wang, “Current crowding phenomenon: Theoretical and direct correlation with the efficiency droop of light emitting diodes by a modified ABC model,” IEEE J. Quantum Electron. 51(5), 1–9 (2015).
    [Crossref]
  49. A. Yazgan, L. Jofre, and J. Romeu, “The state of art of terahertz sources: A communication perspective at a glance,” in 2017 40th International Conf. on Telecommunications and Signal Processing (TSP), 2017: IEEE, pp. 81–816.
  50. T. Otsuji and M. Shur, “Terahertz plasmonics: Good results and great expectations,” IEEE Microwave 15(7), 43–50 (2014).
    [Crossref]
  51. M. Y. Morozov, V. G. Leiman, V. V. Popov, V. Mitin, M. S. Shur, V. E. Karasik, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1x absorbing-cooling layers,” Opt. Eng. 59(6), 061606 (2019).
  52. V. Ryzhii, T. Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
    [Crossref]
  53. J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. Ho Cho, T. J. Marks, and M. C. Hersam, “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Lett. 16(4), 2580–2585 (2016).
    [Crossref]
  54. Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
    [Crossref]
  55. T. Wu, Yu Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, and Y. Min, “Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation,” ACS Appl. Mater. Interfaces 11(5), 5136–5145 (2019).
    [Crossref]
  56. F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
    [Crossref]
  57. V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
    [Crossref]
  58. E. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
    [Crossref]
  59. D. Golla, A. Brasington, B. J. LeRoy, and A. Sandhu, “Ultrafast relaxation of hot phonons in graphene-hBN heterostructures,” APL Mater. 5(5), 056101 (2017).
    [Crossref]
  60. A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011).
    [Crossref]
  61. E. Pop, V. Varsney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37(12), 1273–1281 (2012).
    [Crossref]
  62. V. Ryzhii, A. Satou, and T. Otsuji, “Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures,” J. Appl. Phys. 101(2), 024509 (2007).
    [Crossref]
  63. A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
    [Crossref]
  64. T. Otsuji, V. Popov, and V. Ryzhii, “Active graphene plasmonics for terahertz device applications,” J. Phys. D: Appl. Phys. 47(9), 094006 (2014).
    [Crossref]
  65. F. T. Vasko and V. Ryzhii, “Photoconductivity of intrinsic graphene,” Phys. Rev. B 77(19), 195433 (2008).
    [Crossref]
  66. A. Satou, F. T. Vasko, and V. Ryzhii, “Nonequilibrium carriers in intrinsic graphrene under interband photoexcitation,” Phys. Rev. B 78(11), 115431 (2008).
    [Crossref]
  67. F. Stern and J. M. Woodall, “Photon recycling in semiconductor lasers,” J. Appl. Phys. 45(9), 3904–3906 (1974).
    [Crossref]
  68. T. Baba, R. Watanabe, K. Asano, F. Koyama, and K. Iga, “Theoretical and experimental estimations of photon recycling effect in light emitting devices with a metal mirror,” Jpn. J. Appl. Phys. 35(Part 1, No. 1A), 97–100 (1996).
    [Crossref]
  69. N. Tsutsui, I. Khmyrova, V. Ryzhii, and T. Ikegami, “Analysis of photon recycling in light emitting diodes with nonuniform injection,” J. Appl. Phys. 88(6), 3613–3617 (2000).
    [Crossref]
  70. D. Svintsov, V. Ryzhii, and T. Otsuji, “Negative dynamic Drude conductivity in pumped graphene,” Appl. Phys. Express 7(11), 115101 (2014).
    [Crossref]
  71. J. Mickevičius, J. Jurkevičius, M. S. Shur, J. Yang, R. Gaska, and G. Tamulaitis, “Photoluminescence efficiency droop and stimulated recombination in GaN epilayers,” Opt. Express 20(23), 25195–25200 (2012).
    [Crossref]
  72. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006).
    [Crossref]
  73. A. Žukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid State Lighting,” (John Wiley and Sons, 2002).
  74. M. S. Foster and I. L. Aleiner, “Slow imbalance relaxation and thermoelectric transport in graphene,” Phys. Rev. B 79(8), 085415 (2009).
    [Crossref]
  75. G. Alymov, V. Vyurkov, V. Ryzhii, A. Satou, and D. Svintsov, “Auger recombination in Dirac materials: A tangle of many-body effects,” Phys. Rev. B 97(20), 205411 (2018).
    [Crossref]
  76. D. Svintsov, T. Otsuji, V. Mitin, M. S. Shur, and V. Ryzhii, “Negative terahertz conductivity in disordered graphene bilayers with population inversion,” Appl. Phys. Lett. 106(11), 113501 (2015).
    [Crossref]
  77. V. Vyurkov and V. Ryzhii, “Effect of Coulomb scattering on graphene conductivity,” JETP Lett. 88(5), 322–325 (2008).
    [Crossref]
  78. D. Svintsov, V. Ryzhii, A. Satou, T. Otsuji, and V. Vyurkov, “Carrier-carrier scattering and negative dynamic conductivity in pumped graphene,” Opt. Express 22(17), 19873–19886 (2014).
    [Crossref]
  79. V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
    [Crossref]
  80. S.-J. He, D.-K. Wang, Z.-X. Yang, J.-X. Man, and Z.-H. Lu, “Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging,” Phys. Lett. 112(24), 243301 (2018).
    [Crossref]
  81. A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
    [Crossref]
  82. T. Sakthivela, X. Huanga, Y. Wuc, and S. Rtimi, “Recent progress in blackphosphorus nano structures as environmental photocatalysts,” Chem. Eng. J. 379, 122297 (2020).
    [Crossref]
  83. F. Liu, C. Huang, C.-X. Liu, R. Shi, and Y. Chen, “Black phosphorus-based semiconductor heterojunctions for photocatalytic water splitting,” Chem. - Eur. J. 26(20), 4449–4460 (2020).
    [Crossref]
  84. L. Zhang, B. Wang, Y. Zhou, C. Wang, X. Chen, and H. Zhang, “Synthesis techniques, optoelectronic properties, and broadband photodetection of thin-film black phosphorus,” Adv. Optical Mater. 202000045 (2020).
  85. Y. Wakafuji, R. Moriya, S. Masubuchi, K. Watanabe, T. Taniguchi, and T. Machida, “3D manipulation of 2D materials using microdome polymer,” Nano Lett. 20(4), 2486–2492 (2020).
    [Crossref]
  86. S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, and T. Machida, “Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices,” Nat. Commun. 9(1), 1413 (2018).
    [Crossref]

2020 (4)

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

T. Sakthivela, X. Huanga, Y. Wuc, and S. Rtimi, “Recent progress in blackphosphorus nano structures as environmental photocatalysts,” Chem. Eng. J. 379, 122297 (2020).
[Crossref]

F. Liu, C. Huang, C.-X. Liu, R. Shi, and Y. Chen, “Black phosphorus-based semiconductor heterojunctions for photocatalytic water splitting,” Chem. - Eur. J. 26(20), 4449–4460 (2020).
[Crossref]

Y. Wakafuji, R. Moriya, S. Masubuchi, K. Watanabe, T. Taniguchi, and T. Machida, “3D manipulation of 2D materials using microdome polymer,” Nano Lett. 20(4), 2486–2492 (2020).
[Crossref]

2019 (7)

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, V. E. Karasik, and M. S. Shur, “Negative terahertz conductivity and amplification of surface plasmons in graphene–black phosphorus injection laser heterostructures,” Phys. Rev. B 100(11), 115436 (2019).
[Crossref]

M. Yu. Morozov, V. V. Popov, M. Ryzhii, V. G. Leiman, V. Mitin, M. S. Shur, T. Otsuji, and V. Ryzhii, “Optical pumping through a black-As absorbing-cooling layer in graphene-based heterostructure: thermo-diffusion model,” Opt. Mater. Express 9(10), 4061–4069 (2019).
[Crossref]

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, and D. Englund, “Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity,” Nat. Commun. 10(1), 109 (2019).
[Crossref]

M. Y. Morozov, V. G. Leiman, V. V. Popov, V. Mitin, M. S. Shur, V. E. Karasik, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1x absorbing-cooling layers,” Opt. Eng. 59(6), 061606 (2019).

T. Wu, Yu Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, and Y. Min, “Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation,” ACS Appl. Mater. Interfaces 11(5), 5136–5145 (2019).
[Crossref]

2018 (6)

V. Ryzhii, T. Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

H. M. Dong, W. Xu, and F. M. Peeters, “Electrical generation of terahertz blackbody radiation from graphene,” Opt. Express 26(19), 24621–24626 (2018).
[Crossref]

G. Alymov, V. Vyurkov, V. Ryzhii, A. Satou, and D. Svintsov, “Auger recombination in Dirac materials: A tangle of many-body effects,” Phys. Rev. B 97(20), 205411 (2018).
[Crossref]

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

S.-J. He, D.-K. Wang, Z.-X. Yang, J.-X. Man, and Z.-H. Lu, “Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging,” Phys. Lett. 112(24), 243301 (2018).
[Crossref]

S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, and T. Machida, “Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices,” Nat. Commun. 9(1), 1413 (2018).
[Crossref]

2017 (6)

F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
[Crossref]

E. Leong, R. J. Suess, A. B. Sushkov, H. D. Drew, T. E. Murphy, and M. Mittendorff, “Terahertz photoresponse of black phosphorus,” Opt. Express 25(11), 12666–12674 (2017).
[Crossref]

D. Golla, A. Brasington, B. J. LeRoy, and A. Sandhu, “Ultrafast relaxation of hot phonons in graphene-hBN heterostructures,” APL Mater. 5(5), 056101 (2017).
[Crossref]

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

I. V. Oladyshkin, S. B. Bodrov, Y. A. Sergeev, A. I. Korytin, M. D. Tokman, and A. N. Stepanov, “Optical emission of graphene and electron-hole pair production induced by a strong terahertz field,” Phys. Rev. B 96(15), 155401 (2017).
[Crossref]

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

2016 (5)

J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. Ho Cho, T. J. Marks, and M. C. Hersam, “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Lett. 16(4), 2580–2585 (2016).
[Crossref]

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

M. Batmunkh, M. Bat-Erdene, and J. G. Shapter, “Phosphorene and phosphorene-based materials - prospects for future applications,” Adv. Mater. 28(39), 8586–8617 (2016).
[Crossref]

A. A. Dubinov, A. Bylinkin, V. Ya. Aleshkin, V. Ryzhii, T. Otsuji, and D. Svintsov, “Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-later structures,” Opt. Express 24(26), 29603 (2016).
[Crossref]

D. Yadav, S. Boubanga Tombet, T. Watanabe, S. Arnold, V. Ryzhii, and T. Otsuji, “Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures,” 2D Mater. 3(4), 045009 (2016).
[Crossref]

2015 (10)

Y. Cai, G. Zhang, and Y.-W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4(1), 6677 (2015).
[Crossref]

A. Castellanos-Gomez, “Black phosphorus: narrow gap, wide applications,” J. Phys. Chem. Lett. 6(21), 4280–4291 (2015).
[Crossref]

Ling Xi, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U. S. A. 112(15), 4523–4530 (2015).
[Crossref]

Tian He, “Novel field-effect schottky barrier transistors based on Graphene-MoS2 heterojunctions,” Sci. Rep. 4(1), 5951 (2015).
[Crossref]

K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, “Band alignment in WSe2–Graphene heterostructures,” ACS Nano 9(4), 4527–4532 (2015).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

L. Wang, Z.-H. Zhang, and N. Wang, “Current crowding phenomenon: Theoretical and direct correlation with the efficiency droop of light emitting diodes by a modified ABC model,” IEEE J. Quantum Electron. 51(5), 1–9 (2015).
[Crossref]

D. Svintsov, T. Otsuji, V. Mitin, M. S. Shur, and V. Ryzhii, “Negative terahertz conductivity in disordered graphene bilayers with population inversion,” Appl. Phys. Lett. 106(11), 113501 (2015).
[Crossref]

2014 (11)

D. Svintsov, V. Ryzhii, and T. Otsuji, “Negative dynamic Drude conductivity in pumped graphene,” Appl. Phys. Express 7(11), 115101 (2014).
[Crossref]

T. Otsuji, V. Popov, and V. Ryzhii, “Active graphene plasmonics for terahertz device applications,” J. Phys. D: Appl. Phys. 47(9), 094006 (2014).
[Crossref]

T. Otsuji and M. Shur, “Terahertz plasmonics: Good results and great expectations,” IEEE Microwave 15(7), 43–50 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C 2(34), 6940–6945 (2014).
[Crossref]

M. Engel, M. Steiner, and P. Avouris, “A black phosphorus photo-detector for multispectral high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorous as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref]

A. Tredicucci and M. S. Vitiello, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 130–138 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

D. Svintsov, V. Ryzhii, A. Satou, T. Otsuji, and V. Vyurkov, “Carrier-carrier scattering and negative dynamic conductivity in pumped graphene,” Opt. Express 22(17), 19873–19886 (2014).
[Crossref]

2013 (2)

T. Otsuji, S. B. Tombet, A. Satou, M. Ryzhii, and V. Ryzhii, “Terahertz wave generation using graphene: toward new types of terahertz lasers,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400209 (2013).
[Crossref]

V. Ryzhii, I. Semenikhin, M. Ryzhii, D. Svintsov, V. Vyurkov, A. Satou, and T. Otsuji, “Double injection in graphene p-i-n structures,” J. Appl. Phys. 113(24), 244505 (2013).
[Crossref]

2012 (4)

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–25 (2012).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

E. Pop, V. Varsney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37(12), 1273–1281 (2012).
[Crossref]

J. Mickevičius, J. Jurkevičius, M. S. Shur, J. Yang, R. Gaska, and G. Tamulaitis, “Photoluminescence efficiency droop and stimulated recombination in GaN epilayers,” Opt. Express 20(23), 25195–25200 (2012).
[Crossref]

2011 (4)

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9), 094001 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110(9), 094503 (2011).
[Crossref]

2010 (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107(5), 054512 (2010).
[Crossref]

M. Freitag, H.-Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref]

2009 (4)

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

M. S. Foster and I. L. Aleiner, “Slow imbalance relaxation and thermoelectric transport in graphene,” Phys. Rev. B 79(8), 085415 (2009).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Terahertz laser with optically pumped graphene layers and Fabri-Perot resonator,” Appl. Phys. Express 2(9), 092301 (2009).
[Crossref]

2008 (3)

V. Vyurkov and V. Ryzhii, “Effect of Coulomb scattering on graphene conductivity,” JETP Lett. 88(5), 322–325 (2008).
[Crossref]

F. T. Vasko and V. Ryzhii, “Photoconductivity of intrinsic graphene,” Phys. Rev. B 77(19), 195433 (2008).
[Crossref]

A. Satou, F. T. Vasko, and V. Ryzhii, “Nonequilibrium carriers in intrinsic graphrene under interband photoexcitation,” Phys. Rev. B 78(11), 115431 (2008).
[Crossref]

2007 (3)

V. Ryzhii, A. Satou, and T. Otsuji, “Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures,” J. Appl. Phys. 101(2), 024509 (2007).
[Crossref]

V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101(8), 083114 (2007).
[Crossref]

M. Ryzhii and V. Ryzhii, “Injection and population inversion in electrically induced p–n junction in graphene with split gates,” Jpn. J. Appl. Phys. 46(No. 8), L151–L153 (2007).
[Crossref]

2006 (1)

A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006).
[Crossref]

2000 (1)

N. Tsutsui, I. Khmyrova, V. Ryzhii, and T. Ikegami, “Analysis of photon recycling in light emitting diodes with nonuniform injection,” J. Appl. Phys. 88(6), 3613–3617 (2000).
[Crossref]

1996 (1)

T. Baba, R. Watanabe, K. Asano, F. Koyama, and K. Iga, “Theoretical and experimental estimations of photon recycling effect in light emitting devices with a metal mirror,” Jpn. J. Appl. Phys. 35(Part 1, No. 1A), 97–100 (1996).
[Crossref]

1994 (1)

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

1986 (1)

A. Morita, “Semiconducting black phosphorus,” Appl. Phys. A 39(4), 227–242 (1986).
[Crossref]

1984 (1)

H. Asahina and A. Morita, “Band structure and optical properties of black phosphorus,” J. Phys. C: Solid State Phys. 17(11), 1839–1852 (1984).
[Crossref]

1974 (1)

F. Stern and J. M. Woodall, “Photon recycling in semiconductor lasers,” J. Appl. Phys. 45(9), 3904–3906 (1974).
[Crossref]

1953 (1)

R. W. Keyes, “The electrical properties of black phosphorous,” Phys. Rev. 92(3), 580–584 (1953).
[Crossref]

Ahmed, F.

F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
[Crossref]

Ajayan, P. M.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Aleiner, I. L.

M. S. Foster and I. L. Aleiner, “Slow imbalance relaxation and thermoelectric transport in graphene,” Phys. Rev. B 79(8), 085415 (2009).
[Crossref]

Aleshkin, V. Y.

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

Alhazmi, M.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Alymov, G.

G. Alymov, V. Vyurkov, V. Ryzhii, A. Satou, and D. Svintsov, “Auger recombination in Dirac materials: A tangle of many-body effects,” Phys. Rev. B 97(20), 205411 (2018).
[Crossref]

Arnold, S.

D. Yadav, S. Boubanga Tombet, T. Watanabe, S. Arnold, V. Ryzhii, and T. Otsuji, “Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures,” 2D Mater. 3(4), 045009 (2016).
[Crossref]

Asahina, H.

H. Asahina and A. Morita, “Band structure and optical properties of black phosphorus,” J. Phys. C: Solid State Phys. 17(11), 1839–1852 (1984).
[Crossref]

Asakawa, Y.

S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, and T. Machida, “Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices,” Nat. Commun. 9(1), 1413 (2018).
[Crossref]

Asano, K.

T. Baba, R. Watanabe, K. Asano, F. Koyama, and K. Iga, “Theoretical and experimental estimations of photon recycling effect in light emitting devices with a metal mirror,” Jpn. J. Appl. Phys. 35(Part 1, No. 1A), 97–100 (1996).
[Crossref]

Atatüre, M.

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

Avouris, P.

M. Engel, M. Steiner, and P. Avouris, “A black phosphorus photo-detector for multispectral high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

M. Freitag, H.-Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref]

Baba, T.

T. Baba, R. Watanabe, K. Asano, F. Koyama, and K. Iga, “Theoretical and experimental estimations of photon recycling effect in light emitting devices with a metal mirror,” Jpn. J. Appl. Phys. 35(Part 1, No. 1A), 97–100 (1996).
[Crossref]

Bae, M.-H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Balandin, A. A.

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011).
[Crossref]

Bao, Q.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

J. Zheng, H. Y. Hoh, Y. Zhang, and Q. Bao, “Graphene-based light-emitting diodes,” in “Graphene Photonics, Optoelectronics, and Plasmonics”, Q. Bao, H. Hoh, and Y. Zhang eds., Chapter 9 (Jenny Stanford Publ., New York, 2017).

Barbone, M.

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

Baryshnikov, N. V.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–25 (2012).
[Crossref]

Bat-Erdene, M.

M. Batmunkh, M. Bat-Erdene, and J. G. Shapter, “Phosphorene and phosphorene-based materials - prospects for future applications,” Adv. Mater. 28(39), 8586–8617 (2016).
[Crossref]

Batmunkh, M.

M. Batmunkh, M. Bat-Erdene, and J. G. Shapter, “Phosphorene and phosphorene-based materials - prospects for future applications,” Adv. Mater. 28(39), 8586–8617 (2016).
[Crossref]

Beitner, J.

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

Blicher, A.

A. Blicher, “Field-effect and Bipolar Power Transistor Physics,” (Academ Press, New York, 1986), p.104.

Bochkareva, N. I.

A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006).
[Crossref]

Bodrov, S. B.

I. V. Oladyshkin, S. B. Bodrov, Y. A. Sergeev, A. I. Korytin, M. D. Tokman, and A. N. Stepanov, “Optical emission of graphene and electron-hole pair production induced by a strong terahertz field,” Phys. Rev. B 96(15), 155401 (2017).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Boubanga Tombet, S.

D. Yadav, S. Boubanga Tombet, T. Watanabe, S. Arnold, V. Ryzhii, and T. Otsuji, “Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures,” 2D Mater. 3(4), 045009 (2016).
[Crossref]

Brasington, A.

D. Golla, A. Brasington, B. J. LeRoy, and A. Sandhu, “Ultrafast relaxation of hot phonons in graphene-hBN heterostructures,” APL Mater. 5(5), 056101 (2017).
[Crossref]

Bylinkin, A.

Cai, Y.

Y. Cai, G. Zhang, and Y.-W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4(1), 6677 (2015).
[Crossref]

Cao, T.

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

Castellanos-Gomez, A.

A. Castellanos-Gomez, “Black phosphorus: narrow gap, wide applications,” J. Phys. Chem. Lett. 6(21), 4280–4291 (2015).
[Crossref]

Charasheyhar, M.

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

Charazaryan, D.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Chen, X.

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

L. Zhang, B. Wang, Y. Zhou, C. Wang, X. Chen, and H. Zhang, “Synthesis techniques, optoelectronic properties, and broadband photodetection of thin-film black phosphorus,” Adv. Optical Mater. 202000045 (2020).

Chen, Y.

F. Liu, C. Huang, C.-X. Liu, R. Shi, and Y. Chen, “Black phosphorus-based semiconductor heterojunctions for photocatalytic water splitting,” Chem. - Eur. J. 26(20), 4449–4460 (2020).
[Crossref]

Cheong, H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Chiu, H.-Y.

M. Freitag, H.-Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref]

Cho, Y.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Choi, M. S.

F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
[Crossref]

Choi, Y.

J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. Ho Cho, T. J. Marks, and M. C. Hersam, “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Lett. 16(4), 2580–2585 (2016).
[Crossref]

Chun, S.-H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Conrad, N. J.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Corbet, C. M.

K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, “Band alignment in WSe2–Graphene heterostructures,” ACS Nano 9(4), 4527–4532 (2015).
[Crossref]

Del Pozo-Zamudio, O.

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

Deng, Y.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Dillen, D. C.

K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, “Band alignment in WSe2–Graphene heterostructures,” ACS Nano 9(4), 4527–4532 (2015).
[Crossref]

Dong, H. M.

Dorgan, V. E.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Drew, H. D.

Dubinov, A. A.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

A. A. Dubinov, A. Bylinkin, V. Ya. Aleshkin, V. Ryzhii, T. Otsuji, and D. Svintsov, “Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-later structures,” Opt. Express 24(26), 29603 (2016).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Terahertz laser with optically pumped graphene layers and Fabri-Perot resonator,” Appl. Phys. Express 2(9), 092301 (2009).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

Efetov, D. K.

R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, and D. Englund, “Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity,” Nat. Commun. 10(1), 109 (2019).
[Crossref]

Efremov, A. A.

A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006).
[Crossref]

Engel, M.

M. Engel, M. Steiner, and P. Avouris, “A black phosphorus photo-detector for multispectral high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref]

Englund, D.

R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, and D. Englund, “Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity,” Nat. Commun. 10(1), 109 (2019).
[Crossref]

Falko, V. I.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Fallahazad, B.

K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, “Band alignment in WSe2–Graphene heterostructures,” ACS Nano 9(4), 4527–4532 (2015).
[Crossref]

Fan, J.

T. Wu, Yu Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, and Y. Min, “Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation,” ACS Appl. Mater. Interfaces 11(5), 5136–5145 (2019).
[Crossref]

Ferrari, A. C.

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Foster, M. S.

M. S. Foster and I. L. Aleiner, “Slow imbalance relaxation and thermoelectric transport in graphene,” Phys. Rev. B 79(8), 085415 (2009).
[Crossref]

Freitag, M.

M. Freitag, H.-Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref]

Gao, A.

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

Gao, Y.

R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, and D. Englund, “Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity,” Nat. Commun. 10(1), 109 (2019).
[Crossref]

Gaska, R.

Geim, A. K.

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

George, P. A.

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

Gholinia, A.

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

Golla, D.

D. Golla, A. Brasington, B. J. LeRoy, and A. Sandhu, “Ultrafast relaxation of hot phonons in graphene-hBN heterostructures,” APL Mater. 5(5), 056101 (2017).
[Crossref]

Gong, Y.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Gorbunov, R. I.

A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006).
[Crossref]

Gou, G.-Y.

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Goykhman, I.

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

Haigh, S. J.

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, S.-J.

S.-J. He, D.-K. Wang, Z.-X. Yang, J.-X. Man, and Z.-H. Lu, “Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging,” Phys. Lett. 112(24), 243301 (2018).
[Crossref]

He, Tian

Tian He, “Novel field-effect schottky barrier transistors based on Graphene-MoS2 heterojunctions,” Sci. Rep. 4(1), 5951 (2015).
[Crossref]

Heinz, T. F.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Herman, I. P.

F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
[Crossref]

Hersam, M. C.

J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. Ho Cho, T. J. Marks, and M. C. Hersam, “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Lett. 16(4), 2580–2585 (2016).
[Crossref]

Hirtz, T.

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Ho Cho, J.

J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. Ho Cho, T. J. Marks, and M. C. Hersam, “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Lett. 16(4), 2580–2585 (2016).
[Crossref]

Hofmann, S.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C 2(34), 6940–6945 (2014).
[Crossref]

Hoh, H. Y.

J. Zheng, H. Y. Hoh, Y. Zhang, and Q. Bao, “Graphene-based light-emitting diodes,” in “Graphene Photonics, Optoelectronics, and Plasmonics”, Q. Bao, H. Hoh, and Y. Zhang eds., Chapter 9 (Jenny Stanford Publ., New York, 2017).

Holwill, M.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Hone, J.

R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, and D. Englund, “Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity,” Nat. Commun. 10(1), 109 (2019).
[Crossref]

F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Hu, J.

F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
[Crossref]

Huang, C.

F. Liu, C. Huang, C.-X. Liu, R. Shi, and Y. Chen, “Black phosphorus-based semiconductor heterojunctions for photocatalytic water splitting,” Chem. - Eur. J. 26(20), 4449–4460 (2020).
[Crossref]

Huanga, X.

T. Sakthivela, X. Huanga, Y. Wuc, and S. Rtimi, “Recent progress in blackphosphorus nano structures as environmental photocatalysts,” Chem. Eng. J. 379, 122297 (2020).
[Crossref]

Hwang, E.

J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. Ho Cho, T. J. Marks, and M. C. Hersam, “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Lett. 16(4), 2580–2585 (2016).
[Crossref]

Iga, K.

T. Baba, R. Watanabe, K. Asano, F. Koyama, and K. Iga, “Theoretical and experimental estimations of photon recycling effect in light emitting devices with a metal mirror,” Jpn. J. Appl. Phys. 35(Part 1, No. 1A), 97–100 (1996).
[Crossref]

Ikegami, T.

N. Tsutsui, I. Khmyrova, V. Ryzhii, and T. Ikegami, “Analysis of photon recycling in light emitting diodes with nonuniform injection,” J. Appl. Phys. 88(6), 3613–3617 (2000).
[Crossref]

Jariwala, D.

J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. Ho Cho, T. J. Marks, and M. C. Hersam, “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Lett. 16(4), 2580–2585 (2016).
[Crossref]

Jia, Y.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorous as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref]

Jiang, G.

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Jofre, L.

A. Yazgan, L. Jofre, and J. Romeu, “The state of art of terahertz sources: A communication perspective at a glance,” in 2017 40th International Conf. on Telecommunications and Signal Processing (TSP), 2017: IEEE, pp. 81–816.

Jurkevicius, J.

Kang, J.

J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. Ho Cho, T. J. Marks, and M. C. Hersam, “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Lett. 16(4), 2580–2585 (2016).
[Crossref]

Kara, D. M.

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

Karasik, V. E.

M. Y. Morozov, V. G. Leiman, V. V. Popov, V. Mitin, M. S. Shur, V. E. Karasik, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1x absorbing-cooling layers,” Opt. Eng. 59(6), 061606 (2019).

V. Ryzhii, T. Otsuji, M. Ryzhii, V. E. Karasik, and M. S. Shur, “Negative terahertz conductivity and amplification of surface plasmons in graphene–black phosphorus injection laser heterostructures,” Phys. Rev. B 100(11), 115436 (2019).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–25 (2012).
[Crossref]

Karasil, V. E.

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasil, V. Leiman, V. Mitin, and M. S. Shur, “Multiple graphene-layer-based heterostructures with van der Waals barrier layers for terahertz superluminescent and laser diodes with lateral/vertical injection,” Semicond. Sci. Technol. 35 (2018) (accepted May 15, 2020, doi: 10.1088/1361-6641/ab9398).

Keyes, R. W.

R. W. Keyes, “The electrical properties of black phosphorous,” Phys. Rev. 92(3), 580–584 (1953).
[Crossref]

Khmyrova, I.

N. Tsutsui, I. Khmyrova, V. Ryzhii, and T. Ikegami, “Analysis of photon recycling in light emitting diodes with nonuniform injection,” J. Appl. Phys. 88(6), 3613–3617 (2000).
[Crossref]

Kidambi, P. R.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C 2(34), 6940–6945 (2014).
[Crossref]

Kim, H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Kim, K.

K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, “Band alignment in WSe2–Graphene heterostructures,” ACS Nano 9(4), 4527–4532 (2015).
[Crossref]

Kim, P.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Kim, Y. D.

R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, and D. Englund, “Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity,” Nat. Commun. 10(1), 109 (2019).
[Crossref]

F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Kim, Y. S.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Kling, J.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C 2(34), 6940–6945 (2014).
[Crossref]

Koppens, F. H. L.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Korytin, A. I.

I. V. Oladyshkin, S. B. Bodrov, Y. A. Sergeev, A. I. Korytin, M. D. Tokman, and A. N. Stepanov, “Optical emission of graphene and electron-hole pair production induced by a strong terahertz field,” Phys. Rev. B 96(15), 155401 (2017).
[Crossref]

Koyama, F.

T. Baba, R. Watanabe, K. Asano, F. Koyama, and K. Iga, “Theoretical and experimental estimations of photon recycling effect in light emitting devices with a metal mirror,” Jpn. J. Appl. Phys. 35(Part 1, No. 1A), 97–100 (1996).
[Crossref]

Kozikov, A.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Kravets, V.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Kuruvila, A.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C 2(34), 6940–6945 (2014).
[Crossref]

Larentis, S.

K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, “Band alignment in WSe2–Graphene heterostructures,” ACS Nano 9(4), 4527–4532 (2015).
[Crossref]

Larinovich, D. A.

A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006).
[Crossref]

Lee, K.

K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, “Band alignment in WSe2–Graphene heterostructures,” ACS Nano 9(4), 4527–4532 (2015).
[Crossref]

Lee, S.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Lee, S. W.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Leiman, V.

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasil, V. Leiman, V. Mitin, and M. S. Shur, “Multiple graphene-layer-based heterostructures with van der Waals barrier layers for terahertz superluminescent and laser diodes with lateral/vertical injection,” Semicond. Sci. Technol. 35 (2018) (accepted May 15, 2020, doi: 10.1088/1361-6641/ab9398).

Leiman, V. G.

M. Y. Morozov, V. G. Leiman, V. V. Popov, V. Mitin, M. S. Shur, V. E. Karasik, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1x absorbing-cooling layers,” Opt. Eng. 59(6), 061606 (2019).

M. Yu. Morozov, V. V. Popov, M. Ryzhii, V. G. Leiman, V. Mitin, M. S. Shur, T. Otsuji, and V. Ryzhii, “Optical pumping through a black-As absorbing-cooling layer in graphene-based heterostructure: thermo-diffusion model,” Opt. Mater. Express 9(10), 4061–4069 (2019).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

Leong, E.

LeRoy, B. J.

D. Golla, A. Brasington, B. J. LeRoy, and A. Sandhu, “Ultrafast relaxation of hot phonons in graphene-hBN heterostructures,” APL Mater. 5(5), 056101 (2017).
[Crossref]

Li, L.

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

Li, Q.

T. Wu, Yu Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, and Y. Min, “Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation,” ACS Appl. Mater. Interfaces 11(5), 5136–5145 (2019).
[Crossref]

Li, S.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Li, Y.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Liang, S.-J.

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

Lin, S.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Liu, C.-X.

F. Liu, C. Huang, C.-X. Liu, R. Shi, and Y. Chen, “Black phosphorus-based semiconductor heterojunctions for photocatalytic water splitting,” Chem. - Eur. J. 26(20), 4449–4460 (2020).
[Crossref]

Liu, F.

F. Liu, C. Huang, C.-X. Liu, R. Shi, and Y. Chen, “Black phosphorus-based semiconductor heterojunctions for photocatalytic water splitting,” Chem. - Eur. J. 26(20), 4449–4460 (2020).
[Crossref]

Liu, H.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Liu, X.

F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
[Crossref]

Liu, Y.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

Lou, J.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Lu, Y.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Lu, Z.-H.

S.-J. He, D.-K. Wang, Z.-X. Yang, J.-X. Man, and Z.-H. Lu, “Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging,” Phys. Lett. 112(24), 243301 (2018).
[Crossref]

Luc, F.

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

Luo, Z.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Ma, W.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Ma, Yu

T. Wu, Yu Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, and Y. Min, “Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation,” ACS Appl. Mater. Interfaces 11(5), 5136–5145 (2019).
[Crossref]

Machida, T.

Y. Wakafuji, R. Moriya, S. Masubuchi, K. Watanabe, T. Taniguchi, and T. Machida, “3D manipulation of 2D materials using microdome polymer,” Nano Lett. 20(4), 2486–2492 (2020).
[Crossref]

S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, and T. Machida, “Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices,” Nat. Commun. 9(1), 1413 (2018).
[Crossref]

Man, J.-X.

S.-J. He, D.-K. Wang, Z.-X. Yang, J.-X. Man, and Z.-H. Lu, “Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging,” Phys. Lett. 112(24), 243301 (2018).
[Crossref]

Marks, T. J.

J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. Ho Cho, T. J. Marks, and M. C. Hersam, “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Lett. 16(4), 2580–2585 (2016).
[Crossref]

Masubuchi, S.

Y. Wakafuji, R. Moriya, S. Masubuchi, K. Watanabe, T. Taniguchi, and T. Machida, “3D manipulation of 2D materials using microdome polymer,” Nano Lett. 20(4), 2486–2492 (2020).
[Crossref]

S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, and T. Machida, “Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices,” Nat. Commun. 9(1), 1413 (2018).
[Crossref]

Meyer, J.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C 2(34), 6940–6945 (2014).
[Crossref]

Miao, F.

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

Mickevicius, J.

Min, Y.

T. Wu, Yu Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, and Y. Min, “Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation,” ACS Appl. Mater. Interfaces 11(5), 5136–5145 (2019).
[Crossref]

Mishchenko, A.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

Mitin, V.

M. Y. Morozov, V. G. Leiman, V. V. Popov, V. Mitin, M. S. Shur, V. E. Karasik, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1x absorbing-cooling layers,” Opt. Eng. 59(6), 061606 (2019).

M. Yu. Morozov, V. V. Popov, M. Ryzhii, V. G. Leiman, V. Mitin, M. S. Shur, T. Otsuji, and V. Ryzhii, “Optical pumping through a black-As absorbing-cooling layer in graphene-based heterostructure: thermo-diffusion model,” Opt. Mater. Express 9(10), 4061–4069 (2019).
[Crossref]

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

D. Svintsov, T. Otsuji, V. Mitin, M. S. Shur, and V. Ryzhii, “Negative terahertz conductivity in disordered graphene bilayers with population inversion,” Appl. Phys. Lett. 106(11), 113501 (2015).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–25 (2012).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110(9), 094503 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9), 094001 (2011).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107(5), 054512 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasil, V. Leiman, V. Mitin, and M. S. Shur, “Multiple graphene-layer-based heterostructures with van der Waals barrier layers for terahertz superluminescent and laser diodes with lateral/vertical injection,” Semicond. Sci. Technol. 35 (2018) (accepted May 15, 2020, doi: 10.1088/1361-6641/ab9398).

Mitsushio, J.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Mittendorff, M.

Morikawa, S.

S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, and T. Machida, “Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices,” Nat. Commun. 9(1), 1413 (2018).
[Crossref]

Morimoto, M.

S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, and T. Machida, “Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices,” Nat. Commun. 9(1), 1413 (2018).
[Crossref]

Morita, A.

A. Morita, “Semiconducting black phosphorus,” Appl. Phys. A 39(4), 227–242 (1986).
[Crossref]

H. Asahina and A. Morita, “Band structure and optical properties of black phosphorus,” J. Phys. C: Solid State Phys. 17(11), 1839–1852 (1984).
[Crossref]

Moriya, R.

Y. Wakafuji, R. Moriya, S. Masubuchi, K. Watanabe, T. Taniguchi, and T. Machida, “3D manipulation of 2D materials using microdome polymer,” Nano Lett. 20(4), 2486–2492 (2020).
[Crossref]

Morozov, M. Y.

M. Y. Morozov, V. G. Leiman, V. V. Popov, V. Mitin, M. S. Shur, V. E. Karasik, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1x absorbing-cooling layers,” Opt. Eng. 59(6), 061606 (2019).

Mu, H.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Mueller, T.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Mullan, C.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Murphy, T. E.

Nagle, J.

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

Najmaei, S.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Novoselov, K. S.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

Oladyshkin, I. V.

I. V. Oladyshkin, S. B. Bodrov, Y. A. Sergeev, A. I. Korytin, M. D. Tokman, and A. N. Stepanov, “Optical emission of graphene and electron-hole pair production induced by a strong terahertz field,” Phys. Rev. B 96(15), 155401 (2017).
[Crossref]

Onodera, M.

S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, and T. Machida, “Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices,” Nat. Commun. 9(1), 1413 (2018).
[Crossref]

Otsuji, T.

V. Ryzhii, T. Otsuji, M. Ryzhii, V. E. Karasik, and M. S. Shur, “Negative terahertz conductivity and amplification of surface plasmons in graphene–black phosphorus injection laser heterostructures,” Phys. Rev. B 100(11), 115436 (2019).
[Crossref]

M. Yu. Morozov, V. V. Popov, M. Ryzhii, V. G. Leiman, V. Mitin, M. S. Shur, T. Otsuji, and V. Ryzhii, “Optical pumping through a black-As absorbing-cooling layer in graphene-based heterostructure: thermo-diffusion model,” Opt. Mater. Express 9(10), 4061–4069 (2019).
[Crossref]

M. Y. Morozov, V. G. Leiman, V. V. Popov, V. Mitin, M. S. Shur, V. E. Karasik, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1x absorbing-cooling layers,” Opt. Eng. 59(6), 061606 (2019).

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

D. Yadav, S. Boubanga Tombet, T. Watanabe, S. Arnold, V. Ryzhii, and T. Otsuji, “Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures,” 2D Mater. 3(4), 045009 (2016).
[Crossref]

A. A. Dubinov, A. Bylinkin, V. Ya. Aleshkin, V. Ryzhii, T. Otsuji, and D. Svintsov, “Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-later structures,” Opt. Express 24(26), 29603 (2016).
[Crossref]

D. Svintsov, T. Otsuji, V. Mitin, M. S. Shur, and V. Ryzhii, “Negative terahertz conductivity in disordered graphene bilayers with population inversion,” Appl. Phys. Lett. 106(11), 113501 (2015).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

T. Otsuji, V. Popov, and V. Ryzhii, “Active graphene plasmonics for terahertz device applications,” J. Phys. D: Appl. Phys. 47(9), 094006 (2014).
[Crossref]

D. Svintsov, V. Ryzhii, and T. Otsuji, “Negative dynamic Drude conductivity in pumped graphene,” Appl. Phys. Express 7(11), 115101 (2014).
[Crossref]

T. Otsuji and M. Shur, “Terahertz plasmonics: Good results and great expectations,” IEEE Microwave 15(7), 43–50 (2014).
[Crossref]

D. Svintsov, V. Ryzhii, A. Satou, T. Otsuji, and V. Vyurkov, “Carrier-carrier scattering and negative dynamic conductivity in pumped graphene,” Opt. Express 22(17), 19873–19886 (2014).
[Crossref]

V. Ryzhii, I. Semenikhin, M. Ryzhii, D. Svintsov, V. Vyurkov, A. Satou, and T. Otsuji, “Double injection in graphene p-i-n structures,” J. Appl. Phys. 113(24), 244505 (2013).
[Crossref]

T. Otsuji, S. B. Tombet, A. Satou, M. Ryzhii, and V. Ryzhii, “Terahertz wave generation using graphene: toward new types of terahertz lasers,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400209 (2013).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–25 (2012).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110(9), 094503 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9), 094001 (2011).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107(5), 054512 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Terahertz laser with optically pumped graphene layers and Fabri-Perot resonator,” Appl. Phys. Express 2(9), 092301 (2009).
[Crossref]

V. Ryzhii, A. Satou, and T. Otsuji, “Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures,” J. Appl. Phys. 101(2), 024509 (2007).
[Crossref]

V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101(8), 083114 (2007).
[Crossref]

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasil, V. Leiman, V. Mitin, and M. S. Shur, “Multiple graphene-layer-based heterostructures with van der Waals barrier layers for terahertz superluminescent and laser diodes with lateral/vertical injection,” Semicond. Sci. Technol. 35 (2018) (accepted May 15, 2020, doi: 10.1088/1361-6641/ab9398).

Ott, A. K.

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

Ozdemir, S.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Palacios-Berraquero, C.

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

Park, C.-H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Park, S.-N.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Park, Y. D.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Peeters, F. M.

Peng, C.

R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, and D. Englund, “Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity,” Nat. Commun. 10(1), 109 (2019).
[Crossref]

Perebeinos, V.

M. Freitag, H.-Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref]

Polini, M.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Ponomarev, D. S.

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

Pop, E.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

E. Pop, V. Varsney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37(12), 1273–1281 (2012).
[Crossref]

Popov, V.

T. Otsuji, V. Popov, and V. Ryzhii, “Active graphene plasmonics for terahertz device applications,” J. Phys. D: Appl. Phys. 47(9), 094006 (2014).
[Crossref]

Popov, V. V.

M. Y. Morozov, V. G. Leiman, V. V. Popov, V. Mitin, M. S. Shur, V. E. Karasik, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1x absorbing-cooling layers,” Opt. Eng. 59(6), 061606 (2019).

M. Yu. Morozov, V. V. Popov, M. Ryzhii, V. G. Leiman, V. Mitin, M. S. Shur, T. Otsuji, and V. Ryzhii, “Optical pumping through a black-As absorbing-cooling layer in graphene-based heterostructure: thermo-diffusion model,” Opt. Mater. Express 9(10), 4061–4069 (2019).
[Crossref]

Qiu, C.-W.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Qu, D.

F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
[Crossref]

Qu, Z.

T. Wu, Yu Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, and Y. Min, “Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation,” ACS Appl. Mater. Interfaces 11(5), 5136–5145 (2019).
[Crossref]

Quao, Y.-C.

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Rana, F.

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

Rebane, Y. T.

A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006).
[Crossref]

Ren, T.-L.

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Robertson, J.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C 2(34), 6940–6945 (2014).
[Crossref]

Romeu, J.

A. Yazgan, L. Jofre, and J. Romeu, “The state of art of terahertz sources: A communication perspective at a glance,” in 2017 40th International Conf. on Telecommunications and Signal Processing (TSP), 2017: IEEE, pp. 81–816.

Rooney, A. P.

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

Rosencher, E.

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

Roy, A. K.

E. Pop, V. Varsney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37(12), 1273–1281 (2012).
[Crossref]

Rtimi, S.

T. Sakthivela, X. Huanga, Y. Wuc, and S. Rtimi, “Recent progress in blackphosphorus nano structures as environmental photocatalysts,” Chem. Eng. J. 379, 122297 (2020).
[Crossref]

Ryabova, N.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–25 (2012).
[Crossref]

Ryder, C. R.

J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. Ho Cho, T. J. Marks, and M. C. Hersam, “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Lett. 16(4), 2580–2585 (2016).
[Crossref]

Ryoo, J. H.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Ryzhii, M.

M. Y. Morozov, V. G. Leiman, V. V. Popov, V. Mitin, M. S. Shur, V. E. Karasik, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1x absorbing-cooling layers,” Opt. Eng. 59(6), 061606 (2019).

V. Ryzhii, T. Otsuji, M. Ryzhii, V. E. Karasik, and M. S. Shur, “Negative terahertz conductivity and amplification of surface plasmons in graphene–black phosphorus injection laser heterostructures,” Phys. Rev. B 100(11), 115436 (2019).
[Crossref]

M. Yu. Morozov, V. V. Popov, M. Ryzhii, V. G. Leiman, V. Mitin, M. S. Shur, T. Otsuji, and V. Ryzhii, “Optical pumping through a black-As absorbing-cooling layer in graphene-based heterostructure: thermo-diffusion model,” Opt. Mater. Express 9(10), 4061–4069 (2019).
[Crossref]

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

V. Ryzhii, I. Semenikhin, M. Ryzhii, D. Svintsov, V. Vyurkov, A. Satou, and T. Otsuji, “Double injection in graphene p-i-n structures,” J. Appl. Phys. 113(24), 244505 (2013).
[Crossref]

T. Otsuji, S. B. Tombet, A. Satou, M. Ryzhii, and V. Ryzhii, “Terahertz wave generation using graphene: toward new types of terahertz lasers,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400209 (2013).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–25 (2012).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110(9), 094503 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9), 094001 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107(5), 054512 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Terahertz laser with optically pumped graphene layers and Fabri-Perot resonator,” Appl. Phys. Express 2(9), 092301 (2009).
[Crossref]

V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101(8), 083114 (2007).
[Crossref]

M. Ryzhii and V. Ryzhii, “Injection and population inversion in electrically induced p–n junction in graphene with split gates,” Jpn. J. Appl. Phys. 46(No. 8), L151–L153 (2007).
[Crossref]

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasil, V. Leiman, V. Mitin, and M. S. Shur, “Multiple graphene-layer-based heterostructures with van der Waals barrier layers for terahertz superluminescent and laser diodes with lateral/vertical injection,” Semicond. Sci. Technol. 35 (2018) (accepted May 15, 2020, doi: 10.1088/1361-6641/ab9398).

Ryzhii, V

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Ryzhii, V.

V. Ryzhii, T. Otsuji, M. Ryzhii, V. E. Karasik, and M. S. Shur, “Negative terahertz conductivity and amplification of surface plasmons in graphene–black phosphorus injection laser heterostructures,” Phys. Rev. B 100(11), 115436 (2019).
[Crossref]

M. Yu. Morozov, V. V. Popov, M. Ryzhii, V. G. Leiman, V. Mitin, M. S. Shur, T. Otsuji, and V. Ryzhii, “Optical pumping through a black-As absorbing-cooling layer in graphene-based heterostructure: thermo-diffusion model,” Opt. Mater. Express 9(10), 4061–4069 (2019).
[Crossref]

M. Y. Morozov, V. G. Leiman, V. V. Popov, V. Mitin, M. S. Shur, V. E. Karasik, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1x absorbing-cooling layers,” Opt. Eng. 59(6), 061606 (2019).

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

G. Alymov, V. Vyurkov, V. Ryzhii, A. Satou, and D. Svintsov, “Auger recombination in Dirac materials: A tangle of many-body effects,” Phys. Rev. B 97(20), 205411 (2018).
[Crossref]

D. Yadav, S. Boubanga Tombet, T. Watanabe, S. Arnold, V. Ryzhii, and T. Otsuji, “Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures,” 2D Mater. 3(4), 045009 (2016).
[Crossref]

A. A. Dubinov, A. Bylinkin, V. Ya. Aleshkin, V. Ryzhii, T. Otsuji, and D. Svintsov, “Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-later structures,” Opt. Express 24(26), 29603 (2016).
[Crossref]

D. Svintsov, T. Otsuji, V. Mitin, M. S. Shur, and V. Ryzhii, “Negative terahertz conductivity in disordered graphene bilayers with population inversion,” Appl. Phys. Lett. 106(11), 113501 (2015).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

T. Otsuji, V. Popov, and V. Ryzhii, “Active graphene plasmonics for terahertz device applications,” J. Phys. D: Appl. Phys. 47(9), 094006 (2014).
[Crossref]

D. Svintsov, V. Ryzhii, and T. Otsuji, “Negative dynamic Drude conductivity in pumped graphene,” Appl. Phys. Express 7(11), 115101 (2014).
[Crossref]

D. Svintsov, V. Ryzhii, A. Satou, T. Otsuji, and V. Vyurkov, “Carrier-carrier scattering and negative dynamic conductivity in pumped graphene,” Opt. Express 22(17), 19873–19886 (2014).
[Crossref]

V. Ryzhii, I. Semenikhin, M. Ryzhii, D. Svintsov, V. Vyurkov, A. Satou, and T. Otsuji, “Double injection in graphene p-i-n structures,” J. Appl. Phys. 113(24), 244505 (2013).
[Crossref]

T. Otsuji, S. B. Tombet, A. Satou, M. Ryzhii, and V. Ryzhii, “Terahertz wave generation using graphene: toward new types of terahertz lasers,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400209 (2013).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–25 (2012).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110(9), 094503 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9), 094001 (2011).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107(5), 054512 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Terahertz laser with optically pumped graphene layers and Fabri-Perot resonator,” Appl. Phys. Express 2(9), 092301 (2009).
[Crossref]

F. T. Vasko and V. Ryzhii, “Photoconductivity of intrinsic graphene,” Phys. Rev. B 77(19), 195433 (2008).
[Crossref]

A. Satou, F. T. Vasko, and V. Ryzhii, “Nonequilibrium carriers in intrinsic graphrene under interband photoexcitation,” Phys. Rev. B 78(11), 115431 (2008).
[Crossref]

V. Vyurkov and V. Ryzhii, “Effect of Coulomb scattering on graphene conductivity,” JETP Lett. 88(5), 322–325 (2008).
[Crossref]

V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101(8), 083114 (2007).
[Crossref]

M. Ryzhii and V. Ryzhii, “Injection and population inversion in electrically induced p–n junction in graphene with split gates,” Jpn. J. Appl. Phys. 46(No. 8), L151–L153 (2007).
[Crossref]

V. Ryzhii, A. Satou, and T. Otsuji, “Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures,” J. Appl. Phys. 101(2), 024509 (2007).
[Crossref]

N. Tsutsui, I. Khmyrova, V. Ryzhii, and T. Ikegami, “Analysis of photon recycling in light emitting diodes with nonuniform injection,” J. Appl. Phys. 88(6), 3613–3617 (2000).
[Crossref]

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasil, V. Leiman, V. Mitin, and M. S. Shur, “Multiple graphene-layer-based heterostructures with van der Waals barrier layers for terahertz superluminescent and laser diodes with lateral/vertical injection,” Semicond. Sci. Technol. 35 (2018) (accepted May 15, 2020, doi: 10.1088/1361-6641/ab9398).

Sakthivela, T.

T. Sakthivela, X. Huanga, Y. Wuc, and S. Rtimi, “Recent progress in blackphosphorus nano structures as environmental photocatalysts,” Chem. Eng. J. 379, 122297 (2020).
[Crossref]

Sandhu, A.

D. Golla, A. Brasington, B. J. LeRoy, and A. Sandhu, “Ultrafast relaxation of hot phonons in graphene-hBN heterostructures,” APL Mater. 5(5), 056101 (2017).
[Crossref]

Satou, A.

G. Alymov, V. Vyurkov, V. Ryzhii, A. Satou, and D. Svintsov, “Auger recombination in Dirac materials: A tangle of many-body effects,” Phys. Rev. B 97(20), 205411 (2018).
[Crossref]

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

D. Svintsov, V. Ryzhii, A. Satou, T. Otsuji, and V. Vyurkov, “Carrier-carrier scattering and negative dynamic conductivity in pumped graphene,” Opt. Express 22(17), 19873–19886 (2014).
[Crossref]

T. Otsuji, S. B. Tombet, A. Satou, M. Ryzhii, and V. Ryzhii, “Terahertz wave generation using graphene: toward new types of terahertz lasers,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400209 (2013).
[Crossref]

V. Ryzhii, I. Semenikhin, M. Ryzhii, D. Svintsov, V. Vyurkov, A. Satou, and T. Otsuji, “Double injection in graphene p-i-n structures,” J. Appl. Phys. 113(24), 244505 (2013).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9), 094001 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

A. Satou, F. T. Vasko, and V. Ryzhii, “Nonequilibrium carriers in intrinsic graphrene under interband photoexcitation,” Phys. Rev. B 78(11), 115431 (2008).
[Crossref]

V. Ryzhii, A. Satou, and T. Otsuji, “Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures,” J. Appl. Phys. 101(2), 024509 (2007).
[Crossref]

Semenikhin, I.

V. Ryzhii, I. Semenikhin, M. Ryzhii, D. Svintsov, V. Vyurkov, A. Satou, and T. Otsuji, “Double injection in graphene p-i-n structures,” J. Appl. Phys. 113(24), 244505 (2013).
[Crossref]

Sergeev, Y. A.

I. V. Oladyshkin, S. B. Bodrov, Y. A. Sergeev, A. I. Korytin, M. D. Tokman, and A. N. Stepanov, “Optical emission of graphene and electron-hole pair production induced by a strong terahertz field,” Phys. Rev. B 96(15), 155401 (2017).
[Crossref]

Shapter, J. G.

M. Batmunkh, M. Bat-Erdene, and J. G. Shapter, “Phosphorene and phosphorene-based materials - prospects for future applications,” Adv. Mater. 28(39), 8586–8617 (2016).
[Crossref]

Sharavaraman, S.

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

Shi, P.

T. Wu, Yu Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, and Y. Min, “Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation,” ACS Appl. Mater. Interfaces 11(5), 5136–5145 (2019).
[Crossref]

Shi, R.

F. Liu, C. Huang, C.-X. Liu, R. Shi, and Y. Chen, “Black phosphorus-based semiconductor heterojunctions for photocatalytic water splitting,” Chem. - Eur. J. 26(20), 4449–4460 (2020).
[Crossref]

Shi, Y.

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

Shiue, R.-J.

R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, and D. Englund, “Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity,” Nat. Commun. 10(1), 109 (2019).
[Crossref]

Shivananju, B. N.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Shreter, Y. G.

A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006).
[Crossref]

Shur, M.

T. Otsuji and M. Shur, “Terahertz plasmonics: Good results and great expectations,” IEEE Microwave 15(7), 43–50 (2014).
[Crossref]

Shur, M. S.

M. Y. Morozov, V. G. Leiman, V. V. Popov, V. Mitin, M. S. Shur, V. E. Karasik, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1x absorbing-cooling layers,” Opt. Eng. 59(6), 061606 (2019).

V. Ryzhii, T. Otsuji, M. Ryzhii, V. E. Karasik, and M. S. Shur, “Negative terahertz conductivity and amplification of surface plasmons in graphene–black phosphorus injection laser heterostructures,” Phys. Rev. B 100(11), 115436 (2019).
[Crossref]

M. Yu. Morozov, V. V. Popov, M. Ryzhii, V. G. Leiman, V. Mitin, M. S. Shur, T. Otsuji, and V. Ryzhii, “Optical pumping through a black-As absorbing-cooling layer in graphene-based heterostructure: thermo-diffusion model,” Opt. Mater. Express 9(10), 4061–4069 (2019).
[Crossref]

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

D. Svintsov, T. Otsuji, V. Mitin, M. S. Shur, and V. Ryzhii, “Negative terahertz conductivity in disordered graphene bilayers with population inversion,” Appl. Phys. Lett. 106(11), 113501 (2015).
[Crossref]

J. Mickevičius, J. Jurkevičius, M. S. Shur, J. Yang, R. Gaska, and G. Tamulaitis, “Photoluminescence efficiency droop and stimulated recombination in GaN epilayers,” Opt. Express 20(23), 25195–25200 (2012).
[Crossref]

A. Žukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid State Lighting,” (John Wiley and Sons, 2002).

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasil, V. Leiman, V. Mitin, and M. S. Shur, “Multiple graphene-layer-based heterostructures with van der Waals barrier layers for terahertz superluminescent and laser diodes with lateral/vertical injection,” Semicond. Sci. Technol. 35 (2018) (accepted May 15, 2020, doi: 10.1088/1361-6641/ab9398).

Šiškins, M.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Son, S.-K.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Spencer, M. G.

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

Steiner, M.

M. Engel, M. Steiner, and P. Avouris, “A black phosphorus photo-detector for multispectral high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref]

M. Freitag, H.-Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref]

Stepanov, A. N.

I. V. Oladyshkin, S. B. Bodrov, Y. A. Sergeev, A. I. Korytin, M. D. Tokman, and A. N. Stepanov, “Optical emission of graphene and electron-hole pair production induced by a strong terahertz field,” Phys. Rev. B 96(15), 155401 (2017).
[Crossref]

Stern, F.

F. Stern and J. M. Woodall, “Photon recycling in semiconductor lasers,” J. Appl. Phys. 45(9), 3904–3906 (1974).
[Crossref]

Strait, J. H.

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

Suess, R. J.

Sugawara, K.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Sun, T.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Sushkov, A. B.

Svintsov, D.

G. Alymov, V. Vyurkov, V. Ryzhii, A. Satou, and D. Svintsov, “Auger recombination in Dirac materials: A tangle of many-body effects,” Phys. Rev. B 97(20), 205411 (2018).
[Crossref]

A. A. Dubinov, A. Bylinkin, V. Ya. Aleshkin, V. Ryzhii, T. Otsuji, and D. Svintsov, “Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-later structures,” Opt. Express 24(26), 29603 (2016).
[Crossref]

D. Svintsov, T. Otsuji, V. Mitin, M. S. Shur, and V. Ryzhii, “Negative terahertz conductivity in disordered graphene bilayers with population inversion,” Appl. Phys. Lett. 106(11), 113501 (2015).
[Crossref]

D. Svintsov, V. Ryzhii, and T. Otsuji, “Negative dynamic Drude conductivity in pumped graphene,” Appl. Phys. Express 7(11), 115101 (2014).
[Crossref]

D. Svintsov, V. Ryzhii, A. Satou, T. Otsuji, and V. Vyurkov, “Carrier-carrier scattering and negative dynamic conductivity in pumped graphene,” Opt. Express 22(17), 19873–19886 (2014).
[Crossref]

V. Ryzhii, I. Semenikhin, M. Ryzhii, D. Svintsov, V. Vyurkov, A. Satou, and T. Otsuji, “Double injection in graphene p-i-n structures,” J. Appl. Phys. 113(24), 244505 (2013).
[Crossref]

Tamamushi, G.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Tamulaitis, G.

Tan, C.

R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, and D. Englund, “Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity,” Nat. Commun. 10(1), 109 (2019).
[Crossref]

Tanigichi, T.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Taniguchi, T.

Y. Wakafuji, R. Moriya, S. Masubuchi, K. Watanabe, T. Taniguchi, and T. Machida, “3D manipulation of 2D materials using microdome polymer,” Nano Lett. 20(4), 2486–2492 (2020).
[Crossref]

S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, and T. Machida, “Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices,” Nat. Commun. 9(1), 1413 (2018).
[Crossref]

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

Tarkhin, D. V.

A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006).
[Crossref]

Tartakovskii, A. I.

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

Thibaudeau, L.

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

Tian, He

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Tobah, Y.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Tokman, M. D.

I. V. Oladyshkin, S. B. Bodrov, Y. A. Sergeev, A. I. Korytin, M. D. Tokman, and A. N. Stepanov, “Optical emission of graphene and electron-hole pair production induced by a strong terahertz field,” Phys. Rev. B 96(15), 155401 (2017).
[Crossref]

Tombet, S. B.

T. Otsuji, S. B. Tombet, A. Satou, M. Ryzhii, and V. Ryzhii, “Terahertz wave generation using graphene: toward new types of terahertz lasers,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400209 (2013).
[Crossref]

Tredicucci, A.

A. Tredicucci and M. S. Vitiello, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 130–138 (2014).
[Crossref]

Tsutsui, N.

N. Tsutsui, I. Khmyrova, V. Ryzhii, and T. Ikegami, “Analysis of photon recycling in light emitting diodes with nonuniform injection,” J. Appl. Phys. 88(6), 3613–3617 (2000).
[Crossref]

Tutuc, E.

K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, “Band alignment in WSe2–Graphene heterostructures,” ACS Nano 9(4), 4527–4532 (2015).
[Crossref]

Varsney, V.

E. Pop, V. Varsney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37(12), 1273–1281 (2012).
[Crossref]

Vasko, F. T.

A. Satou, F. T. Vasko, and V. Ryzhii, “Nonequilibrium carriers in intrinsic graphrene under interband photoexcitation,” Phys. Rev. B 78(11), 115431 (2008).
[Crossref]

F. T. Vasko and V. Ryzhii, “Photoconductivity of intrinsic graphene,” Phys. Rev. B 77(19), 195433 (2008).
[Crossref]

Vinter, B.

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

Vitiello, M. S.

A. Tredicucci and M. S. Vitiello, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 130–138 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Vyurkov, V.

G. Alymov, V. Vyurkov, V. Ryzhii, A. Satou, and D. Svintsov, “Auger recombination in Dirac materials: A tangle of many-body effects,” Phys. Rev. B 97(20), 205411 (2018).
[Crossref]

D. Svintsov, V. Ryzhii, A. Satou, T. Otsuji, and V. Vyurkov, “Carrier-carrier scattering and negative dynamic conductivity in pumped graphene,” Opt. Express 22(17), 19873–19886 (2014).
[Crossref]

V. Ryzhii, I. Semenikhin, M. Ryzhii, D. Svintsov, V. Vyurkov, A. Satou, and T. Otsuji, “Double injection in graphene p-i-n structures,” J. Appl. Phys. 113(24), 244505 (2013).
[Crossref]

V. Vyurkov and V. Ryzhii, “Effect of Coulomb scattering on graphene conductivity,” JETP Lett. 88(5), 322–325 (2008).
[Crossref]

Wagner, J. B.

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C 2(34), 6940–6945 (2014).
[Crossref]

Wakafuji, Y.

Y. Wakafuji, R. Moriya, S. Masubuchi, K. Watanabe, T. Taniguchi, and T. Machida, “3D manipulation of 2D materials using microdome polymer,” Nano Lett. 20(4), 2486–2492 (2020).
[Crossref]

Wang, B.

L. Zhang, B. Wang, Y. Zhou, C. Wang, X. Chen, and H. Zhang, “Synthesis techniques, optoelectronic properties, and broadband photodetection of thin-film black phosphorus,” Adv. Optical Mater. 202000045 (2020).

Wang, C.

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

L. Zhang, B. Wang, Y. Zhou, C. Wang, X. Chen, and H. Zhang, “Synthesis techniques, optoelectronic properties, and broadband photodetection of thin-film black phosphorus,” Adv. Optical Mater. 202000045 (2020).

Wang, D.-K.

S.-J. He, D.-K. Wang, Z.-X. Yang, J.-X. Man, and Z.-H. Lu, “Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging,” Phys. Lett. 112(24), 243301 (2018).
[Crossref]

Wang, H.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorous as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref]

Wang, L.

L. Wang, Z.-H. Zhang, and N. Wang, “Current crowding phenomenon: Theoretical and direct correlation with the efficiency droop of light emitting diodes by a modified ABC model,” IEEE J. Quantum Electron. 51(5), 1–9 (2015).
[Crossref]

Wang, N.

L. Wang, Z.-H. Zhang, and N. Wang, “Current crowding phenomenon: Theoretical and direct correlation with the efficiency droop of light emitting diodes by a modified ABC model,” IEEE J. Quantum Electron. 51(5), 1–9 (2015).
[Crossref]

Wang, X.

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

Wang, X.-F.

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Wang, Y.

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Watanabe, K.

Y. Wakafuji, R. Moriya, S. Masubuchi, K. Watanabe, T. Taniguchi, and T. Machida, “3D manipulation of 2D materials using microdome polymer,” Nano Lett. 20(4), 2486–2492 (2020).
[Crossref]

S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, and T. Machida, “Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices,” Nat. Commun. 9(1), 1413 (2018).
[Crossref]

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

Watanabe, R.

T. Baba, R. Watanabe, K. Asano, F. Koyama, and K. Iga, “Theoretical and experimental estimations of photon recycling effect in light emitting devices with a metal mirror,” Jpn. J. Appl. Phys. 35(Part 1, No. 1A), 97–100 (1996).
[Crossref]

Watanabe, T.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

D. Yadav, S. Boubanga Tombet, T. Watanabe, S. Arnold, V. Ryzhii, and T. Otsuji, “Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures,” 2D Mater. 3(4), 045009 (2016).
[Crossref]

Wei, Yu-H.

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Wells, S. A.

J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. Ho Cho, T. J. Marks, and M. C. Hersam, “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Lett. 16(4), 2580–2585 (2016).
[Crossref]

Withers, F.

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

Woodall, J. M.

F. Stern and J. M. Woodall, “Photon recycling in semiconductor lasers,” J. Appl. Phys. 45(9), 3904–3906 (1974).
[Crossref]

Wu, F.

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Wu, T.

T. Wu, Yu Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, and Y. Min, “Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation,” ACS Appl. Mater. Interfaces 11(5), 5136–5145 (2019).
[Crossref]

Wuc, Y.

T. Sakthivela, X. Huanga, Y. Wuc, and S. Rtimi, “Recent progress in blackphosphorus nano structures as environmental photocatalysts,” Chem. Eng. J. 379, 122297 (2020).
[Crossref]

Xi, Ling

Ling Xi, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U. S. A. 112(15), 4523–4530 (2015).
[Crossref]

Xia, F.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorous as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref]

Xiao, S.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Xu, Q.

T. Wu, Yu Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, and Y. Min, “Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation,” ACS Appl. Mater. Interfaces 11(5), 5136–5145 (2019).
[Crossref]

Xu, W.

Xu, X.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Xue, J.

K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, “Band alignment in WSe2–Graphene heterostructures,” ACS Nano 9(4), 4527–4532 (2015).
[Crossref]

Ya. Aleshkin, V.

A. A. Dubinov, A. Bylinkin, V. Ya. Aleshkin, V. Ryzhii, T. Otsuji, and D. Svintsov, “Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-later structures,” Opt. Express 24(26), 29603 (2016).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Terahertz laser with optically pumped graphene layers and Fabri-Perot resonator,” Appl. Phys. Express 2(9), 092301 (2009).
[Crossref]

Yadav, D.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

D. Yadav, S. Boubanga Tombet, T. Watanabe, S. Arnold, V. Ryzhii, and T. Otsuji, “Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures,” 2D Mater. 3(4), 045009 (2016).
[Crossref]

Yang, J.

Yang, J.-M.

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Yang, S.

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Yang, Yi

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Yang, Z.

F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
[Crossref]

Yang, Z.-X.

S.-J. He, D.-K. Wang, Z.-X. Yang, J.-X. Man, and Z.-H. Lu, “Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging,” Phys. Lett. 112(24), 243301 (2018).
[Crossref]

Yazgan, A.

A. Yazgan, L. Jofre, and J. Romeu, “The state of art of terahertz sources: A communication perspective at a glance,” in 2017 40th International Conf. on Telecommunications and Signal Processing (TSP), 2017: IEEE, pp. 81–816.

Ye, P. D.

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

Yin, J.

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

Yoo, W. J.

F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
[Crossref]

Yoo, Y. S.

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Yoon, D.

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

Yu, W.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

Yu. Morozov, M.

Zhang, G.

Y. Cai, G. Zhang, and Y.-W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4(1), 6677 (2015).
[Crossref]

Zhang, H.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

L. Zhang, B. Wang, Y. Zhou, C. Wang, X. Chen, and H. Zhang, “Synthesis techniques, optoelectronic properties, and broadband photodetection of thin-film black phosphorus,” Adv. Optical Mater. 202000045 (2020).

Zhang, L.

L. Zhang, B. Wang, Y. Zhou, C. Wang, X. Chen, and H. Zhang, “Synthesis techniques, optoelectronic properties, and broadband photodetection of thin-film black phosphorus,” Adv. Optical Mater. 202000045 (2020).

Zhang, Y.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

J. Zheng, H. Y. Hoh, Y. Zhang, and Q. Bao, “Graphene-based light-emitting diodes,” in “Graphene Photonics, Optoelectronics, and Plasmonics”, Q. Bao, H. Hoh, and Y. Zhang eds., Chapter 9 (Jenny Stanford Publ., New York, 2017).

Zhang, Y.-W.

Y. Cai, G. Zhang, and Y.-W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4(1), 6677 (2015).
[Crossref]

Zhang, Z.

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

Zhang, Z.-H.

L. Wang, Z.-H. Zhang, and N. Wang, “Current crowding phenomenon: Theoretical and direct correlation with the efficiency droop of light emitting diodes by a modified ABC model,” IEEE J. Quantum Electron. 51(5), 1–9 (2015).
[Crossref]

Zheng, B.

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

Zheng, J.

R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, and D. Englund, “Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity,” Nat. Commun. 10(1), 109 (2019).
[Crossref]

J. Zheng, H. Y. Hoh, Y. Zhang, and Q. Bao, “Graphene-based light-emitting diodes,” in “Graphene Photonics, Optoelectronics, and Plasmonics”, Q. Bao, H. Hoh, and Y. Zhang eds., Chapter 9 (Jenny Stanford Publ., New York, 2017).

Zhou, Y.

L. Zhang, B. Wang, Y. Zhou, C. Wang, X. Chen, and H. Zhang, “Synthesis techniques, optoelectronic properties, and broadband photodetection of thin-film black phosphorus,” Adv. Optical Mater. 202000045 (2020).

Žukauskas, A.

A. Žukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid State Lighting,” (John Wiley and Sons, 2002).

2D Mater. (2)

S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Tanigichi, D. Charazaryan, K. S. Novoselov, V. I. Falko, and A. Mishchenko, “Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air,” 2D Mater. 5(1), 011006 (2017).
[Crossref]

D. Yadav, S. Boubanga Tombet, T. Watanabe, S. Arnold, V. Ryzhii, and T. Otsuji, “Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures,” 2D Mater. 3(4), 045009 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (2)

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9(41), 36137–36145 (2017).
[Crossref]

T. Wu, Yu Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, and Y. Min, “Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation,” ACS Appl. Mater. Interfaces 11(5), 5136–5145 (2019).
[Crossref]

ACS Nano (5)

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, “Band alignment in WSe2–Graphene heterostructures,” ACS Nano 9(4), 4527–4532 (2015).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode,” ACS Nano 8(8), 8292–8299 (2014).
[Crossref]

A. Gao, Z. Zhang, L. Li, B. Zheng, C. Wang, Y. Wang, T. Cao, Y. Wang, S.-J. Liang, F. Miao, Y. Shi, and X. Wang, “Robust impact-ionization field-effect transistor based on nanoscale vertical graphene/black phosphorus/indium selenide heterostructures,” ACS Nano 14(1), 434–441 (2020).
[Crossref]

Adv. Funct. Mater. (1)

F. Ahmed, Y. D. Kim, M. S. Choi, X. Liu, D. Qu, Z. Yang, J. Hu, I. P. Herman, J. Hone, and W. J. Yoo, “High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering,” Adv. Funct. Mater. 27(4), 1604025 (2017).
[Crossref]

Adv. Mater. (1)

M. Batmunkh, M. Bat-Erdene, and J. G. Shapter, “Phosphorene and phosphorene-based materials - prospects for future applications,” Adv. Mater. 28(39), 8586–8617 (2016).
[Crossref]

APL Mater. (1)

D. Golla, A. Brasington, B. J. LeRoy, and A. Sandhu, “Ultrafast relaxation of hot phonons in graphene-hBN heterostructures,” APL Mater. 5(5), 056101 (2017).
[Crossref]

Appl. Phys. A (1)

A. Morita, “Semiconducting black phosphorus,” Appl. Phys. A 39(4), 227–242 (1986).
[Crossref]

Appl. Phys. Express (2)

D. Svintsov, V. Ryzhii, and T. Otsuji, “Negative dynamic Drude conductivity in pumped graphene,” Appl. Phys. Express 7(11), 115101 (2014).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Terahertz laser with optically pumped graphene layers and Fabri-Perot resonator,” Appl. Phys. Express 2(9), 092301 (2009).
[Crossref]

Appl. Phys. Lett. (1)

D. Svintsov, T. Otsuji, V. Mitin, M. S. Shur, and V. Ryzhii, “Negative terahertz conductivity in disordered graphene bilayers with population inversion,” Appl. Phys. Lett. 106(11), 113501 (2015).
[Crossref]

Chem. - Eur. J. (1)

F. Liu, C. Huang, C.-X. Liu, R. Shi, and Y. Chen, “Black phosphorus-based semiconductor heterojunctions for photocatalytic water splitting,” Chem. - Eur. J. 26(20), 4449–4460 (2020).
[Crossref]

Chem. Eng. J. (1)

T. Sakthivela, X. Huanga, Y. Wuc, and S. Rtimi, “Recent progress in blackphosphorus nano structures as environmental photocatalysts,” Chem. Eng. J. 379, 122297 (2020).
[Crossref]

IEEE J. Quantum Electron. (2)

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeau, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

L. Wang, Z.-H. Zhang, and N. Wang, “Current crowding phenomenon: Theoretical and direct correlation with the efficiency droop of light emitting diodes by a modified ABC model,” IEEE J. Quantum Electron. 51(5), 1–9 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Tredicucci and M. S. Vitiello, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 130–138 (2014).
[Crossref]

T. Otsuji, S. B. Tombet, A. Satou, M. Ryzhii, and V. Ryzhii, “Terahertz wave generation using graphene: toward new types of terahertz lasers,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400209 (2013).
[Crossref]

IEEE Microwave (1)

T. Otsuji and M. Shur, “Terahertz plasmonics: Good results and great expectations,” IEEE Microwave 15(7), 43–50 (2014).
[Crossref]

J. Appl. Phys. (8)

V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101(8), 083114 (2007).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene layer structures,” J. Appl. Phys. 107(5), 054512 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110(9), 094503 (2011).
[Crossref]

V. Ryzhii, A. Satou, and T. Otsuji, “Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures,” J. Appl. Phys. 101(2), 024509 (2007).
[Crossref]

F. Stern and J. M. Woodall, “Photon recycling in semiconductor lasers,” J. Appl. Phys. 45(9), 3904–3906 (1974).
[Crossref]

N. Tsutsui, I. Khmyrova, V. Ryzhii, and T. Ikegami, “Analysis of photon recycling in light emitting diodes with nonuniform injection,” J. Appl. Phys. 88(6), 3613–3617 (2000).
[Crossref]

V. Ryzhii, I. Semenikhin, M. Ryzhii, D. Svintsov, V. Vyurkov, A. Satou, and T. Otsuji, “Double injection in graphene p-i-n structures,” J. Appl. Phys. 113(24), 244505 (2013).
[Crossref]

J. Mater. Chem. C (1)

A. Kuruvila, P. R. Kidambi, J. Kling, J. B. Wagner, J. Robertson, S. Hofmann, and J. Meyer, “Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes,” J. Mater. Chem. C 2(34), 6940–6945 (2014).
[Crossref]

J. Phys. C: Solid State Phys. (1)

H. Asahina and A. Morita, “Band structure and optical properties of black phosphorus,” J. Phys. C: Solid State Phys. 17(11), 1839–1852 (1984).
[Crossref]

J. Phys. Chem. Lett. (1)

A. Castellanos-Gomez, “Black phosphorus: narrow gap, wide applications,” J. Phys. Chem. Lett. 6(21), 4280–4291 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

T. Otsuji, V. Popov, and V. Ryzhii, “Active graphene plasmonics for terahertz device applications,” J. Phys. D: Appl. Phys. 47(9), 094006 (2014).
[Crossref]

J. Phys. Soc. Jpn. (1)

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

J. Phys.: Condens. Matter (1)

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

JETP Lett. (1)

V. Vyurkov and V. Ryzhii, “Effect of Coulomb scattering on graphene conductivity,” JETP Lett. 88(5), 322–325 (2008).
[Crossref]

Jpn. J. Appl. Phys. (3)

T. Baba, R. Watanabe, K. Asano, F. Koyama, and K. Iga, “Theoretical and experimental estimations of photon recycling effect in light emitting devices with a metal mirror,” Jpn. J. Appl. Phys. 35(Part 1, No. 1A), 97–100 (1996).
[Crossref]

M. Ryzhii and V. Ryzhii, “Injection and population inversion in electrically induced p–n junction in graphene with split gates,” Jpn. J. Appl. Phys. 46(No. 8), L151–L153 (2007).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9), 094001 (2011).
[Crossref]

MRS Bull. (1)

E. Pop, V. Varsney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37(12), 1273–1281 (2012).
[Crossref]

Nano Lett. (3)

M. Engel, M. Steiner, and P. Avouris, “A black phosphorus photo-detector for multispectral high-resolution imaging,” Nano Lett. 14(11), 6414–6417 (2014).
[Crossref]

J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. Ho Cho, T. J. Marks, and M. C. Hersam, “Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors,” Nano Lett. 16(4), 2580–2585 (2016).
[Crossref]

Y. Wakafuji, R. Moriya, S. Masubuchi, K. Watanabe, T. Taniguchi, and T. Machida, “3D manipulation of 2D materials using microdome polymer,” Nano Lett. 20(4), 2486–2492 (2020).
[Crossref]

Nanophotonics (1)

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. Satou, M. Ryzhii, V Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Nanoscale Adv. (1)

G. Jiang, He Tian, X.-F. Wang, T. Hirtz, F. Wu, Y.-C. Quao, G.-Y. Gou, Yu-H. Wei, J.-M. Yang, S. Yang, Yi Yang, and T.-L. Ren, “An efficient flexible graphene-based light-emitting device,” Nanoscale Adv. 1(12), 4745–4754 (2019).
[Crossref]

Nat. Commun. (4)

R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, and D. Englund, “Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity,” Nat. Commun. 10(1), 109 (2019).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorous as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 4458 (2014).
[Crossref]

S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, and T. Machida, “Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices,” Nat. Commun. 9(1), 1413 (2018).
[Crossref]

C. Palacios-Berraquero, M. Barbone, D. M. Kara, X. Chen, I. Goykhman, D. Yoon, A. K. Ott, J. Beitner, K. Watanabe, T. Taniguchi, A. C. Ferrari, and M. Atatüre, “Atomically thin quantum light-emitting diodes,” Nat. Commun. 7(1), 12978 (2016).
[Crossref]

Nat. Mater. (2)

F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, “Light-emitting diodes by bandstructure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301–306 (2015).
[Crossref]

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011).
[Crossref]

Nat. Nanotechnol. (3)

M. Freitag, H.-Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref]

Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, and Y. D. Park, “Bright visible light emission from graphene,” Nat. Nanotechnol. 10(8), 676–681 (2015).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Eng. (1)

M. Y. Morozov, V. G. Leiman, V. V. Popov, V. Mitin, M. S. Shur, V. E. Karasik, M. Ryzhii, T. Otsuji, and V. Ryzhii, “Optical pumping in graphene-based terahertz/far-infrared superluminescent and laser heterostructures with graded-gap black-PxAs1x absorbing-cooling layers,” Opt. Eng. 59(6), 061606 (2019).

Opt. Express (5)

Opt. Mater. Express (2)

Opto-Electron. Rev. (1)

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–25 (2012).
[Crossref]

Phys. Lett. (1)

S.-J. He, D.-K. Wang, Z.-X. Yang, J.-X. Man, and Z.-H. Lu, “Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging,” Phys. Lett. 112(24), 243301 (2018).
[Crossref]

Phys. Rev. (1)

R. W. Keyes, “The electrical properties of black phosphorous,” Phys. Rev. 92(3), 580–584 (1953).
[Crossref]

Phys. Rev. B (7)

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

I. V. Oladyshkin, S. B. Bodrov, Y. A. Sergeev, A. I. Korytin, M. D. Tokman, and A. N. Stepanov, “Optical emission of graphene and electron-hole pair production induced by a strong terahertz field,” Phys. Rev. B 96(15), 155401 (2017).
[Crossref]

V. Ryzhii, T. Otsuji, M. Ryzhii, V. E. Karasik, and M. S. Shur, “Negative terahertz conductivity and amplification of surface plasmons in graphene–black phosphorus injection laser heterostructures,” Phys. Rev. B 100(11), 115436 (2019).
[Crossref]

M. S. Foster and I. L. Aleiner, “Slow imbalance relaxation and thermoelectric transport in graphene,” Phys. Rev. B 79(8), 085415 (2009).
[Crossref]

G. Alymov, V. Vyurkov, V. Ryzhii, A. Satou, and D. Svintsov, “Auger recombination in Dirac materials: A tangle of many-body effects,” Phys. Rev. B 97(20), 205411 (2018).
[Crossref]

F. T. Vasko and V. Ryzhii, “Photoconductivity of intrinsic graphene,” Phys. Rev. B 77(19), 195433 (2008).
[Crossref]

A. Satou, F. T. Vasko, and V. Ryzhii, “Nonequilibrium carriers in intrinsic graphrene under interband photoexcitation,” Phys. Rev. B 78(11), 115431 (2008).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

Ling Xi, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U. S. A. 112(15), 4523–4530 (2015).
[Crossref]

Sci. Rep. (2)

Y. Cai, G. Zhang, and Y.-W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4(1), 6677 (2015).
[Crossref]

Tian He, “Novel field-effect schottky barrier transistors based on Graphene-MoS2 heterojunctions,” Sci. Rep. 4(1), 5951 (2015).
[Crossref]

Semicond. Sci. Technol. (1)

V. Ryzhii, T. Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

Semiconductors (1)

A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006).
[Crossref]

Other (6)

A. Žukauskas, M. S. Shur, and R. Gaska, “Introduction to Solid State Lighting,” (John Wiley and Sons, 2002).

J. Zheng, H. Y. Hoh, Y. Zhang, and Q. Bao, “Graphene-based light-emitting diodes,” in “Graphene Photonics, Optoelectronics, and Plasmonics”, Q. Bao, H. Hoh, and Y. Zhang eds., Chapter 9 (Jenny Stanford Publ., New York, 2017).

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasil, V. Leiman, V. Mitin, and M. S. Shur, “Multiple graphene-layer-based heterostructures with van der Waals barrier layers for terahertz superluminescent and laser diodes with lateral/vertical injection,” Semicond. Sci. Technol. 35 (2018) (accepted May 15, 2020, doi: 10.1088/1361-6641/ab9398).

A. Yazgan, L. Jofre, and J. Romeu, “The state of art of terahertz sources: A communication perspective at a glance,” in 2017 40th International Conf. on Telecommunications and Signal Processing (TSP), 2017: IEEE, pp. 81–816.

A. Blicher, “Field-effect and Bipolar Power Transistor Physics,” (Academ Press, New York, 1986), p.104.

L. Zhang, B. Wang, Y. Zhou, C. Wang, X. Chen, and H. Zhang, “Synthesis techniques, optoelectronic properties, and broadband photodetection of thin-film black phosphorus,” Adv. Optical Mater. 202000045 (2020).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The heterostructure device under consideration with the p$^+$–side hole injector and vertical top n$^+$–contact electron injector: (a) cross-section view, (b) band diagram at a relatively small bias voltage ($V < V_{bi}$) - the barrier limited injection, and (c) band diagram at a high ($V > V_{bi}$) bias voltage - the space-charge or scattering limited injection, where $V_{bi}$ is the built-in voltage between the p$^+$- and n$^+$- contact regions. The black and open circles correspond to electrons and holes, respectively. The wavy arrows show the propagation of the photons emitted in the GL.
Fig. 2.
Fig. 2. Normalized temperature $T/T_0$ versus injection current density $j$ in EDs with (a) $\Delta _i = 140$ meV (GL/b-P heterostructures) and (b) $\Delta _i = 290$ meV (MoS$_2$ heterostructures), different GL doping levels [different values of $\mu _a$ - the same for (a) and (b)], and $T_0 = 26$ meV (300 K).
Fig. 3.
Fig. 3. Average quasi-Fermi energy $\mu = (\mu _e + \mu _h)/2$ versus injection current density $j$ in EDs with (a) $\Delta _i = 140$ meV (GL/b-P heterostructures) and (b) $\Delta _i = 290$ meV (MoS$_2$ heterostructures), for the same GL doping levels as in Figs. 2(a) and 2(b): solid lines $T_0 = 26$ meV (300 K).
Fig. 4.
Fig. 4. ED spectral characteristics: (a) for $\Delta _i = 140$ meV (GL/b-P heterostructures) and (b) $\Delta _i = 290$ meV (MoS$_2$ heterostructures) with different acceptor doping levels [different values of $\mu _a$ common for (a) and (b)]: solid lines - $j=250$ A/cm$^2$, dashed - $j=500$ A/cm$^2$, and dotted - $j=750$ A/cm$^2$.
Fig. 5.
Fig. 5. Normalized output power as a function of injected current densities for EDs based on (a) GL/b-P heterostructures and (b) GL/MoS$_2$ heterostructures with different acceptor doping levels.
Fig. 6.
Fig. 6. Schematic view of ED with lateral periodic structure and interdigitated electrodes.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

1 τ 0 i n t e r { exp ( μ e + μ h T ) exp [ ω 0 ( 1 T 0 1 T ) ] 1 } = j e Σ 0 ,
1 τ 0 i n t e r { exp ( μ e + μ h T ) exp [ ω 0 ( 1 T 0 1 T ) ] 1 } + 1 τ 0 i n t r a { exp [ ω 0 ( 1 T 0 1 T ) ] 1 } = j e Σ 0 ( Δ i ω 0 ) .
η 0 2 ω 0 2 [ 3 ( μ e 2 + μ h 2 ) + π 2 T 2 ] if μ e , μ h 0 , η 0 2 ω 0 2 π 2 T 2 if μ e , μ h < 0.
Δ i = Δ C + 3 T 0 2 K ω 0 ( 1 + K η c c ) , η c c = τ 0 τ c c .
T 0 T = 1 T 0 ω 0 ln [ 1 + 2 ω 0 2 3 ( μ e 2 + μ h 2 ) + π 2 T 2 ( Δ i ω 0 1 ) j j G ] ,
μ e + μ h T = ln [ 1 + j j G 1 + 2 ω 0 2 3 ( μ e 2 + μ h 2 ) + π 2 T 2 ( Δ i ω 0 1 ) j j G ] .
μ e + μ h T = ω 0 ( 1 T 1 T 0 ) + ln ( 1 + j j G ) .
μ h 2 μ e 2 μ a 2 , μ e 2 + μ h 2 ( μ e + μ h ) 2 2 + 2 μ a 4 ( μ e + μ h ) 2 .
T 0 T = 1 T 0 ω 0 ln { 1 + 2 ω 0 2 [ 6 μ 2 + 3 μ a 4 2 μ 2 + π 2 T 2 ] ( Δ i ω 0 1 ) j j G }
2 μ T ln [ 1 + j j G 1 + 2 ω 0 2 [ 6 μ 2 + 3 μ a 4 μ 2 + π 2 T 2 ] ( Δ i ω 0 1 ) j j G } .
ν r i n t e r ( p ) = 1 τ r v W p T 0 , 1 τ r = ( e 2 κ S c ) ( v W c ) 2 8 T 0 3 ,
R r i n t e r ( ω ) [ N p h ( ω ) + 1 ] ν r i n t e r ( p ) f e ( p ) f h ( p ) | p = ω / 2 v W ,
S ω = S 0 ( ω T 0 ) 3 [ 1 + exp ( ω / 2 μ e T ) ] [ 1 + exp ( ω / 2 μ h T ) ] exp ( ω T 0 ) [ exp ( ω T 0 ) 1 ]
P = A 0 d ( ω ) S ω .
μ e μ μ a 2 4 μ , μ h μ + μ a 2 4 μ ,
S ω = S 0 ( ω T 0 ) 3 [ 1 + exp ( ω / 2 μ + μ a 2 / 4 μ T ) ] [ 1 + exp ( ω / 2 μ μ a 2 / 4 μ T ) ] exp ( ω T 0 ) [ exp ( ω T 0 ) 1 ] .
P = S 0 T 0 ( T T 0 ) 4 0 d Z Z 3 [ 1 + exp ( Z 2 μ μ a 2 / μ T ) ] [ 1 + exp ( Z 2 μ + μ a 2 / μ T ) ] exp ( Z T T 0 ) [ exp ( Z T T 0 ) 1 ] .
P T H z = S 0 T 0 ( T T ) 4 0 ω T H z / T d Z Z 3 [ 1 + exp ( Z 2 μ T ) ] 2 exp ( Z T T 0 ) [ exp ( Z T T 0 ) 1 ] .
σ G L d 2 φ d x 2 = j .
σ G L = ( e 2 4 ) ( 8 τ i T 0 π ) ξ ,
d 2 j d x 2 = j L c c 2 .
L c c = σ G L e b E L N E L = 4 π e τ i T 0 l E L 2 b E L N E L .
j = j | x = ± L cosh ( x / L c c ) cosh ( L / L c c ) .
C = L c c L tanh ( L L c c )