Abstract

Vergence-accommodation conflict (VAC) is a major challenge in optical-see through augmented reality (AR) system. To resolve this conflict, many approaches are proposed, for instance, by means of adjustment of the projected virtual image to coincide with the surroundings, called image registration, which is more often referred to as varifocal function. In this paper, a varifocal AR system is demonstrated by adopting electrically tunable liquid crystal (LC) plane-parallel plates to solve VAC problem. The LC plates provide electrically tunable optical paths when the directors of LC molecules are re-orientated with applied voltages, which leads to a corresponding change of light speed for an extraordinary wave. To provide a sufficient tunable optical path, three pieces of multiple-layered LC structures are used with the total thickness of the active LC layers (∼510 μm). In experiments, the projected virtual image can be adjusted from 1.4 m to 2.1 m away from the AR system, while the thickness of LC plane-parallel plates are only less than 3 mm without any mechanical moving part. When light propagates in the uniaxial LC layers, the wave vector and the Poynting vector are different. The longitudinal displacement of the image plane is determined by Poynting vectors rather than wave vectors. As a result, the analysis of the AR system should be based on Poynting vectors during geometrical optical analysis. Surprisingly, the tunable range of the longitudinal displacement of Poynting vectors is 2-fold larger than the tunable range of the wave vectors. Moreover, the virtual image shifts in opposite directions with respect to the Poynting vectors and wave vectors. The proposed AR system is not only simple but also thin, and it exhibits a large clear aperture. The investigation here paves the way to a simple solution of the VAC problem for augmented reality systems.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens

Hung-Shan Chen, Yu-Jen Wang, Po-Ju Chen, and Yi-Hsin Lin
Opt. Express 23(22) 28154-28162 (2015)

Dual focal plane augmented reality interactive display with gaze-tracker

Uğur Yekta Başak, Seyedmahdi Kazempourradi, Cemalettin Yilmaz, Erdem Ulusoy, and Hakan Urey
OSA Continuum 2(5) 1734-1745 (2019)

References

  • View by:
  • |
  • |
  • |

  1. O. Cakmakci and J. P. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
    [Crossref]
  2. B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
    [Crossref]
  3. X. Li, W. Yi, H. L. Chi, X. Wang, and A. P. C. Chan, “A critical review of virtual and augmented reality (VR/AR) applications in construction safety,” Autom. Constr. 86, 150–162 (2018).
    [Crossref]
  4. M. B. Ibáñez, Á. D. Serio, D. Villarán, and C. D. Kloos, “Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness,” Comput. Educ. 71, 1–13 (2014).
    [Crossref]
  5. M. N. van Oosterom, H. G. van der Poel, N. Navab, C. J. H. van de Velde, and F. W. B. van Leeuwen, “Computer-assisted surgery: virtual-and augmented-reality displays for navigation during urological interventions,” Curr. Opin. Neurol. 28(2), 205–213 (2018).
    [Crossref]
  6. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
    [Crossref]
  7. G. K. Von Noorden and E. C. Campos, Binocular Vision and Ocular Motility, 6th ed (Mosby, 2002), Chap. 2.
  8. G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 22(7), 1912–1931 (2016).
    [Crossref]
  9. S. Liu, Y. Li, and Y. Su, “Multiplane displays based on liquid crystals for AR application,” J. Soc. Inf. Disp. 28(3), 224–240 (2020).
    [Crossref]
  10. H. Huang and H. Hua, “Effects of ray position sampling on the visual responses of 3D light field displays,” Opt. Express 27(7), 9343–9360 (2019).
    [Crossref]
  11. E. Hecht, Optics, 4th ed (Pearson Education, 1974).
  12. S. Liu and H. Hua, “Time-multiplexed dual-focal plane head-mounted display with a liquid lens,” Opt. Lett. 34(11), 1642–1644 (2009).
    [Crossref]
  13. P. Chakravarthula, D. Dunn, K. Aksit, and H. Fuchs, “Focusar: auto-focus augmented reality eyeglasses for both real world and virtual imagery,” IEEE Trans. Visual. Comput. Graphics 24(11), 2906–2916 (2018).
    [Crossref]
  14. H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
    [Crossref]
  15. Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
    [Crossref]
  16. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).
  17. Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
    [Crossref]
  18. U. Y. Basak, S. Kazempourradi, C. Yilmaz, E. Ulusoy, and H. Urey, “Dual focal plane augmented reality interactive display with gaze-tracker,” OSA Continuum 2(5), 1734–1745 (2019).
    [Crossref]
  19. J. P. Rolland, M. W. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
    [Crossref]
  20. Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
    [Crossref]
  21. Q. Chen, Z. Peng, Y. Li, S. Liu, P. Zhou, J. Gu, J. Lu, L. Yao, M. Wang, and Y. Su, “Multi-plane augmented reality display based on cholesteric liquid crystal reflective films,” Opt. Express 27(9), 12039–12047 (2019).
    [Crossref]
  22. J. H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11(16), 1862–1873 (2003).
    [Crossref]
  23. M. Avendaño-Alejo, “Analysis of the refraction of the extraordinary ray in a plane-parallel uniaxial plate with an arbitrary orientation of the optical axis,” Opt. Express 13(7), 2549–2555 (2005).
    [Crossref]
  24. M. Avendaño-Alejo and M. Rosete-Aguilar, “Optical path difference in a plane-parallel uniaxial plate,” J. Opt. Soc. Am. A 23(4), 926–932 (2006).
    [Crossref]
  25. C. K. Lee, S. Moon, S. Lee, D. Yoo, J. Y. Hong, and B. Lee, “Compact three-dimensional head-mounted display system with Savart plate,” Opt. Express 24(17), 19531–19544 (2016).
    [Crossref]
  26. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
    [Crossref]
  27. M. Katz, Introduction to Geometrical Optics (World Scientific, 2002).
  28. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  29. Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
    [Crossref]
  30. H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
    [Crossref]
  31. Y. H. Lin, H. S. Chen, Y. J. Wang, and C. M. Chang, “A liquid crystal and polymer composite film for liquid crystal lenses,” Proc. SPIE 9384, 938410 (2015).
    [Crossref]
  32. Y. Arakawa, S. Kang, H. Tsuji, J. Watanabe, and G. I. Konishi, “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
    [Crossref]
  33. S. Pagidi, R. Manda, S. S. Bhattacharyya, S. G. Lee, S. M. Song, Y. J. Lim, J. H. Lee, and S. H. Lee, “Fast Switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals,” Adv. Mater. Interfaces 6(18), 1900841 (2019).
    [Crossref]
  34. G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
    [Crossref]
  35. Y. H. Lee, F. Peng, and S. T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
    [Crossref]

2020 (1)

S. Liu, Y. Li, and Y. Su, “Multiplane displays based on liquid crystals for AR application,” J. Soc. Inf. Disp. 28(3), 224–240 (2020).
[Crossref]

2019 (4)

2018 (4)

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

P. Chakravarthula, D. Dunn, K. Aksit, and H. Fuchs, “Focusar: auto-focus augmented reality eyeglasses for both real world and virtual imagery,” IEEE Trans. Visual. Comput. Graphics 24(11), 2906–2916 (2018).
[Crossref]

M. N. van Oosterom, H. G. van der Poel, N. Navab, C. J. H. van de Velde, and F. W. B. van Leeuwen, “Computer-assisted surgery: virtual-and augmented-reality displays for navigation during urological interventions,” Curr. Opin. Neurol. 28(2), 205–213 (2018).
[Crossref]

X. Li, W. Yi, H. L. Chi, X. Wang, and A. P. C. Chan, “A critical review of virtual and augmented reality (VR/AR) applications in construction safety,” Autom. Constr. 86, 150–162 (2018).
[Crossref]

2017 (2)

Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref]

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

2016 (4)

G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 22(7), 1912–1931 (2016).
[Crossref]

Y. Arakawa, S. Kang, H. Tsuji, J. Watanabe, and G. I. Konishi, “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
[Crossref]

Y. H. Lee, F. Peng, and S. T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
[Crossref]

C. K. Lee, S. Moon, S. Lee, D. Yoo, J. Y. Hong, and B. Lee, “Compact three-dimensional head-mounted display system with Savart plate,” Opt. Express 24(17), 19531–19544 (2016).
[Crossref]

2015 (3)

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

Y. H. Lin, H. S. Chen, Y. J. Wang, and C. M. Chang, “A liquid crystal and polymer composite film for liquid crystal lenses,” Proc. SPIE 9384, 938410 (2015).
[Crossref]

H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref]

2014 (1)

M. B. Ibáñez, Á. D. Serio, D. Villarán, and C. D. Kloos, “Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness,” Comput. Educ. 71, 1–13 (2014).
[Crossref]

2013 (1)

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

2010 (1)

2009 (2)

2008 (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

2006 (2)

2005 (2)

2003 (1)

2000 (1)

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Aksit, K.

P. Chakravarthula, D. Dunn, K. Aksit, and H. Fuchs, “Focusar: auto-focus augmented reality eyeglasses for both real world and virtual imagery,” IEEE Trans. Visual. Comput. Graphics 24(11), 2906–2916 (2018).
[Crossref]

Arakawa, Y.

Y. Arakawa, S. Kang, H. Tsuji, J. Watanabe, and G. I. Konishi, “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
[Crossref]

Avendaño-Alejo, M.

Banks, M. S.

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Basak, U. Y.

Bhattacharyya, S. S.

S. Pagidi, R. Manda, S. S. Bhattacharyya, S. G. Lee, S. M. Song, Y. J. Lim, J. H. Lee, and S. H. Lee, “Fast Switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals,” Adv. Mater. Interfaces 6(18), 1900841 (2019).
[Crossref]

Cakmakci, O.

O. Cakmakci and J. P. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Campos, E. C.

G. K. Von Noorden and E. C. Campos, Binocular Vision and Ocular Motility, 6th ed (Mosby, 2002), Chap. 2.

Chakravarthula, P.

P. Chakravarthula, D. Dunn, K. Aksit, and H. Fuchs, “Focusar: auto-focus augmented reality eyeglasses for both real world and virtual imagery,” IEEE Trans. Visual. Comput. Graphics 24(11), 2906–2916 (2018).
[Crossref]

Chan, A. P. C.

X. Li, W. Yi, H. L. Chi, X. Wang, and A. P. C. Chan, “A critical review of virtual and augmented reality (VR/AR) applications in construction safety,” Autom. Constr. 86, 150–162 (2018).
[Crossref]

Chang, C. M.

Y. H. Lin, H. S. Chen, Y. J. Wang, and C. M. Chang, “A liquid crystal and polymer composite film for liquid crystal lenses,” Proc. SPIE 9384, 938410 (2015).
[Crossref]

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

Chen, H. S.

Y. H. Lin, H. S. Chen, Y. J. Wang, and C. M. Chang, “A liquid crystal and polymer composite film for liquid crystal lenses,” Proc. SPIE 9384, 938410 (2015).
[Crossref]

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref]

Chen, P. J.

Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref]

H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref]

Chen, Q.

Chi, H. L.

X. Li, W. Yi, H. L. Chi, X. Wang, and A. P. C. Chan, “A critical review of virtual and augmented reality (VR/AR) applications in construction safety,” Autom. Constr. 86, 150–162 (2018).
[Crossref]

Choi, H.

Dunn, D.

P. Chakravarthula, D. Dunn, K. Aksit, and H. Fuchs, “Focusar: auto-focus augmented reality eyeglasses for both real world and virtual imagery,” IEEE Trans. Visual. Comput. Graphics 24(11), 2906–2916 (2018).
[Crossref]

Fang, J.

Fuchs, H.

P. Chakravarthula, D. Dunn, K. Aksit, and H. Fuchs, “Focusar: auto-focus augmented reality eyeglasses for both real world and virtual imagery,” IEEE Trans. Visual. Comput. Graphics 24(11), 2906–2916 (2018).
[Crossref]

Gao, J.

Ge, Z.

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Goon, A.

Gu, J.

Hands, P. J. W.

Hecht, E.

E. Hecht, Optics, 4th ed (Pearson Education, 1974).

Hoffman, D. M.

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Hong, J. Y.

Hua, H.

Huang, H.

Ibáñez, M. B.

M. B. Ibáñez, Á. D. Serio, D. Villarán, and C. D. Kloos, “Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness,” Comput. Educ. 71, 1–13 (2014).
[Crossref]

Jung, S.

Kang, S.

Y. Arakawa, S. Kang, H. Tsuji, J. Watanabe, and G. I. Konishi, “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
[Crossref]

Katz, M.

M. Katz, Introduction to Geometrical Optics (World Scientific, 2002).

Kazempourradi, S.

Kirby, A. K.

Kloos, C. D.

M. B. Ibáñez, Á. D. Serio, D. Villarán, and C. D. Kloos, “Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness,” Comput. Educ. 71, 1–13 (2014).
[Crossref]

Konishi, G. I.

Y. Arakawa, S. Kang, H. Tsuji, J. Watanabe, and G. I. Konishi, “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
[Crossref]

Kramida, G.

G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 22(7), 1912–1931 (2016).
[Crossref]

Kress, B.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Krueger, M. W.

Lee, B.

Lee, C. K.

Lee, J. H.

S. Pagidi, R. Manda, S. S. Bhattacharyya, S. G. Lee, S. M. Song, Y. J. Lim, J. H. Lee, and S. H. Lee, “Fast Switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals,” Adv. Mater. Interfaces 6(18), 1900841 (2019).
[Crossref]

Lee, S.

Lee, S. G.

S. Pagidi, R. Manda, S. S. Bhattacharyya, S. G. Lee, S. M. Song, Y. J. Lim, J. H. Lee, and S. H. Lee, “Fast Switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals,” Adv. Mater. Interfaces 6(18), 1900841 (2019).
[Crossref]

Lee, S. H.

S. Pagidi, R. Manda, S. S. Bhattacharyya, S. G. Lee, S. M. Song, Y. J. Lim, J. H. Lee, and S. H. Lee, “Fast Switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals,” Adv. Mater. Interfaces 6(18), 1900841 (2019).
[Crossref]

Lee, Y. H.

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Y. H. Lee, F. Peng, and S. T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
[Crossref]

Li, X.

X. Li, W. Yi, H. L. Chi, X. Wang, and A. P. C. Chan, “A critical review of virtual and augmented reality (VR/AR) applications in construction safety,” Autom. Constr. 86, 150–162 (2018).
[Crossref]

Li, Y.

Liang, X.

Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref]

Lim, Y. J.

S. Pagidi, R. Manda, S. S. Bhattacharyya, S. G. Lee, S. M. Song, Y. J. Lim, J. H. Lee, and S. H. Lee, “Fast Switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals,” Adv. Mater. Interfaces 6(18), 1900841 (2019).
[Crossref]

Lin, Y. H.

Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref]

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref]

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

Y. H. Lin, H. S. Chen, Y. J. Wang, and C. M. Chang, “A liquid crystal and polymer composite film for liquid crystal lenses,” Proc. SPIE 9384, 938410 (2015).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref]

Liu, S.

Love, G. D.

Lu, J.

Manda, R.

S. Pagidi, R. Manda, S. S. Bhattacharyya, S. G. Lee, S. M. Song, Y. J. Lim, J. H. Lee, and S. H. Lee, “Fast Switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals,” Adv. Mater. Interfaces 6(18), 1900841 (2019).
[Crossref]

Moon, S.

Navab, N.

M. N. van Oosterom, H. G. van der Poel, N. Navab, C. J. H. van de Velde, and F. W. B. van Leeuwen, “Computer-assisted surgery: virtual-and augmented-reality displays for navigation during urological interventions,” Curr. Opin. Neurol. 28(2), 205–213 (2018).
[Crossref]

Pagidi, S.

S. Pagidi, R. Manda, S. S. Bhattacharyya, S. G. Lee, S. M. Song, Y. J. Lim, J. H. Lee, and S. H. Lee, “Fast Switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals,” Adv. Mater. Interfaces 6(18), 1900841 (2019).
[Crossref]

Park, J. H.

Peng, F.

Peng, Z.

Ren, H.

Reshetnyak, V.

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Rolland, J. P.

O. Cakmakci and J. P. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. P. Rolland, M. W. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
[Crossref]

Rosete-Aguilar, M.

Serio, Á. D.

M. B. Ibáñez, Á. D. Serio, D. Villarán, and C. D. Kloos, “Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness,” Comput. Educ. 71, 1–13 (2014).
[Crossref]

Song, S. M.

S. Pagidi, R. Manda, S. S. Bhattacharyya, S. G. Lee, S. M. Song, Y. J. Lim, J. H. Lee, and S. H. Lee, “Fast Switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals,” Adv. Mater. Interfaces 6(18), 1900841 (2019).
[Crossref]

Starner, T.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Su, Y.

Tan, G.

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Tsuji, H.

Y. Arakawa, S. Kang, H. Tsuji, J. Watanabe, and G. I. Konishi, “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
[Crossref]

Ulusoy, E.

Urey, H.

van de Velde, C. J. H.

M. N. van Oosterom, H. G. van der Poel, N. Navab, C. J. H. van de Velde, and F. W. B. van Leeuwen, “Computer-assisted surgery: virtual-and augmented-reality displays for navigation during urological interventions,” Curr. Opin. Neurol. 28(2), 205–213 (2018).
[Crossref]

van der Poel, H. G.

M. N. van Oosterom, H. G. van der Poel, N. Navab, C. J. H. van de Velde, and F. W. B. van Leeuwen, “Computer-assisted surgery: virtual-and augmented-reality displays for navigation during urological interventions,” Curr. Opin. Neurol. 28(2), 205–213 (2018).
[Crossref]

van Leeuwen, F. W. B.

M. N. van Oosterom, H. G. van der Poel, N. Navab, C. J. H. van de Velde, and F. W. B. van Leeuwen, “Computer-assisted surgery: virtual-and augmented-reality displays for navigation during urological interventions,” Curr. Opin. Neurol. 28(2), 205–213 (2018).
[Crossref]

van Oosterom, M. N.

M. N. van Oosterom, H. G. van der Poel, N. Navab, C. J. H. van de Velde, and F. W. B. van Leeuwen, “Computer-assisted surgery: virtual-and augmented-reality displays for navigation during urological interventions,” Curr. Opin. Neurol. 28(2), 205–213 (2018).
[Crossref]

Villarán, D.

M. B. Ibáñez, Á. D. Serio, D. Villarán, and C. D. Kloos, “Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness,” Comput. Educ. 71, 1–13 (2014).
[Crossref]

Von Noorden, G. K.

G. K. Von Noorden and E. C. Campos, Binocular Vision and Ocular Motility, 6th ed (Mosby, 2002), Chap. 2.

Wang, M.

Wang, X.

X. Li, W. Yi, H. L. Chi, X. Wang, and A. P. C. Chan, “A critical review of virtual and augmented reality (VR/AR) applications in construction safety,” Autom. Constr. 86, 150–162 (2018).
[Crossref]

Wang, Y. J.

Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref]

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref]

Y. H. Lin, H. S. Chen, Y. J. Wang, and C. M. Chang, “A liquid crystal and polymer composite film for liquid crystal lenses,” Proc. SPIE 9384, 938410 (2015).
[Crossref]

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

Watanabe, J.

Y. Arakawa, S. Kang, H. Tsuji, J. Watanabe, and G. I. Konishi, “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
[Crossref]

Wu, S. T.

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Y. H. Lee, F. Peng, and S. T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref]

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

Wu, Y. H.

Yang, D. K.

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

Yao, L.

Yi, W.

X. Li, W. Yi, H. L. Chi, X. Wang, and A. P. C. Chan, “A critical review of virtual and augmented reality (VR/AR) applications in construction safety,” Autom. Constr. 86, 150–162 (2018).
[Crossref]

Yilmaz, C.

Yin, K.

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Yoo, D.

Zhan, T.

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

Zhao, Y.

Zhou, P.

Adv. Mater. Interfaces (1)

S. Pagidi, R. Manda, S. S. Bhattacharyya, S. G. Lee, S. M. Song, Y. J. Lim, J. H. Lee, and S. H. Lee, “Fast Switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals,” Adv. Mater. Interfaces 6(18), 1900841 (2019).
[Crossref]

Appl. Opt. (1)

Autom. Constr. (1)

X. Li, W. Yi, H. L. Chi, X. Wang, and A. P. C. Chan, “A critical review of virtual and augmented reality (VR/AR) applications in construction safety,” Autom. Constr. 86, 150–162 (2018).
[Crossref]

Comput. Educ. (1)

M. B. Ibáñez, Á. D. Serio, D. Villarán, and C. D. Kloos, “Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness,” Comput. Educ. 71, 1–13 (2014).
[Crossref]

Curr. Opin. Neurol. (1)

M. N. van Oosterom, H. G. van der Poel, N. Navab, C. J. H. van de Velde, and F. W. B. van Leeuwen, “Computer-assisted surgery: virtual-and augmented-reality displays for navigation during urological interventions,” Curr. Opin. Neurol. 28(2), 205–213 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. S. Chen, Y. J. Wang, C. M. Chang, and Y. H. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

IEEE Trans. Visual. Comput. Graphics (2)

G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 22(7), 1912–1931 (2016).
[Crossref]

P. Chakravarthula, D. Dunn, K. Aksit, and H. Fuchs, “Focusar: auto-focus augmented reality eyeglasses for both real world and virtual imagery,” IEEE Trans. Visual. Comput. Graphics 24(11), 2906–2916 (2018).
[Crossref]

J. Disp. Technol. (1)

O. Cakmakci and J. P. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (2)

Y. H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. Soc. Inf. Disp. 26(2), 64–70 (2018).
[Crossref]

S. Liu, Y. Li, and Y. Su, “Multiplane displays based on liquid crystals for AR application,” J. Soc. Inf. Disp. 28(3), 224–240 (2020).
[Crossref]

J. Vis. (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Liq. Cryst. Rev. (1)

Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Opt. Express (10)

H. S. Chen, Y. J. Wang, P. J. Chen, and Y. H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref]

H. Huang and H. Hua, “Effects of ray position sampling on the visual responses of 3D light field displays,” Opt. Express 27(7), 9343–9360 (2019).
[Crossref]

Q. Chen, Z. Peng, Y. Li, S. Liu, P. Zhou, J. Gu, J. Lu, L. Yao, M. Wang, and Y. Su, “Multi-plane augmented reality display based on cholesteric liquid crystal reflective films,” Opt. Express 27(9), 12039–12047 (2019).
[Crossref]

J. H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11(16), 1862–1873 (2003).
[Crossref]

M. Avendaño-Alejo, “Analysis of the refraction of the extraordinary ray in a plane-parallel uniaxial plate with an arbitrary orientation of the optical axis,” Opt. Express 13(7), 2549–2555 (2005).
[Crossref]

C. K. Lee, S. Moon, S. Lee, D. Yoo, J. Y. Hong, and B. Lee, “Compact three-dimensional head-mounted display system with Savart plate,” Opt. Express 24(17), 19531–19544 (2016).
[Crossref]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express 13(22), 8746–8752 (2005).
[Crossref]

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref]

Y. H. Lee, F. Peng, and S. T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
[Crossref]

Opt. Lett. (1)

OSA Continuum (1)

Proc. SPIE (2)

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Y. H. Lin, H. S. Chen, Y. J. Wang, and C. M. Chang, “A liquid crystal and polymer composite film for liquid crystal lenses,” Proc. SPIE 9384, 938410 (2015).
[Crossref]

RSC Adv. (1)

Y. Arakawa, S. Kang, H. Tsuji, J. Watanabe, and G. I. Konishi, “The design of liquid crystalline bisolane-based materials with extremely high birefringence,” RSC Adv. 6(95), 92845–92851 (2016).
[Crossref]

Sci. Rep. (1)

Y. J. Wang, P. J. Chen, X. Liang, and Y. H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref]

Other (5)

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

E. Hecht, Optics, 4th ed (Pearson Education, 1974).

G. K. Von Noorden and E. C. Campos, Binocular Vision and Ocular Motility, 6th ed (Mosby, 2002), Chap. 2.

M. Katz, Introduction to Geometrical Optics (World Scientific, 2002).

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Operating principle of the AR system with a LC plane-parallel plate. (a) Initially, the LC plate turns off and the refractive index is na. The projected virtual image is set to align with the further real object. (b) When the LC plate turns on, the refractive index of LC becomes nb, and the effective optical path between resolution chart and the mirror varies. As a result, the virtual image shifts to a location closer to the AR system, and then the virtual image is aligned with the near real object. (c) An equivalent optics system for the proposed optical system without plane-parallel plate. (d) An equivalent optical system after adding a plane-parallel plate in (c).
Fig. 2.
Fig. 2. The longitudinal shift ( $\delta {l_S}$ ) of the Poynting vector and the longitudinal shift ( $\delta {l_e}$ ) of the wave vector for e-wave (a) when LC molecules are perpendicular to the air-LC interface or optic axis $\hat{c}$ is perpendicular to the interface, and (b) when LC molecules are parallel to the air-LC interface or optic axis $\hat{c}$ is parallel to the interface.
Fig. 3.
Fig. 3. (a) Calculated ${\theta _S}$ and ${\theta _e}$ as a function of angle of incidence. (b) Calculated $\delta {l_S}$ and $\delta {l_e}$ as a function of angle of incidence. (c) Image formation when the objective distance is smaller than focal length ( $p < f$ ). (d) From (c) Image formation with a LC plate when the optic axis $\hat{c}$ is parallel to the interface. (e) From (d), image formation when the optic axis $\hat{c}$ is perpendicular to interface. Compared with (d), the virtual image is closer to the lens in (e) which is opposite to the result analyzed by wave-vector propagation.
Fig. 4.
Fig. 4. LC plane-parallel plates and the measurement of electro-optical property. (a) Multiple-layered structure consists of four LC layers and three polymeric layers. (b) The voltage dependent refractive index for wave-vector as the function of applied voltage.
Fig. 5.
Fig. 5. (a) The contrast ratio of the virtual image as a function of the distance z. z is the distance between the real object and the beam splitter as the camera see clearly for both of the virtual image and the real object. (b) Converted from (a), the measured image distance of the virtual image (q+Δq) as a function of difference of tunable $\delta {l_S}$ that is provided by LC plates. The blue line stands for the calculation results based on Eq. (3) with with f = 19 mm and p ∼ 18.83 mm.
Fig. 6.
Fig. 6. Image performance of the proposed AR system with three LC plane-parallel plates. (a) The focusing plane of the camera was set at 2.1 m away from AR system. The projected virtual image was also set around 2.1 m away from AR system. (b) When the camera was refocused and set to see the images at the distance of 1.4 m away from AR system, the near object was clear while the virtual image is blurred. (c) After we applied 100 Vrms to three LC plates, the location of the virtual image was shifted to 1.4 m. Both the near object and the virtual image were clearly recorded by the camera. The upper-left figure is the illustration of relative positions of the objects and virtual image in (a), (b), and (c).

Tables (1)

Tables Icon

Table 1. Specifications of fabricated LC plane-parallel plates.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

n 1 p + n 2 q  =  1 f ,
p = p ( n 1 n ) t ,
1 p A + 1 q + Δ q  =  1 f .
Δ q = A ( q f ) 2 f 2 A ( q f ) .
1 | q + Δ q |  =  1 p A 1 f .
k t z 2 n o 2 + k t x 2 n e 2 = k 0 2 ,
k t z = k 0 n e f f ( θ e ) cos θ e .
k t x = k 0 n e f f ( θ e ) sin θ e = k 0 n i sin θ i .
cot 2 θ e = n o 2 n i 2 sin 2 θ i [ 1 n i 2 sin 2 θ i n e 2 ] .
S ^ = ω ( k ) | ω ( k ) | = n o 2 x ^ + n e 2 cot θ e z ^ n o 4 + n e 4 cot 2 θ e .
θ S = tan 1 ( n o 2 n e 2 cot θ e ) .
δ l S = Δ S cot θ i = d [ 1 n o 2 cos θ i sin θ e n e 2 sin θ i cos θ e ] .
δ l S d [ 1 n o 2 n i n e 2 n e f f ( θ e ) ] .
δ l e = Δ e cot θ i = d [ 1 n i cos θ i n e f f 2 ( θ e ) n i 2 s i n 2 θ i ] ,
θ S = tan 1 ( n e 2 n o 2 cot θ e ) .
cot 2 θ e = n e 2 n i 2 sin 2 θ i [ 1 n i 2 sin 2 θ i n o 2 ] .
δ l S = d [ 1 n e 2 cos θ i sin θ e n o 2 sin θ i cos θ e ] .
δ l e = d [ 1 n i cos θ i n e f f 2 ( θ e ) n i 2 sin 2 θ i ] .
Δ l S | δ l S (V > >  V th ) -  δ l S (V = 0) |  =  | d ( n o n e 2 n e n o 2 ) | ,
Δ l e | δ l e (V > >  V th ) -  δ l e (V = 0) |  =  | d ( 1 n o 1 n e ) | .
Δ l S Δ l e = n o n e + n e n o + 1.

Metrics