Abstract

Transverse mode instabilities are a major limitation for power scaling of fiber lasers but have so far only been observed in laser-active fibers. In this contribution we present experimental observations of transverse mode instabilities in a passive fiber. In this fiber, stimulated Raman scattering acted as heat source. To demonstrate the effect, a kW-level ytterbium-doped fiber laser was used as pump for a Raman amplifier. Transverse mode instabilities were only observed in the case with high Raman amplification. Frequency resolved stability measurements at various fiber positions as well as spectral and mode resolved measurements pin their origin to the passive fiber. This observation might help to gain further understanding of transverse mode instabilities and shows limitations of high-power Raman amplifiers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Zervas, “Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers,” Opt. Express 27(13), 19019–19041 (2019).
    [Crossref]
  2. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref]
  3. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
    [Crossref]
  4. H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
    [Crossref]
  5. B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
    [Crossref]
  6. H. Lin, R. Tao, C. Li, B. Wang, C. Guo, Q. Shu, P. Zhao, L. Xu, J. Wang, F. Jing, and Q. Chu, “3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability,” Opt. Express 27(7), 9716 (2019).
    [Crossref]
  7. V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” J. Opt. 19(2), 023001 (2017).
    [Crossref]
  8. Y. Chen, T. Yao, L. Huang, H. Xiao, J. Leng, and P. Zhou, “2 kW high-efficiency raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation,” Opt. Express 28(3), 3495 (2020).
    [Crossref]
  9. S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped raman fiber amplifiers,” Opt. Express 24(15), 16550–16565 (2016).
    [Crossref]
  10. K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated raman scattering in high-power Yb-doped fiber amplifiers,” Opt. Lett. 42(24), 5274 (2017).
    [Crossref]
  11. W. Liu, P. Ma, C. Shi, P. Zhou, and Z. Jiang, “Theoretical analysis of the SRS-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26(12), 15793 (2018).
    [Crossref]
  12. A. V. Harish and J. Nilsson, “Optimization of phase modulation formats for suppression of stimulated brillouin scattering in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
    [Crossref]
  13. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
    [Crossref]
  14. V. Scarnera, F. Ghiringhelli, A. Malinowski, C. A. Codemard, M. K. Durkin, and M. N. Zervas, “Modal instabilities in high power fiber laser oscillators,” Opt. Express 27(4), 4386–4403 (2019).
    [Crossref]
  15. Y. Li, T. Li, W. Peng, H. Su, and X. Wang, “Narrow spectrum kilowatt-level MOPA seeded by Yb-doped random fiber laser,” IEEE Photonics Technol. Lett. 29(21), 1844–1847 (2017).
    [Crossref]
  16. J. Lee, K. H. Lee, H. Jeong, M. Park, J. H. Seung, and J. H. Lee, “2.05 kW all-fiber high-beam-quality fiber amplifier with stimulated brillouin scattering suppression incorporating a narrow-linewidth fiber-bragg-grating-stabilized laser diode seed source,” Appl. Opt. 58(23), 6251–6256 (2019).
    [Crossref]
  17. F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW,” Laser Congress 2018 (ASSL), OSA Technical Digest p. paper AM2A.3 (2018).
  18. www.fiberdesk.com .
  19. E. N. Christensen, J. G. Koefoed, S. M. M. Friis, M. A. U. Castaneda, and K. Rottwitt, “Experimental characterization of raman overlaps between mode-groups,” Sci. Rep. 6(1), 34693 (2016).
    [Crossref]
  20. F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. and Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
    [Crossref]
  21. F. Beier, F. Möller, B. Sattler, J. Nold, A. Liem, C. Hupel, S. Kuhn, S. Hein, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Experimental investigations on the TMI thresholds of low-NA Yb-doped single-mode fibers,” Opt. Lett. 43(6), 1291 (2018).
    [Crossref]

2020 (1)

2019 (4)

2018 (4)

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

W. Liu, P. Ma, C. Shi, P. Zhou, and Z. Jiang, “Theoretical analysis of the SRS-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26(12), 15793 (2018).
[Crossref]

A. V. Harish and J. Nilsson, “Optimization of phase modulation formats for suppression of stimulated brillouin scattering in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

F. Beier, F. Möller, B. Sattler, J. Nold, A. Liem, C. Hupel, S. Kuhn, S. Hein, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Experimental investigations on the TMI thresholds of low-NA Yb-doped single-mode fibers,” Opt. Lett. 43(6), 1291 (2018).
[Crossref]

2017 (3)

K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated raman scattering in high-power Yb-doped fiber amplifiers,” Opt. Lett. 42(24), 5274 (2017).
[Crossref]

Y. Li, T. Li, W. Peng, H. Su, and X. Wang, “Narrow spectrum kilowatt-level MOPA seeded by Yb-doped random fiber laser,” IEEE Photonics Technol. Lett. 29(21), 1844–1847 (2017).
[Crossref]

V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” J. Opt. 19(2), 023001 (2017).
[Crossref]

2016 (2)

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped raman fiber amplifiers,” Opt. Express 24(15), 16550–16565 (2016).
[Crossref]

E. N. Christensen, J. G. Koefoed, S. M. M. Friis, M. A. U. Castaneda, and K. Rottwitt, “Experimental characterization of raman overlaps between mode-groups,” Sci. Rep. 6(1), 34693 (2016).
[Crossref]

2015 (1)

2012 (2)

2011 (2)

Abedinajafi, A.

and Tünnermann, A.

Azizi, S.

Beier, F.

Bock, V.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW,” Laser Congress 2018 (ASSL), OSA Technical Digest p. paper AM2A.3 (2018).

Castaneda, M. A. U.

E. N. Christensen, J. G. Koefoed, S. M. M. Friis, M. A. U. Castaneda, and K. Rottwitt, “Experimental characterization of raman overlaps between mode-groups,” Sci. Rep. 6(1), 34693 (2016).
[Crossref]

Chen, Y.

Christensen, E. N.

E. N. Christensen, J. G. Koefoed, S. M. M. Friis, M. A. U. Castaneda, and K. Rottwitt, “Experimental characterization of raman overlaps between mode-groups,” Sci. Rep. 6(1), 34693 (2016).
[Crossref]

Chu, Q.

Codemard, C. A.

Dajani, I.

Durkin, M. K.

Eberhardt, R.

Eidam, T.

Feng, Y.

V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” J. Opt. 19(2), 023001 (2017).
[Crossref]

Friis, S. M. M.

E. N. Christensen, J. G. Koefoed, S. M. M. Friis, M. A. U. Castaneda, and K. Rottwitt, “Experimental characterization of raman overlaps between mode-groups,” Sci. Rep. 6(1), 34693 (2016).
[Crossref]

Gaida, C.

Ghiringhelli, F.

Grosek, J.

Guo, C.

Haarlammert, N.

Harish, A. V.

A. V. Harish and J. Nilsson, “Optimization of phase modulation formats for suppression of stimulated brillouin scattering in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

Hein, S.

Hejaz, K.

Huang, L.

Hupel, C.

Jansen, F.

Jauregui, C.

Jeong, H.

Jiang, Z.

Jing, F.

Koefoed, J. G.

E. N. Christensen, J. G. Koefoed, S. M. M. Friis, M. A. U. Castaneda, and K. Rottwitt, “Experimental characterization of raman overlaps between mode-groups,” Sci. Rep. 6(1), 34693 (2016).
[Crossref]

Krämer, R. G.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW,” Laser Congress 2018 (ASSL), OSA Technical Digest p. paper AM2A.3 (2018).

Kuhn, S.

Lee, J.

Lee, J. H.

Lee, K. H.

Leng, J.

Li, C.

Li, T.

Y. Li, T. Li, W. Peng, H. Su, and X. Wang, “Narrow spectrum kilowatt-level MOPA seeded by Yb-doped random fiber laser,” IEEE Photonics Technol. Lett. 29(21), 1844–1847 (2017).
[Crossref]

Li, Y.

Y. Li, T. Li, W. Peng, H. Su, and X. Wang, “Narrow spectrum kilowatt-level MOPA seeded by Yb-doped random fiber laser,” IEEE Photonics Technol. Lett. 29(21), 1844–1847 (2017).
[Crossref]

Liem, A.

Limpert, J.

Lin, H.

Liu, W.

Lu, Q.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Ma, P.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

W. Liu, P. Ma, C. Shi, P. Zhou, and Z. Jiang, “Theoretical analysis of the SRS-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26(12), 15793 (2018).
[Crossref]

Madden, T.

Malinowski, A.

Matzdorf, C.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW,” Laser Congress 2018 (ASSL), OSA Technical Digest p. paper AM2A.3 (2018).

Modsching, N.

Möller, F.

F. Beier, F. Möller, B. Sattler, J. Nold, A. Liem, C. Hupel, S. Kuhn, S. Hein, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Experimental investigations on the TMI thresholds of low-NA Yb-doped single-mode fibers,” Opt. Lett. 43(6), 1291 (2018).
[Crossref]

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW,” Laser Congress 2018 (ASSL), OSA Technical Digest p. paper AM2A.3 (2018).

Naderi, S.

Nicholson, J. W.

V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” J. Opt. 19(2), 023001 (2017).
[Crossref]

Nilsson, J.

A. V. Harish and J. Nilsson, “Optimization of phase modulation formats for suppression of stimulated brillouin scattering in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

Nold, J.

Nolte, S.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW,” Laser Congress 2018 (ASSL), OSA Technical Digest p. paper AM2A.3 (2018).

Otto, H.-J.

Park, M.

Peng, W.

Y. Li, T. Li, W. Peng, H. Su, and X. Wang, “Narrow spectrum kilowatt-level MOPA seeded by Yb-doped random fiber laser,” IEEE Photonics Technol. Lett. 29(21), 1844–1847 (2017).
[Crossref]

Plötner, M.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW,” Laser Congress 2018 (ASSL), OSA Technical Digest p. paper AM2A.3 (2018).

Rezaei-Nasirabad, R.

Roohforouz, A.

Rottwitt, K.

E. N. Christensen, J. G. Koefoed, S. M. M. Friis, M. A. U. Castaneda, and K. Rottwitt, “Experimental characterization of raman overlaps between mode-groups,” Sci. Rep. 6(1), 34693 (2016).
[Crossref]

Sattler, B.

Scarnera, V.

Schreiber, T.

F. Beier, F. Möller, B. Sattler, J. Nold, A. Liem, C. Hupel, S. Kuhn, S. Hein, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Experimental investigations on the TMI thresholds of low-NA Yb-doped single-mode fibers,” Opt. Lett. 43(6), 1291 (2018).
[Crossref]

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW,” Laser Congress 2018 (ASSL), OSA Technical Digest p. paper AM2A.3 (2018).

Seung, J. H.

Shayganmanesh, M.

Shi, C.

W. Liu, P. Ma, C. Shi, P. Zhou, and Z. Jiang, “Theoretical analysis of the SRS-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26(12), 15793 (2018).
[Crossref]

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Shu, Q.

Smith, A. V.

Smith, J. J.

Strecker, M.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW,” Laser Congress 2018 (ASSL), OSA Technical Digest p. paper AM2A.3 (2018).

Stutzki, F.

Su, H.

Y. Li, T. Li, W. Peng, H. Su, and X. Wang, “Narrow spectrum kilowatt-level MOPA seeded by Yb-doped random fiber laser,” IEEE Photonics Technol. Lett. 29(21), 1844–1847 (2017).
[Crossref]

Su, R.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Supradeepa, V. R.

V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” J. Opt. 19(2), 023001 (2017).
[Crossref]

Tao, R.

H. Lin, R. Tao, C. Li, B. Wang, C. Guo, Q. Shu, P. Zhao, L. Xu, J. Wang, F. Jing, and Q. Chu, “3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability,” Opt. Express 27(7), 9716 (2019).
[Crossref]

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Tünnermann, A.

Vatani, V.

Wang, B.

Wang, J.

Wang, X.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Y. Li, T. Li, W. Peng, H. Su, and X. Wang, “Narrow spectrum kilowatt-level MOPA seeded by Yb-doped random fiber laser,” IEEE Photonics Technol. Lett. 29(21), 1844–1847 (2017).
[Crossref]

Xiao, H.

Xu, L.

Xu, X.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Yang, B.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Yao, T.

Zervas, M. N.

Zhang, H.

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

Zhao, P.

Zhou, P.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

A. V. Harish and J. Nilsson, “Optimization of phase modulation formats for suppression of stimulated brillouin scattering in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Li, T. Li, W. Peng, H. Su, and X. Wang, “Narrow spectrum kilowatt-level MOPA seeded by Yb-doped random fiber laser,” IEEE Photonics Technol. Lett. 29(21), 1844–1847 (2017).
[Crossref]

J. Opt. (2)

B. Yang, H. Zhang, C. Shi, R. Tao, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and Q. Lu, “3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated raman scattering and transverse mode instability,” J. Opt. 20(2), 025802 (2018).
[Crossref]

V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” J. Opt. 19(2), 023001 (2017).
[Crossref]

Opt. Express (10)

Y. Chen, T. Yao, L. Huang, H. Xiao, J. Leng, and P. Zhou, “2 kW high-efficiency raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation,” Opt. Express 28(3), 3495 (2020).
[Crossref]

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped raman fiber amplifiers,” Opt. Express 24(15), 16550–16565 (2016).
[Crossref]

M. N. Zervas, “Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers,” Opt. Express 27(13), 19019–19041 (2019).
[Crossref]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref]

H. Lin, R. Tao, C. Li, B. Wang, C. Guo, Q. Shu, P. Zhao, L. Xu, J. Wang, F. Jing, and Q. Chu, “3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability,” Opt. Express 27(7), 9716 (2019).
[Crossref]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref]

V. Scarnera, F. Ghiringhelli, A. Malinowski, C. A. Codemard, M. K. Durkin, and M. N. Zervas, “Modal instabilities in high power fiber laser oscillators,” Opt. Express 27(4), 4386–4403 (2019).
[Crossref]

W. Liu, P. Ma, C. Shi, P. Zhou, and Z. Jiang, “Theoretical analysis of the SRS-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26(12), 15793 (2018).
[Crossref]

Opt. Lett. (3)

Sci. Rep. (1)

E. N. Christensen, J. G. Koefoed, S. M. M. Friis, M. A. U. Castaneda, and K. Rottwitt, “Experimental characterization of raman overlaps between mode-groups,” Sci. Rep. 6(1), 34693 (2016).
[Crossref]

Other (2)

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW,” Laser Congress 2018 (ASSL), OSA Technical Digest p. paper AM2A.3 (2018).

www.fiberdesk.com .

Supplementary Material (2)

NameDescription
» Visualization 1       Video of the beam profiles measured with the high-speed CCD camera at 1176 W corrected output power.
» Visualization 2       Video of the beam profiles measured with the high-speed CCD camera in the system operation regime R3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic experimental setup. The passive fiber could be introduced/ cut out along the dotted lines. ISO: Isolator, PD: photodiode, WDM: wavelength-division multiplexer, LD: laser diode, Y/GDF: Ytterbium/ Germanium doped fiber, PM: power meter, CLS: cladding light stripper, EC: angled end cap
Fig. 2.
Fig. 2. Power slopes of the amplifier without and with additional passive fiber for the case without Stokes seed (a) and with Stokes seed (b).
Fig. 3.
Fig. 3. a) Measured optical spectra at the fiber output at about 1.1 kW corrected output power for different fiber and seed configurations. b) Simulated total, pump and Stokes power along the fiber for 1400 W input power at 976 nm in the case with Stokes seed.
Fig. 4.
Fig. 4. Beam profiles of Stokes and pump measured simultaneously with a single high-speed CCD camera for an output power of 650 W (a), 974 W (b) and in the unstable regime at 1176 W at different times (c). The color normalization was kept the same for the three images shown in (c). For the unstable regime, see also Visualization 1.
Fig. 5.
Fig. 5. Modal composition of the pump (top) and Stokes intensity (bottom) over time for an exemplary time period at the highest output power. The dotted vertical lines are drawn to guide the eye.
Fig. 6.
Fig. 6. Standard deviations of the pump photodiode signals with and without Stokes seed at different power levels. The white marks show the average value of a 1 s long time trace, while the colored marks show sub-traces thereof, as introduced in [21]. For comparison, the standard deviations of the setup without the additional passive fiber at the output and without Stokes seed is shown.
Fig. 7.
Fig. 7. a) Standard deviations of the photodiode signals of the fiber output compared to the coupler-port. b) Output power of the counter-coupler port over total corrected output power. The different operation regimes of the system are shown as colored areas.
Fig. 8.
Fig. 8. Fourier-transform of the pump photodiode signal at different power levels in the case with passive fiber and Stokes seed at the fiber output $\mathrm {PD_{1}}$ (a) and at the counter-coupler port $\mathrm {PD_{3}}$ (b).
Fig. 9.
Fig. 9. Modal composition of the pump and Stokes over time for exemplary time periods at different output power levels corresponding to the four operation regimes of the system.

Metrics