Abstract

Scattering affects excitation power density, penetration depth and upconversion emission self-absorption, resulting in particle size –dependent modifications of the external photoluminescence quantum yield (ePLQY) and net emission. Micron-size NaYF4:Yb3+, Er3+ encapsulated phosphors (∼4.2 µm) showed ePLQY enhancements of >402%, with particle-media refractive index disparity (Δn): 0.4969, and net emission increases of >70%. In sub-micron phosphor encapsulants (∼406 nm), self-absorption limited ePLQY and emission as particle concentration increases, while appearing negligible in nanoparticle dispersions (∼31.8 nm). These dependencies are important for standardising PLQY measurements and optimising UC devices, since the encapsulant can drastically enhance UC emission.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yang, S. Gai, and J. Lin, “Functionalized mesoporous silica materials for controlled drug delivery,” Chem. Soc. Rev. 41(9), 3679–3698 (2012).
    [Crossref]
  2. Y. Huang, E. Hemmer, F. Rosei, and F. Vetrone, “Multifunctional liposome nanocarriers combining upconverting nanoparticles and anticancer drugs,” J. Phys. Chem. B 120(22), 4992–5001 (2016).
    [Crossref]
  3. S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
    [Crossref]
  4. Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai, and Y. Zhao, “Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications,” Adv. Mater. 25(28), 3758–3779 (2013).
    [Crossref]
  5. A. Skripka, V. Karabanovas, G. Jarockyte, R. Marin, V. Tam, M. Cerruti, R. Rotomskis, and F. Vetrone, “Decoupling theranostics with rare earth doped nanoparticles,” Adv. Funct. Mater. 29(12), 1807105 (2019).
    [Crossref]
  6. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
    [Crossref]
  7. M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, and C. Xu, “Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy,” Adv. Mater. 28(5), 898–904 (2016).
    [Crossref]
  8. E. Hemmer, P. Acosta-Mora, J. Méndez-Ramos, and S. Fischer, “Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy,” J. Mater. Chem. 5(23), 4365–4392 (2017).
    [Crossref]
  9. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
    [Crossref]
  10. A. Skripka, A. Benayas, R. Marin, P. Canton, E. Hemmer, and F. Vetrone, “Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing,” Nanoscale 9(9), 3079–3085 (2017).
    [Crossref]
  11. J. Kim, Y. Piao, and T. Hyeon, “Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38(2), 372–390 (2009).
    [Crossref]
  12. N. M. Idris, M. K. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
    [Crossref]
  13. M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
    [Crossref]
  14. J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics–a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
    [Crossref]
  15. J. R. Lakowicz, Topics in fluorescence spectroscopy: principles (Springer Science & Business Media, 1992).
  16. S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
    [Crossref]
  17. J.-C. G. Bünzli and S. V. Eliseeva, “Basics of Lanthanide Photophysics,” in Lanthanide Luminescence (Springer, 2010), pp. 1–45.
  18. A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er 3+: ZrO 2 nanocrystals,” Appl. Phys. Lett. 83(2), 284–286 (2003).
    [Crossref]
  19. W. Kong, J. Shan, and Y. Ju, “Flame synthesis and effects of host materials on Yb3+/Er3+ co-doped upconversion nanophosphors,” Mater. Lett. 64(6), 688–691 (2010).
    [Crossref]
  20. P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
    [Crossref]
  21. D. M. Wu, A. Garcia-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
    [Crossref]
  22. V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc 3 (BO 3) 4 and GdVO 4 laser crystals,” J. Opt. Soc. Am. B 15(3), 1052–1060 (1998).
    [Crossref]
  23. G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
    [Crossref]
  24. G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4 Polymer/Core/Shell/Shell Nanoparticles with significant enhancment of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
    [Crossref]
  25. D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
    [Crossref]
  26. J. Marques-Hueso, R. Peretti, R. Abargues, B. S. Richards, C. Seassal, and J. P. Martínez-Pastor, “Photonic crystal-driven spectral concentration for upconversion photovoltaics,” Adv. Opt. Mater. 3(4), 568–574 (2015).
    [Crossref]
  27. J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.
  28. Y.-G. Bi, J. Feng, J.-H. Ji, F.-S. Yi, Y.-F. Li, Y.-F. Liu, X.-L. Zhang, and H.-B. Sun, “Nanostructures induced light harvesting enhancement in organic photovoltaics,” Nanophotonics 7(2), 371–391 (2017).
    [Crossref]
  29. C. Dwivedi, V. Dutta, A. K. Chandiran, M. K. Nazeeruddin, and M. Grätzel, “Anatase TiO2 hollow microspheres fabricated by continuous spray pyrolysis as a scattering layer in dye-sensitised solar cells,” Energy Procedia 33, 223–227 (2013).
    [Crossref]
  30. J. H. Seinfeld and S. N. Pandis, Atmospheric chemistry and physics: from air pollution to climate change (John Wiley & Sons, 2016).
  31. P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
    [Crossref]
  32. E. V. Rodriguez, C. B. de Araújo, A. M. Brito-Silva, V. Ivanenko, and A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467(4-6), 335–338 (2009).
    [Crossref]
  33. M. Pollnau, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [Crossref]
  34. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, absorption, and emission of light by small particles (Cambridge University, 2002).
  35. P. W. Barber and D.-S. Wang, “Rayleigh-Gans-Debye applicability to scattering by nonspherical particles,” Appl. Opt. 17(5), 797–803 (1978).
    [Crossref]
  36. M. I. Mishchenko, “Gustav Mie and the fundamental concept of electromagnetic scattering by particles: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110(14-16), 1210–1222 (2009).
    [Crossref]
  37. H. C. Hulst and H. C. van de Hulst, Light scattering by small particles (Courier Corporation, 1981).
  38. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
  39. A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
    [Crossref]
  40. C. Noguez, “Optical properties of isolated and supported metal nanoparticles,” Opt. Mater. 27(7), 1204–1211 (2005).
    [Crossref]
  41. M. Kraft, C. Würth, V. Muhr, T. Hirsch, and U. Resch-Genger, “Particle-size-dependent upconversion luminescence of NaYF 4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities,” Nano Res. 11(12), 6360–6374 (2018).
    [Crossref]
  42. R. Lv, M. Feng, and W. J. Parak, “Up-Conversion Luminescence Properties of Lanthanide-Gold Hybrid Nanoparticles as Analyzed with Discrete Dipole Approximation,” Nanomaterials 8(12), 989 (2018).
    [Crossref]
  43. A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
    [Crossref]
  44. A. Boccolini, J. Marques-Hueso, and B. S. Richards, “Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices,” Opt. Lett. 39(10), 2904–2907 (2014).
    [Crossref]
  45. A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
    [Crossref]
  46. T. Trupke, M. Green, and P. Würfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
    [Crossref]
  47. V. Badescu and A. M. Badescu, “Improved model for solar cells with up-conversion of low-energy photons,” Renewable Energy 34(6), 1538–1544 (2009).
    [Crossref]
  48. V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
    [Crossref]
  49. T. Senden, F. T. Rabouw, and A. Meijerink, “Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals,” ACS Nano 9(2), 1801–1808 (2015).
    [Crossref]
  50. F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals,” ACS Nano 12(5), 4812–4823 (2018).
    [Crossref]
  51. S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Kramer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of beta-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–887 (2012).
    [Crossref]
  52. J. Capobianco, J. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater. 14(7), 2915–2921 (2002).
    [Crossref]
  53. D. Yuan, G. S. Yi, and G. M. Chow, “Effects of size and surface on luminescence properties of submicron upconversion NaYF 4: Yb, Er particles,” J. Mater. Res. 24(6), 2042–2050 (2009).
    [Crossref]
  54. D. N. Patel, S. S. Sarkisov, A. M. Darwish, and J. Ballato, “Optical gain in capillary light guides filled with NaYF 4: Yb 3+, Er 3+ nanocolloids,” Opt. Express 24(18), 21147–21158 (2016).
    [Crossref]
  55. J. C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
    [Crossref]
  56. W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF 4: Yb 3+/Er 3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
    [Crossref]
  57. R. Hakim, K. Damak, M. Gemmi, S. Luin, R. Maalej, and A. Toncelli, “Pr3+: BaY2F8 Crystal Nanoparticles (24 nm) Produced by High-Energy Ball Milling: Spectroscopic Characterization and Comparison with Bulk Properties,” J. Phys. Chem. C 119(5), 2844–2851 (2015).
    [Crossref]
  58. M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF 4: Yb 3+, Er 3+ nano-and micrometer-sized particles–measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
    [Crossref]
  59. J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
    [Crossref]
  60. W. M. Haynes, CRC handbook of chemistry and physics (CRC, 2014).
  61. S. Deguchi, J. Hotta, S. Yokoyama, and T. S. Matsui, “Viscoelastic and optical properties of four different PDMS polymers,” J. Micromech. Microeng. 25(9), 097002 (2015).
    [Crossref]
  62. I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
    [Crossref]
  63. D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
    [Crossref]
  64. N. Panov, R. Marin, and E. Hemmer, “Microwave-Assisted Solvothermal Synthesis of Upconverting and Downshifting Rare-Earth-Doped LiYF4 Microparticles,” Inorg. Chem. 57(23), 14920–14929 (2018).
    [Crossref]

2019 (1)

A. Skripka, V. Karabanovas, G. Jarockyte, R. Marin, V. Tam, M. Cerruti, R. Rotomskis, and F. Vetrone, “Decoupling theranostics with rare earth doped nanoparticles,” Adv. Funct. Mater. 29(12), 1807105 (2019).
[Crossref]

2018 (6)

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
[Crossref]

M. Kraft, C. Würth, V. Muhr, T. Hirsch, and U. Resch-Genger, “Particle-size-dependent upconversion luminescence of NaYF 4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities,” Nano Res. 11(12), 6360–6374 (2018).
[Crossref]

R. Lv, M. Feng, and W. J. Parak, “Up-Conversion Luminescence Properties of Lanthanide-Gold Hybrid Nanoparticles as Analyzed with Discrete Dipole Approximation,” Nanomaterials 8(12), 989 (2018).
[Crossref]

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals,” ACS Nano 12(5), 4812–4823 (2018).
[Crossref]

N. Panov, R. Marin, and E. Hemmer, “Microwave-Assisted Solvothermal Synthesis of Upconverting and Downshifting Rare-Earth-Doped LiYF4 Microparticles,” Inorg. Chem. 57(23), 14920–14929 (2018).
[Crossref]

2017 (4)

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF 4: Yb 3+, Er 3+ nano-and micrometer-sized particles–measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref]

Y.-G. Bi, J. Feng, J.-H. Ji, F.-S. Yi, Y.-F. Li, Y.-F. Liu, X.-L. Zhang, and H.-B. Sun, “Nanostructures induced light harvesting enhancement in organic photovoltaics,” Nanophotonics 7(2), 371–391 (2017).
[Crossref]

A. Skripka, A. Benayas, R. Marin, P. Canton, E. Hemmer, and F. Vetrone, “Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing,” Nanoscale 9(9), 3079–3085 (2017).
[Crossref]

E. Hemmer, P. Acosta-Mora, J. Méndez-Ramos, and S. Fischer, “Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy,” J. Mater. Chem. 5(23), 4365–4392 (2017).
[Crossref]

2016 (3)

M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, and C. Xu, “Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy,” Adv. Mater. 28(5), 898–904 (2016).
[Crossref]

Y. Huang, E. Hemmer, F. Rosei, and F. Vetrone, “Multifunctional liposome nanocarriers combining upconverting nanoparticles and anticancer drugs,” J. Phys. Chem. B 120(22), 4992–5001 (2016).
[Crossref]

D. N. Patel, S. S. Sarkisov, A. M. Darwish, and J. Ballato, “Optical gain in capillary light guides filled with NaYF 4: Yb 3+, Er 3+ nanocolloids,” Opt. Express 24(18), 21147–21158 (2016).
[Crossref]

2015 (8)

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

T. Senden, F. T. Rabouw, and A. Meijerink, “Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals,” ACS Nano 9(2), 1801–1808 (2015).
[Crossref]

S. Deguchi, J. Hotta, S. Yokoyama, and T. S. Matsui, “Viscoelastic and optical properties of four different PDMS polymers,” J. Micromech. Microeng. 25(9), 097002 (2015).
[Crossref]

R. Hakim, K. Damak, M. Gemmi, S. Luin, R. Maalej, and A. Toncelli, “Pr3+: BaY2F8 Crystal Nanoparticles (24 nm) Produced by High-Energy Ball Milling: Spectroscopic Characterization and Comparison with Bulk Properties,” J. Phys. Chem. C 119(5), 2844–2851 (2015).
[Crossref]

N. M. Idris, M. K. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref]

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref]

J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics–a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
[Crossref]

J. Marques-Hueso, R. Peretti, R. Abargues, B. S. Richards, C. Seassal, and J. P. Martínez-Pastor, “Photonic crystal-driven spectral concentration for upconversion photovoltaics,” Adv. Opt. Mater. 3(4), 568–574 (2015).
[Crossref]

2014 (7)

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

A. Boccolini, J. Marques-Hueso, and B. S. Richards, “Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices,” Opt. Lett. 39(10), 2904–2907 (2014).
[Crossref]

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

D. M. Wu, A. Garcia-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref]

I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF 4: Yb 3+/Er 3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
[Crossref]

2013 (4)

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref]

Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai, and Y. Zhao, “Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications,” Adv. Mater. 25(28), 3758–3779 (2013).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

C. Dwivedi, V. Dutta, A. K. Chandiran, M. K. Nazeeruddin, and M. Grätzel, “Anatase TiO2 hollow microspheres fabricated by continuous spray pyrolysis as a scattering layer in dye-sensitised solar cells,” Energy Procedia 33, 223–227 (2013).
[Crossref]

2012 (2)

2010 (3)

J. C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

W. Kong, J. Shan, and Y. Ju, “Flame synthesis and effects of host materials on Yb3+/Er3+ co-doped upconversion nanophosphors,” Mater. Lett. 64(6), 688–691 (2010).
[Crossref]

2009 (5)

V. Badescu and A. M. Badescu, “Improved model for solar cells with up-conversion of low-energy photons,” Renewable Energy 34(6), 1538–1544 (2009).
[Crossref]

M. I. Mishchenko, “Gustav Mie and the fundamental concept of electromagnetic scattering by particles: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110(14-16), 1210–1222 (2009).
[Crossref]

E. V. Rodriguez, C. B. de Araújo, A. M. Brito-Silva, V. Ivanenko, and A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467(4-6), 335–338 (2009).
[Crossref]

J. Kim, Y. Piao, and T. Hyeon, “Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38(2), 372–390 (2009).
[Crossref]

D. Yuan, G. S. Yi, and G. M. Chow, “Effects of size and surface on luminescence properties of submicron upconversion NaYF 4: Yb, Er particles,” J. Mater. Res. 24(6), 2042–2050 (2009).
[Crossref]

2008 (3)

D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[Crossref]

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

2007 (1)

G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4 Polymer/Core/Shell/Shell Nanoparticles with significant enhancment of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
[Crossref]

2006 (1)

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

2005 (2)

C. Noguez, “Optical properties of isolated and supported metal nanoparticles,” Opt. Mater. 27(7), 1204–1211 (2005).
[Crossref]

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

2003 (1)

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er 3+: ZrO 2 nanocrystals,” Appl. Phys. Lett. 83(2), 284–286 (2003).
[Crossref]

2002 (2)

T. Trupke, M. Green, and P. Würfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[Crossref]

J. Capobianco, J. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater. 14(7), 2915–2921 (2002).
[Crossref]

2000 (1)

M. Pollnau, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

1998 (1)

1978 (1)

Abargues, R.

J. Marques-Hueso, R. Peretti, R. Abargues, B. S. Richards, C. Seassal, and J. P. Martínez-Pastor, “Photonic crystal-driven spectral concentration for upconversion photovoltaics,” Adv. Opt. Mater. 3(4), 568–574 (2015).
[Crossref]

Acosta-Mora, P.

E. Hemmer, P. Acosta-Mora, J. Méndez-Ramos, and S. Fischer, “Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy,” J. Mater. Chem. 5(23), 4365–4392 (2017).
[Crossref]

Aloni, S.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
[Crossref]

Badescu, A. M.

V. Badescu and A. M. Badescu, “Improved model for solar cells with up-conversion of low-energy photons,” Renewable Energy 34(6), 1538–1544 (2009).
[Crossref]

Badescu, V.

V. Badescu and A. M. Badescu, “Improved model for solar cells with up-conversion of low-energy photons,” Renewable Energy 34(6), 1538–1544 (2009).
[Crossref]

Ballato, J.

Balling, P.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Bansal, A.

N. M. Idris, M. K. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref]

Barber, P. W.

Barnard, E. S.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
[Crossref]

Bass, M.

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

Benayas, A.

A. Skripka, A. Benayas, R. Marin, P. Canton, E. Hemmer, and F. Vetrone, “Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing,” Nanoscale 9(9), 3079–3085 (2017).
[Crossref]

Bettinelli, M.

J. Capobianco, J. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater. 14(7), 2915–2921 (2002).
[Crossref]

Bi, Y.-G.

Y.-G. Bi, J. Feng, J.-H. Ji, F.-S. Yi, Y.-F. Li, Y.-F. Liu, X.-L. Zhang, and H.-B. Sun, “Nanostructures induced light harvesting enhancement in organic photovoltaics,” Nanophotonics 7(2), 371–391 (2017).
[Crossref]

Biner, D.

J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.

Boccolini, A.

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

A. Boccolini, J. Marques-Hueso, and B. S. Richards, “Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices,” Opt. Lett. 39(10), 2904–2907 (2014).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

Borys, N. J.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
[Crossref]

Boyer, J.

J. Capobianco, J. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater. 14(7), 2915–2921 (2002).
[Crossref]

Boyer, J. C.

J. C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref]

Brito-Silva, A. M.

E. V. Rodriguez, C. B. de Araújo, A. M. Brito-Silva, V. Ivanenko, and A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467(4-6), 335–338 (2009).
[Crossref]

Bünzli, J.-C. G.

J.-C. G. Bünzli and S. V. Eliseeva, “Basics of Lanthanide Photophysics,” in Lanthanide Luminescence (Springer, 2010), pp. 1–45.

Cai, D.

D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Canton, P.

A. Skripka, A. Benayas, R. Marin, P. Canton, E. Hemmer, and F. Vetrone, “Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing,” Nanoscale 9(9), 3079–3085 (2017).
[Crossref]

Capobianco, J.

J. Capobianco, J. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater. 14(7), 2915–2921 (2002).
[Crossref]

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Cassanho, A.

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

Castelijns, M.

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals,” ACS Nano 12(5), 4812–4823 (2018).
[Crossref]

Cerruti, M.

A. Skripka, V. Karabanovas, G. Jarockyte, R. Marin, V. Tam, M. Cerruti, R. Rotomskis, and F. Vetrone, “Decoupling theranostics with rare earth doped nanoparticles,” Adv. Funct. Mater. 29(12), 1807105 (2019).
[Crossref]

Chai, Z.

Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai, and Y. Zhao, “Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications,” Adv. Mater. 25(28), 3758–3779 (2013).
[Crossref]

Chandiran, A. K.

C. Dwivedi, V. Dutta, A. K. Chandiran, M. K. Nazeeruddin, and M. Grätzel, “Anatase TiO2 hollow microspheres fabricated by continuous spray pyrolysis as a scattering layer in dye-sensitised solar cells,” Energy Procedia 33, 223–227 (2013).
[Crossref]

Chen, D.

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

Chen, G.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref]

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref]

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Chen, X.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref]

Chow, G. M.

D. Yuan, G. S. Yi, and G. M. Chow, “Effects of size and surface on luminescence properties of submicron upconversion NaYF 4: Yb, Er particles,” J. Mater. Res. 24(6), 2042–2050 (2009).
[Crossref]

Chow, G.-M.

G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4 Polymer/Core/Shell/Shell Nanoparticles with significant enhancment of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
[Crossref]

Christiansen, J.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Christiansen, R. E.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Damak, K.

R. Hakim, K. Damak, M. Gemmi, S. Luin, R. Maalej, and A. Toncelli, “Pr3+: BaY2F8 Crystal Nanoparticles (24 nm) Produced by High-Energy Ball Milling: Spectroscopic Characterization and Comparison with Bulk Properties,” J. Phys. Chem. C 119(5), 2844–2851 (2015).
[Crossref]

Darwish, A. M.

de Araújo, C. B.

E. V. Rodriguez, C. B. de Araújo, A. M. Brito-Silva, V. Ivanenko, and A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467(4-6), 335–338 (2009).
[Crossref]

Deguchi, S.

S. Deguchi, J. Hotta, S. Yokoyama, and T. S. Matsui, “Viscoelastic and optical properties of four different PDMS polymers,” J. Micromech. Microeng. 25(9), 097002 (2015).
[Crossref]

Derkacs, D.

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[Crossref]

Dionne, J. A.

D. M. Wu, A. Garcia-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref]

Duan, Z.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref]

Dutta, V.

C. Dwivedi, V. Dutta, A. K. Chandiran, M. K. Nazeeruddin, and M. Grätzel, “Anatase TiO2 hollow microspheres fabricated by continuous spray pyrolysis as a scattering layer in dye-sensitised solar cells,” Energy Procedia 33, 223–227 (2013).
[Crossref]

Dwivedi, C.

C. Dwivedi, V. Dutta, A. K. Chandiran, M. K. Nazeeruddin, and M. Grätzel, “Anatase TiO2 hollow microspheres fabricated by continuous spray pyrolysis as a scattering layer in dye-sensitised solar cells,” Energy Procedia 33, 223–227 (2013).
[Crossref]

Eliseeva, S. V.

J.-C. G. Bünzli and S. V. Eliseeva, “Basics of Lanthanide Photophysics,” in Lanthanide Luminescence (Springer, 2010), pp. 1–45.

Eriksen, E.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Feng, J.

Y.-G. Bi, J. Feng, J.-H. Ji, F.-S. Yi, Y.-F. Li, Y.-F. Liu, X.-L. Zhang, and H.-B. Sun, “Nanostructures induced light harvesting enhancement in organic photovoltaics,” Nanophotonics 7(2), 371–391 (2017).
[Crossref]

Feng, M.

R. Lv, M. Feng, and W. J. Parak, “Up-Conversion Luminescence Properties of Lanthanide-Gold Hybrid Nanoparticles as Analyzed with Discrete Dipole Approximation,” Nanomaterials 8(12), 989 (2018).
[Crossref]

Fischer, S.

E. Hemmer, P. Acosta-Mora, J. Méndez-Ramos, and S. Fischer, “Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy,” J. Mater. Chem. 5(23), 4365–4392 (2017).
[Crossref]

J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics–a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
[Crossref]

J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.

Friend, C. S.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er 3+: ZrO 2 nanocrystals,” Appl. Phys. Lett. 83(2), 284–286 (2003).
[Crossref]

Gai, S.

P. Yang, S. Gai, and J. Lin, “Functionalized mesoporous silica materials for controlled drug delivery,” Chem. Soc. Rev. 41(9), 3679–3698 (2012).
[Crossref]

García Solé, J.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Garcia-Etxarri, A.

D. M. Wu, A. Garcia-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref]

Garfield, D. J.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
[Crossref]

Geitenbeek, R. G.

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals,” ACS Nano 12(5), 4812–4823 (2018).
[Crossref]

Gemmi, M.

R. Hakim, K. Damak, M. Gemmi, S. Luin, R. Maalej, and A. Toncelli, “Pr3+: BaY2F8 Crystal Nanoparticles (24 nm) Produced by High-Energy Ball Milling: Spectroscopic Characterization and Comparison with Bulk Properties,” J. Phys. Chem. C 119(5), 2844–2851 (2015).
[Crossref]

Glunz, S. W.

J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.

Goldschmidt, J. C.

J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics–a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
[Crossref]

J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.

Grätzel, M.

C. Dwivedi, V. Dutta, A. K. Chandiran, M. K. Nazeeruddin, and M. Grätzel, “Anatase TiO2 hollow microspheres fabricated by continuous spray pyrolysis as a scattering layer in dye-sensitised solar cells,” Energy Procedia 33, 223–227 (2013).
[Crossref]

Green, M.

T. Trupke, M. Green, and P. Würfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[Crossref]

Gu, Z.

Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai, and Y. Zhao, “Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications,” Adv. Mater. 25(28), 3758–3779 (2013).
[Crossref]

Hakim, R.

R. Hakim, K. Damak, M. Gemmi, S. Luin, R. Maalej, and A. Toncelli, “Pr3+: BaY2F8 Crystal Nanoparticles (24 nm) Produced by High-Energy Ball Milling: Spectroscopic Characterization and Comparison with Bulk Properties,” J. Phys. Chem. C 119(5), 2844–2851 (2015).
[Crossref]

Hamed, S. M.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
[Crossref]

Hansen, J. L.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Hao, S.

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref]

Haynes, W. M.

W. M. Haynes, CRC handbook of chemistry and physics (CRC, 2014).

Heise, H.

D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Hemmer, E.

N. Panov, R. Marin, and E. Hemmer, “Microwave-Assisted Solvothermal Synthesis of Upconverting and Downshifting Rare-Earth-Doped LiYF4 Microparticles,” Inorg. Chem. 57(23), 14920–14929 (2018).
[Crossref]

E. Hemmer, P. Acosta-Mora, J. Méndez-Ramos, and S. Fischer, “Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy,” J. Mater. Chem. 5(23), 4365–4392 (2017).
[Crossref]

A. Skripka, A. Benayas, R. Marin, P. Canton, E. Hemmer, and F. Vetrone, “Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing,” Nanoscale 9(9), 3079–3085 (2017).
[Crossref]

Y. Huang, E. Hemmer, F. Rosei, and F. Vetrone, “Multifunctional liposome nanocarriers combining upconverting nanoparticles and anticancer drugs,” J. Phys. Chem. B 120(22), 4992–5001 (2016).
[Crossref]

Hirsch, T.

M. Kraft, C. Würth, V. Muhr, T. Hirsch, and U. Resch-Genger, “Particle-size-dependent upconversion luminescence of NaYF 4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities,” Nano Res. 11(12), 6360–6374 (2018).
[Crossref]

Hong, Y.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref]

Hotta, J.

S. Deguchi, J. Hotta, S. Yokoyama, and T. S. Matsui, “Viscoelastic and optical properties of four different PDMS polymers,” J. Micromech. Microeng. 25(9), 097002 (2015).
[Crossref]

Huang, Y.

Y. Huang, E. Hemmer, F. Rosei, and F. Vetrone, “Multifunctional liposome nanocarriers combining upconverting nanoparticles and anticancer drugs,” J. Phys. Chem. B 120(22), 4992–5001 (2016).
[Crossref]

Huber, G.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

Hulst, H. C.

H. C. Hulst and H. C. van de Hulst, Light scattering by small particles (Courier Corporation, 1981).

Hyeon, T.

J. Kim, Y. Piao, and T. Hyeon, “Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38(2), 372–390 (2009).
[Crossref]

Hyppänen, I.

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF 4: Yb 3+, Er 3+ nano-and micrometer-sized particles–measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref]

Idris, N. M.

N. M. Idris, M. K. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref]

Igumnov, S. M.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Ivanenko, V.

E. V. Rodriguez, C. B. de Araújo, A. M. Brito-Silva, V. Ivanenko, and A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467(4-6), 335–338 (2009).
[Crossref]

Ivaturi, A.

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Kramer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of beta-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–887 (2012).
[Crossref]

Janz, S.

J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.

Jaque, D.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Jarockyte, G.

A. Skripka, V. Karabanovas, G. Jarockyte, R. Marin, V. Tam, M. Cerruti, R. Rotomskis, and F. Vetrone, “Decoupling theranostics with rare earth doped nanoparticles,” Adv. Funct. Mater. 29(12), 1807105 (2019).
[Crossref]

Jayakumar, M. K.

N. M. Idris, M. K. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref]

Jensen, P. B.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Jensen, T.

Jenssen, H.

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

Jeppesen, B. R.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Ji, J.-H.

Y.-G. Bi, J. Feng, J.-H. Ji, F.-S. Yi, Y.-F. Li, Y.-F. Liu, X.-L. Zhang, and H.-B. Sun, “Nanostructures induced light harvesting enhancement in organic photovoltaics,” Nanophotonics 7(2), 371–391 (2017).
[Crossref]

Johnston, I.

I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

Ju, Y.

W. Kong, J. Shan, and Y. Ju, “Flame synthesis and effects of host materials on Yb3+/Er3+ co-doped upconversion nanophosphors,” Mater. Lett. 64(6), 688–691 (2010).
[Crossref]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Julsgaard, B.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Kaiser, M.

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF 4: Yb 3+, Er 3+ nano-and micrometer-sized particles–measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref]

Kapoor, R.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er 3+: ZrO 2 nanocrystals,” Appl. Phys. Lett. 83(2), 284–286 (2003).
[Crossref]

Karabanovas, V.

A. Skripka, V. Karabanovas, G. Jarockyte, R. Marin, V. Tam, M. Cerruti, R. Rotomskis, and F. Vetrone, “Decoupling theranostics with rare earth doped nanoparticles,” Adv. Funct. Mater. 29(12), 1807105 (2019).
[Crossref]

Khaydukov, E. V.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Kim, J.

J. Kim, Y. Piao, and T. Hyeon, “Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38(2), 372–390 (2009).
[Crossref]

Kong, W.

W. Kong, J. Shan, and Y. Ju, “Flame synthesis and effects of host materials on Yb3+/Er3+ co-doped upconversion nanophosphors,” Mater. Lett. 64(6), 688–691 (2010).
[Crossref]

Kraft, M.

M. Kraft, C. Würth, V. Muhr, T. Hirsch, and U. Resch-Genger, “Particle-size-dependent upconversion luminescence of NaYF 4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities,” Nano Res. 11(12), 6360–6374 (2018).
[Crossref]

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF 4: Yb 3+, Er 3+ nano-and micrometer-sized particles–measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref]

Kramer, K.

J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.

Kramer, K. W.

Krämer, K. W.

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

Kuang, H.

M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, and C. Xu, “Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy,” Adv. Mater. 28(5), 898–904 (2016).
[Crossref]

Kuckuk, R.

D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, absorption, and emission of light by small particles (Cambridge University, 2002).

Lakhotiya, H.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Topics in fluorescence spectroscopy: principles (Springer Science & Business Media, 1992).

Li, S.

Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai, and Y. Zhao, “Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications,” Adv. Mater. 25(28), 3758–3779 (2013).
[Crossref]

Li, Y. D.

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

Li, Y.-F.

Y.-G. Bi, J. Feng, J.-H. Ji, F.-S. Yi, Y.-F. Li, Y.-F. Liu, X.-L. Zhang, and H.-B. Sun, “Nanostructures induced light harvesting enhancement in organic photovoltaics,” Nanophotonics 7(2), 371–391 (2017).
[Crossref]

Li, Z. H.

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

Liang, H.

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Lifshitz, E.

J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.

Lim, S.

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[Crossref]

Lin, J.

P. Yang, S. Gai, and J. Lin, “Functionalized mesoporous silica materials for controlled drug delivery,” Chem. Soc. Rev. 41(9), 3679–3698 (2012).
[Crossref]

Lin, M.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref]

Lipovskii, A.

E. V. Rodriguez, C. B. de Araújo, A. M. Brito-Silva, V. Ivanenko, and A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467(4-6), 335–338 (2009).
[Crossref]

Liu, H.

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Liu, Y.-F.

Y.-G. Bi, J. Feng, J.-H. Ji, F.-S. Yi, Y.-F. Li, Y.-F. Liu, X.-L. Zhang, and H.-B. Sun, “Nanostructures induced light harvesting enhancement in organic photovoltaics,” Nanophotonics 7(2), 371–391 (2017).
[Crossref]

Loper, P.

J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.

Luin, S.

R. Hakim, K. Damak, M. Gemmi, S. Luin, R. Maalej, and A. Toncelli, “Pr3+: BaY2F8 Crystal Nanoparticles (24 nm) Produced by High-Energy Ball Milling: Spectroscopic Characterization and Comparison with Bulk Properties,” J. Phys. Chem. C 119(5), 2844–2851 (2015).
[Crossref]

Lv, R.

R. Lv, M. Feng, and W. J. Parak, “Up-Conversion Luminescence Properties of Lanthanide-Gold Hybrid Nanoparticles as Analyzed with Discrete Dipole Approximation,” Nanomaterials 8(12), 989 (2018).
[Crossref]

Ma, W.

M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, and C. Xu, “Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy,” Adv. Mater. 28(5), 898–904 (2016).
[Crossref]

Maalej, R.

R. Hakim, K. Damak, M. Gemmi, S. Luin, R. Maalej, and A. Toncelli, “Pr3+: BaY2F8 Crystal Nanoparticles (24 nm) Produced by High-Energy Ball Milling: Spectroscopic Characterization and Comparison with Bulk Properties,” J. Phys. Chem. C 119(5), 2844–2851 (2015).
[Crossref]

MacDougall, S. K.

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Kramer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of beta-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–887 (2012).
[Crossref]

MacDougall, S. K. W.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

Madsen, M.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Madsen, S. P.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Marin, R.

A. Skripka, V. Karabanovas, G. Jarockyte, R. Marin, V. Tam, M. Cerruti, R. Rotomskis, and F. Vetrone, “Decoupling theranostics with rare earth doped nanoparticles,” Adv. Funct. Mater. 29(12), 1807105 (2019).
[Crossref]

N. Panov, R. Marin, and E. Hemmer, “Microwave-Assisted Solvothermal Synthesis of Upconverting and Downshifting Rare-Earth-Doped LiYF4 Microparticles,” Inorg. Chem. 57(23), 14920–14929 (2018).
[Crossref]

A. Skripka, A. Benayas, R. Marin, P. Canton, E. Hemmer, and F. Vetrone, “Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing,” Nanoscale 9(9), 3079–3085 (2017).
[Crossref]

Marques-Hueso, J.

J. Marques-Hueso, R. Peretti, R. Abargues, B. S. Richards, C. Seassal, and J. P. Martínez-Pastor, “Photonic crystal-driven spectral concentration for upconversion photovoltaics,” Adv. Opt. Mater. 3(4), 568–574 (2015).
[Crossref]

A. Boccolini, J. Marques-Hueso, and B. S. Richards, “Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices,” Opt. Lett. 39(10), 2904–2907 (2014).
[Crossref]

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Kramer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of beta-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–887 (2012).
[Crossref]

Martín Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Martínez-Pastor, J. P.

J. Marques-Hueso, R. Peretti, R. Abargues, B. S. Richards, C. Seassal, and J. P. Martínez-Pastor, “Photonic crystal-driven spectral concentration for upconversion photovoltaics,” Adv. Opt. Mater. 3(4), 568–574 (2015).
[Crossref]

Martín-Rodríguez, R.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

Matheu, P.

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[Crossref]

Matsui, T. S.

S. Deguchi, J. Hotta, S. Yokoyama, and T. S. Matsui, “Viscoelastic and optical properties of four different PDMS polymers,” J. Micromech. Microeng. 25(9), 097002 (2015).
[Crossref]

McCluskey, D.

I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

McPheeters, C.

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[Crossref]

Meijerink, A.

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals,” ACS Nano 12(5), 4812–4823 (2018).
[Crossref]

T. Senden, F. T. Rabouw, and A. Meijerink, “Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals,” ACS Nano 9(2), 1801–1808 (2015).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

Méndez-Ramos, J.

E. Hemmer, P. Acosta-Mora, J. Méndez-Ramos, and S. Fischer, “Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy,” J. Mater. Chem. 5(23), 4365–4392 (2017).
[Crossref]

Meyn, J.-P.

Milliez, J.

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

Mirsafaei, M.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Mishchenko, M. I.

M. I. Mishchenko, “Gustav Mie and the fundamental concept of electromagnetic scattering by particles: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110(14-16), 1210–1222 (2009).
[Crossref]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, absorption, and emission of light by small particles (Cambridge University, 2002).

Molchanova, S. I.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Møller, S. H.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Muhr, V.

M. Kraft, C. Würth, V. Muhr, T. Hirsch, and U. Resch-Genger, “Particle-size-dependent upconversion luminescence of NaYF 4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities,” Nano Res. 11(12), 6360–6374 (2018).
[Crossref]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Nazarov, M. M.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Nazeeruddin, M. K.

C. Dwivedi, V. Dutta, A. K. Chandiran, M. K. Nazeeruddin, and M. Grätzel, “Anatase TiO2 hollow microspheres fabricated by continuous spray pyrolysis as a scattering layer in dye-sensitised solar cells,” Energy Procedia 33, 223–227 (2013).
[Crossref]

Nazir, A.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Nechaev, A. V.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Neyer, A.

D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Noginov, M.

Noguez, C.

C. Noguez, “Optical properties of isolated and supported metal nanoparticles,” Opt. Mater. 27(7), 1204–1211 (2005).
[Crossref]

Ostroumov, V.

Panchenko, V. Y.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Pandis, S. N.

J. H. Seinfeld and S. N. Pandis, Atmospheric chemistry and physics: from air pollution to climate change (John Wiley & Sons, 2016).

Panov, N.

N. Panov, R. Marin, and E. Hemmer, “Microwave-Assisted Solvothermal Synthesis of Upconverting and Downshifting Rare-Earth-Doped LiYF4 Microparticles,” Inorg. Chem. 57(23), 14920–14929 (2018).
[Crossref]

Parak, W. J.

R. Lv, M. Feng, and W. J. Parak, “Up-Conversion Luminescence Properties of Lanthanide-Gold Hybrid Nanoparticles as Analyzed with Discrete Dipole Approximation,” Nanomaterials 8(12), 989 (2018).
[Crossref]

Patel, D. N.

Patra, A.

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er 3+: ZrO 2 nanocrystals,” Appl. Phys. Lett. 83(2), 284–286 (2003).
[Crossref]

Peretti, R.

J. Marques-Hueso, R. Peretti, R. Abargues, B. S. Richards, C. Seassal, and J. P. Martínez-Pastor, “Photonic crystal-driven spectral concentration for upconversion photovoltaics,” Adv. Opt. Mater. 3(4), 568–574 (2015).
[Crossref]

Peters, M.

J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.

Piao, Y.

J. Kim, Y. Piao, and T. Hyeon, “Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38(2), 372–390 (2009).
[Crossref]

Pollnau, M.

M. Pollnau, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Prasad, P. N.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref]

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er 3+: ZrO 2 nanocrystals,” Appl. Phys. Lett. 83(2), 284–286 (2003).
[Crossref]

Prins, P. T.

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals,” ACS Nano 12(5), 4812–4823 (2018).
[Crossref]

Qiu, H.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref]

Quintanilla, M.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

Rabouw, F. T.

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals,” ACS Nano 12(5), 4812–4823 (2018).
[Crossref]

T. Senden, F. T. Rabouw, and A. Meijerink, “Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals,” ACS Nano 9(2), 1801–1808 (2015).
[Crossref]

Ram, S. K.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Rapaport, A.

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

Resch-Genger, U.

M. Kraft, C. Würth, V. Muhr, T. Hirsch, and U. Resch-Genger, “Particle-size-dependent upconversion luminescence of NaYF 4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities,” Nano Res. 11(12), 6360–6374 (2018).
[Crossref]

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF 4: Yb 3+, Er 3+ nano-and micrometer-sized particles–measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref]

Richards, B.

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

Richards, B. S.

J. Marques-Hueso, R. Peretti, R. Abargues, B. S. Richards, C. Seassal, and J. P. Martínez-Pastor, “Photonic crystal-driven spectral concentration for upconversion photovoltaics,” Adv. Opt. Mater. 3(4), 568–574 (2015).
[Crossref]

A. Boccolini, J. Marques-Hueso, and B. S. Richards, “Self-absorption in upconverter luminescent layers: impact on quantum yield measurements and on designing optimized photovoltaic devices,” Opt. Lett. 39(10), 2904–2907 (2014).
[Crossref]

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Kramer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of beta-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–887 (2012).
[Crossref]

Rodriguez, E. V.

E. V. Rodriguez, C. B. de Araújo, A. M. Brito-Silva, V. Ivanenko, and A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467(4-6), 335–338 (2009).
[Crossref]

Rosei, F.

Y. Huang, E. Hemmer, F. Rosei, and F. Vetrone, “Multifunctional liposome nanocarriers combining upconverting nanoparticles and anticancer drugs,” J. Phys. Chem. B 120(22), 4992–5001 (2016).
[Crossref]

Rotomskis, R.

A. Skripka, V. Karabanovas, G. Jarockyte, R. Marin, V. Tam, M. Cerruti, R. Rotomskis, and F. Vetrone, “Decoupling theranostics with rare earth doped nanoparticles,” Adv. Funct. Mater. 29(12), 1807105 (2019).
[Crossref]

Salleo, A.

D. M. Wu, A. Garcia-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref]

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Sarkisov, S. S.

Savelyev, A. G.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Seassal, C.

J. Marques-Hueso, R. Peretti, R. Abargues, B. S. Richards, C. Seassal, and J. P. Martínez-Pastor, “Photonic crystal-driven spectral concentration for upconversion photovoltaics,” Adv. Opt. Mater. 3(4), 568–574 (2015).
[Crossref]

Seinfeld, J. H.

J. H. Seinfeld and S. N. Pandis, Atmospheric chemistry and physics: from air pollution to climate change (John Wiley & Sons, 2016).

Senden, T.

T. Senden, F. T. Rabouw, and A. Meijerink, “Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals,” ACS Nano 9(2), 1801–1808 (2015).
[Crossref]

Shan, J.

W. Kong, J. Shan, and Y. Ju, “Flame synthesis and effects of host materials on Yb3+/Er3+ co-doped upconversion nanophosphors,” Mater. Lett. 64(6), 688–691 (2010).
[Crossref]

Shevitski, B.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
[Crossref]

Sigmund, O.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Skripka, A.

A. Skripka, V. Karabanovas, G. Jarockyte, R. Marin, V. Tam, M. Cerruti, R. Rotomskis, and F. Vetrone, “Decoupling theranostics with rare earth doped nanoparticles,” Adv. Funct. Mater. 29(12), 1807105 (2019).
[Crossref]

A. Skripka, A. Benayas, R. Marin, P. Canton, E. Hemmer, and F. Vetrone, “Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing,” Nanoscale 9(9), 3079–3085 (2017).
[Crossref]

Sokolov, V. I.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Somesfalean, G.

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Song, H.

W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF 4: Yb 3+/Er 3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
[Crossref]

Soukka, T.

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF 4: Yb 3+, Er 3+ nano-and micrometer-sized particles–measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref]

Speghini, A.

J. Capobianco, J. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater. 14(7), 2915–2921 (2002).
[Crossref]

Su, J.

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

Suh, Y. D.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
[Crossref]

Sun, H.-B.

Y.-G. Bi, J. Feng, J.-H. Ji, F.-S. Yi, Y.-F. Li, Y.-F. Liu, X.-L. Zhang, and H.-B. Sun, “Nanostructures induced light harvesting enhancement in organic photovoltaics,” Nanophotonics 7(2), 371–391 (2017).
[Crossref]

Sun, M.

M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, and C. Xu, “Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy,” Adv. Mater. 28(5), 898–904 (2016).
[Crossref]

Tajon, C. A.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
[Crossref]

Tam, V.

A. Skripka, V. Karabanovas, G. Jarockyte, R. Marin, V. Tam, M. Cerruti, R. Rotomskis, and F. Vetrone, “Decoupling theranostics with rare earth doped nanoparticles,” Adv. Funct. Mater. 29(12), 1807105 (2019).
[Crossref]

Tan, C.

I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

Tian, B.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
[Crossref]

Tian, G.

Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai, and Y. Zhao, “Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications,” Adv. Mater. 25(28), 3758–3779 (2013).
[Crossref]

Toncelli, A.

R. Hakim, K. Damak, M. Gemmi, S. Luin, R. Maalej, and A. Toncelli, “Pr3+: BaY2F8 Crystal Nanoparticles (24 nm) Produced by High-Energy Ball Milling: Spectroscopic Characterization and Comparison with Bulk Properties,” J. Phys. Chem. C 119(5), 2844–2851 (2015).
[Crossref]

Torquato, N. A.

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
[Crossref]

Tracey, M.

I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, absorption, and emission of light by small particles (Cambridge University, 2002).

Trupke, T.

T. Trupke, M. Green, and P. Würfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[Crossref]

Tyutyunov, A. A.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

van de Hulst, H. C.

H. C. Hulst and H. C. van de Hulst, Light scattering by small particles (Courier Corporation, 1981).

van Veggel, F. C.

J. C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref]

Vester-Petersen, J.

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Vetrone, F.

A. Skripka, V. Karabanovas, G. Jarockyte, R. Marin, V. Tam, M. Cerruti, R. Rotomskis, and F. Vetrone, “Decoupling theranostics with rare earth doped nanoparticles,” Adv. Funct. Mater. 29(12), 1807105 (2019).
[Crossref]

A. Skripka, A. Benayas, R. Marin, P. Canton, E. Hemmer, and F. Vetrone, “Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing,” Nanoscale 9(9), 3079–3085 (2017).
[Crossref]

Y. Huang, E. Hemmer, F. Rosei, and F. Vetrone, “Multifunctional liposome nanocarriers combining upconverting nanoparticles and anticancer drugs,” J. Phys. Chem. B 120(22), 4992–5001 (2016).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

J. Capobianco, J. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater. 14(7), 2915–2921 (2002).
[Crossref]

Villanueva-Delgado, P.

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals,” ACS Nano 12(5), 4812–4823 (2018).
[Crossref]

Wang, D.-S.

Wang, L.

M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, and C. Xu, “Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy,” Adv. Mater. 28(5), 898–904 (2016).
[Crossref]

Wang, Y.

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

Willeke, G.

J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.

Wu, D. M.

D. M. Wu, A. Garcia-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref]

Wu, X.

M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, and C. Xu, “Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy,” Adv. Mater. 28(5), 898–904 (2016).
[Crossref]

Würfel, P.

T. Trupke, M. Green, and P. Würfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[Crossref]

Würth, C.

M. Kraft, C. Würth, V. Muhr, T. Hirsch, and U. Resch-Genger, “Particle-size-dependent upconversion luminescence of NaYF 4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities,” Nano Res. 11(12), 6360–6374 (2018).
[Crossref]

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF 4: Yb 3+, Er 3+ nano-and micrometer-sized particles–measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref]

Xu, C.

M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, and C. Xu, “Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy,” Adv. Mater. 28(5), 898–904 (2016).
[Crossref]

Xu, F.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref]

Xu, L.

M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, and C. Xu, “Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy,” Adv. Mater. 28(5), 898–904 (2016).
[Crossref]

Xu, W.

W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF 4: Yb 3+/Er 3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
[Crossref]

Yan, L.

Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai, and Y. Zhao, “Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications,” Adv. Mater. 25(28), 3758–3779 (2013).
[Crossref]

Yan, R. X.

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

Yang, C.

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref]

Yang, P.

P. Yang, S. Gai, and J. Lin, “Functionalized mesoporous silica materials for controlled drug delivery,” Chem. Soc. Rev. 41(9), 3679–3698 (2012).
[Crossref]

Yi, F.-S.

Y.-G. Bi, J. Feng, J.-H. Ji, F.-S. Yi, Y.-F. Li, Y.-F. Liu, X.-L. Zhang, and H.-B. Sun, “Nanostructures induced light harvesting enhancement in organic photovoltaics,” Nanophotonics 7(2), 371–391 (2017).
[Crossref]

Yi, G. S.

D. Yuan, G. S. Yi, and G. M. Chow, “Effects of size and surface on luminescence properties of submicron upconversion NaYF 4: Yb, Er particles,” J. Mater. Res. 24(6), 2042–2050 (2009).
[Crossref]

Yi, G.-S.

G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4 Polymer/Core/Shell/Shell Nanoparticles with significant enhancment of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
[Crossref]

Yokoyama, S.

S. Deguchi, J. Hotta, S. Yokoyama, and T. S. Matsui, “Viscoelastic and optical properties of four different PDMS polymers,” J. Micromech. Microeng. 25(9), 097002 (2015).
[Crossref]

You, M.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref]

Yu, E.

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[Crossref]

Yu, W.

W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF 4: Yb 3+/Er 3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
[Crossref]

Yuan, D.

D. Yuan, G. S. Yi, and G. M. Chow, “Effects of size and surface on luminescence properties of submicron upconversion NaYF 4: Yb, Er particles,” J. Mater. Res. 24(6), 2042–2050 (2009).
[Crossref]

Zamarrón, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Zeng, J. H.

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

Zhang, S.

W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF 4: Yb 3+/Er 3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
[Crossref]

Zhang, X.-L.

Y.-G. Bi, J. Feng, J.-H. Ji, F.-S. Yi, Y.-F. Li, Y.-F. Liu, X.-L. Zhang, and H.-B. Sun, “Nanostructures induced light harvesting enhancement in organic photovoltaics,” Nanophotonics 7(2), 371–391 (2017).
[Crossref]

Zhang, Y.

N. M. Idris, M. K. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref]

Zhang, Z.

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

Zhao, Y.

Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai, and Y. Zhao, “Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications,” Adv. Mater. 25(28), 3758–3779 (2013).
[Crossref]

Zhong, J.

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref]

Zvyagin, A. V.

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

ACS Nano (3)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

T. Senden, F. T. Rabouw, and A. Meijerink, “Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals,” ACS Nano 9(2), 1801–1808 (2015).
[Crossref]

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals,” ACS Nano 12(5), 4812–4823 (2018).
[Crossref]

Adv. Funct. Mater. (1)

A. Skripka, V. Karabanovas, G. Jarockyte, R. Marin, V. Tam, M. Cerruti, R. Rotomskis, and F. Vetrone, “Decoupling theranostics with rare earth doped nanoparticles,” Adv. Funct. Mater. 29(12), 1807105 (2019).
[Crossref]

Adv. Mater. (3)

M. Sun, L. Xu, W. Ma, X. Wu, H. Kuang, L. Wang, and C. Xu, “Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy,” Adv. Mater. 28(5), 898–904 (2016).
[Crossref]

Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai, and Y. Zhao, “Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications,” Adv. Mater. 25(28), 3758–3779 (2013).
[Crossref]

J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, “Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3+ phosphors of controlled size and morphology,” Adv. Mater. 17(17), 2119–2123 (2005).
[Crossref]

Adv. Opt. Mater. (2)

J. Marques-Hueso, R. Peretti, R. Abargues, B. S. Richards, C. Seassal, and J. P. Martínez-Pastor, “Photonic crystal-driven spectral concentration for upconversion photovoltaics,” Adv. Opt. Mater. 3(4), 568–574 (2015).
[Crossref]

J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics–a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er 3+: ZrO 2 nanocrystals,” Appl. Phys. Lett. 83(2), 284–286 (2003).
[Crossref]

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[Crossref]

Chem. Mater. (2)

G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4 Polymer/Core/Shell/Shell Nanoparticles with significant enhancment of upconversion fluorescence,” Chem. Mater. 19(3), 341–343 (2007).
[Crossref]

J. Capobianco, J. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, “Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3,” Chem. Mater. 14(7), 2915–2921 (2002).
[Crossref]

Chem. Phys. Lett. (1)

E. V. Rodriguez, C. B. de Araújo, A. M. Brito-Silva, V. Ivanenko, and A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467(4-6), 335–338 (2009).
[Crossref]

Chem. Rev. (1)

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref]

Chem. Soc. Rev. (3)

P. Yang, S. Gai, and J. Lin, “Functionalized mesoporous silica materials for controlled drug delivery,” Chem. Soc. Rev. 41(9), 3679–3698 (2012).
[Crossref]

J. Kim, Y. Piao, and T. Hyeon, “Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy,” Chem. Soc. Rev. 38(2), 372–390 (2009).
[Crossref]

N. M. Idris, M. K. Jayakumar, A. Bansal, and Y. Zhang, “Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications,” Chem. Soc. Rev. 44(6), 1449–1478 (2015).
[Crossref]

Dalton Trans. (1)

W. Yu, W. Xu, H. Song, and S. Zhang, “Temperature-dependent upconversion luminescence and dynamics of NaYF 4: Yb 3+/Er 3+ nanocrystals: influence of particle size and crystalline phase,” Dalton Trans. 43(16), 6139–6147 (2014).
[Crossref]

Energy Procedia (1)

C. Dwivedi, V. Dutta, A. K. Chandiran, M. K. Nazeeruddin, and M. Grätzel, “Anatase TiO2 hollow microspheres fabricated by continuous spray pyrolysis as a scattering layer in dye-sensitised solar cells,” Energy Procedia 33, 223–227 (2013).
[Crossref]

Inorg. Chem. (1)

N. Panov, R. Marin, and E. Hemmer, “Microwave-Assisted Solvothermal Synthesis of Upconverting and Downshifting Rare-Earth-Doped LiYF4 Microparticles,” Inorg. Chem. 57(23), 14920–14929 (2018).
[Crossref]

J. Appl. Phys. (2)

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

T. Trupke, M. Green, and P. Würfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys. 92(7), 4117–4122 (2002).
[Crossref]

J. Disp. Technol. (1)

A. Rapaport, J. Milliez, M. Bass, A. Cassanho, and H. Jenssen, “Review of the properties of up-conversion phosphors for new emissive displays,” J. Disp. Technol. 2(1), 68–78 (2006).
[Crossref]

J. Mater. Chem. (1)

E. Hemmer, P. Acosta-Mora, J. Méndez-Ramos, and S. Fischer, “Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy,” J. Mater. Chem. 5(23), 4365–4392 (2017).
[Crossref]

J. Mater. Res. (1)

D. Yuan, G. S. Yi, and G. M. Chow, “Effects of size and surface on luminescence properties of submicron upconversion NaYF 4: Yb, Er particles,” J. Mater. Res. 24(6), 2042–2050 (2009).
[Crossref]

J. Micromech. Microeng. (2)

S. Deguchi, J. Hotta, S. Yokoyama, and T. S. Matsui, “Viscoelastic and optical properties of four different PDMS polymers,” J. Micromech. Microeng. 25(9), 097002 (2015).
[Crossref]

I. Johnston, D. McCluskey, C. Tan, and M. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 035017 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

Y. Huang, E. Hemmer, F. Rosei, and F. Vetrone, “Multifunctional liposome nanocarriers combining upconverting nanoparticles and anticancer drugs,” J. Phys. Chem. B 120(22), 4992–5001 (2016).
[Crossref]

J. Phys. Chem. C (2)

G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” J. Phys. Chem. C 112(31), 12030–12036 (2008).
[Crossref]

R. Hakim, K. Damak, M. Gemmi, S. Luin, R. Maalej, and A. Toncelli, “Pr3+: BaY2F8 Crystal Nanoparticles (24 nm) Produced by High-Energy Ball Milling: Spectroscopic Characterization and Comparison with Bulk Properties,” J. Phys. Chem. C 119(5), 2844–2851 (2015).
[Crossref]

J. Phys. Chem. Lett. (1)

D. M. Wu, A. Garcia-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. I. Mishchenko, “Gustav Mie and the fundamental concept of electromagnetic scattering by particles: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110(14-16), 1210–1222 (2009).
[Crossref]

Mater. Lett. (1)

W. Kong, J. Shan, and Y. Ju, “Flame synthesis and effects of host materials on Yb3+/Er3+ co-doped upconversion nanophosphors,” Mater. Lett. 64(6), 688–691 (2010).
[Crossref]

Nano Res. (1)

M. Kraft, C. Würth, V. Muhr, T. Hirsch, and U. Resch-Genger, “Particle-size-dependent upconversion luminescence of NaYF 4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities,” Nano Res. 11(12), 6360–6374 (2018).
[Crossref]

Nanomaterials (1)

R. Lv, M. Feng, and W. J. Parak, “Up-Conversion Luminescence Properties of Lanthanide-Gold Hybrid Nanoparticles as Analyzed with Discrete Dipole Approximation,” Nanomaterials 8(12), 989 (2018).
[Crossref]

Nanophotonics (1)

Y.-G. Bi, J. Feng, J.-H. Ji, F.-S. Yi, Y.-F. Li, Y.-F. Liu, X.-L. Zhang, and H.-B. Sun, “Nanostructures induced light harvesting enhancement in organic photovoltaics,” Nanophotonics 7(2), 371–391 (2017).
[Crossref]

Nanoscale (4)

M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale 7(10), 4423–4431 (2015).
[Crossref]

A. Skripka, A. Benayas, R. Marin, P. Canton, E. Hemmer, and F. Vetrone, “Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing,” Nanoscale 9(9), 3079–3085 (2017).
[Crossref]

J. C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref]

M. Kaiser, C. Würth, M. Kraft, I. Hyppänen, T. Soukka, and U. Resch-Genger, “Power-dependent upconversion quantum yield of NaYF 4: Yb 3+, Er 3+ nano-and micrometer-sized particles–measurements and simulations,” Nanoscale 9(28), 10051–10058 (2017).
[Crossref]

Nat. Photonics (1)

D. J. Garfield, N. J. Borys, S. M. Hamed, N. A. Torquato, C. A. Tajon, B. Tian, B. Shevitski, E. S. Barnard, Y. D. Suh, and S. Aloni, “Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission,” Nat. Photonics 12(7), 402–407 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (3)

D. Cai, A. Neyer, R. Kuckuk, and H. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

C. Noguez, “Optical properties of isolated and supported metal nanoparticles,” Opt. Mater. 27(7), 1204–1211 (2005).
[Crossref]

P. Balling, J. Christiansen, R. E. Christiansen, E. Eriksen, H. Lakhotiya, M. Mirsafaei, S. H. Møller, A. Nazir, J. Vester-Petersen, B. R. Jeppesen, P. B. Jensen, J. L. Hansen, S. K. Ram, O. Sigmund, M. Madsen, S. P. Madsen, and B. Julsgaard, “Improving the efficiency of solar cells by upconverting sunlight using field enhancement from optimized nano structures,” Opt. Mater. 83, 279–289 (2018).
[Crossref]

Opt. Spectrosc. (1)

V. I. Sokolov, A. V. Zvyagin, S. M. Igumnov, S. I. Molchanova, M. M. Nazarov, A. V. Nechaev, A. G. Savelyev, A. A. Tyutyunov, E. V. Khaydukov, and V. Y. Panchenko, “Determination of the refractive index of β-NaYF4/Yb3+/Er3+/Tm3+ nanocrystals using spectroscopic refractometry,” Opt. Spectrosc. 118(4), 609–613 (2015).
[Crossref]

Phys. Rev. B (1)

M. Pollnau, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Renewable Energy (1)

V. Badescu and A. M. Badescu, “Improved model for solar cells with up-conversion of low-energy photons,” Renewable Energy 34(6), 1538–1544 (2009).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, and B. Richards, “Physical performance limitations of luminescent down-conversion layers for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).
[Crossref]

S. K. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

Theranostics (1)

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref]

Other (8)

J.-C. G. Bünzli and S. V. Eliseeva, “Basics of Lanthanide Photophysics,” in Lanthanide Luminescence (Springer, 2010), pp. 1–45.

J. R. Lakowicz, Topics in fluorescence spectroscopy: principles (Springer Science & Business Media, 1992).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, absorption, and emission of light by small particles (Cambridge University, 2002).

H. C. Hulst and H. C. van de Hulst, Light scattering by small particles (Courier Corporation, 1981).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

J. H. Seinfeld and S. N. Pandis, Atmospheric chemistry and physics: from air pollution to climate change (John Wiley & Sons, 2016).

J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” in Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.

W. M. Haynes, CRC handbook of chemistry and physics (CRC, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) PD simulations of 980 nm E-field travelling through particles (1 µm to 10 µm) and media of various RI, (b) simulation geometry, (c) Area 1 PD vs media RI and (d) S21 vs media RI. (e) PD simulations of a dipole (540 or 660 nm) emitting through particles (1 µm to 10 µm) and various RI media, (f) simulation geometry and (g) Area 1 PD vs media RI. (h) PD simulations of a dipole (540 or 660 nm) emitting from various positions through particles (1 µm to 10 µm) and media, (i) simulation geometry and (j) Area 1 PD vs media RI.
Fig. 2.
Fig. 2. (a) NaYF4:20%Yb3+, 3%Er3+ (4.2 ± 2 µm) UC phosphor particle size histogram. (b) Phosphor SEM. (c) Images of phosphor in various RI media under ambient light. (d) Images of the phosphor in various RI media under 980 nm laser excitation. (e) #Events vs media RI (510 nm to 690 nm). (f) Absorbed incident photons vs media RI (960 nm to 1000 nm). (g) Net UC emission vs media RI (510 nm to 690 nm). (h) ePLQY vs media RI (510 nm to 690 nm).
Fig. 3.
Fig. 3. NaYF4:20%Yb3+, 3%Er3+ phosphor (406 ± 272 nm) (a) SEM image and (b) particle size histogram. (c) Images of various phosphor particle concentrations in PDMS acquired under: ambient light (upper row), red laser (∼660 nm) illumination (upper middle row), 960 nm excitation with an 800 nm long pass filter in front of the camera lens (lower middle row) and 960 nm excitation (bottom row). The following parameters were plotted against particle concentration: (d) #Events (UC emissions from 500 nm to 700 nm), (e) net UC emission, (f) ePLQY, (g) absorbed incident photons, (h) Ln (I/I0) and (i) 960 nm laser beam transmission compared to a PDMS reference.
Fig. 4.
Fig. 4. (a) NaYF4:18%Yb3+, 2%Er3+ UCNPs and undoped NaYF4 NPs size histogram with inset image of UCNPs (16.5 mg/mL) under ambient light. (b) SEM of UCNPs (left) and undoped NPs (right). (c) XRD data of UCNPs and undoped NPs, relative intensity vs 2 Theta (°). The following parameters were plotted against particle concentration: (d) Absorption, #Events in the ranges (e) 400 nm to 425 nm and (f) 500 nm to 700 nm, net UC emission for the (g) 540 nm and 660 nm UC peaks and (h) 410 nm UC peak, ePLQY for the (i) 540 nm and 660 nm UC peaks and (j) 410 nm UC peak, and finally iPLQY for the; (k) 540 nm and 660 nm UC peaks and (l) 410 nm UC peak.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PLQY =  # photons emitted # photons absorbed  =  L Sample E Reference  -  E Sample