Abstract

The concept of “cloaking” an object is a very attractive one, especially in the visible (VIS) and near infra-red (NIR) regions of the electromagnetic spectrum, as that would reduce the visibility of an object to the eye. One possible route to achieving this goal is by leveraging the plasmonic property of metallic nanoparticles (NPs). We model and simulate light in the VIS and NIR scattered by a core of a homogeneous medium, covered by plasmonic cloak that is a spherical shell composed of gold nanoparticles (AuNPs). To consider realistic, scalable, and robust plasmonic cloaks that are comparable, or larger, in size to the wavelength, we introduce a multiscale simulation platform. This model uses the multiple scattering theory of Foldy and Lax to model interactions of light with AuNPs combined with the method of fundamental solutions to model interactions with the core. Numerical results of our simulations for the scattering cross-sections of core-shell composite indicate significant scattering suppression of up to 50% over a substantial portion of the desired spectral range (400 - 600 nm) for cores as large as 900 nm in diameter by a suitable combination of AuNP sizes and filling fractions of AuNPs in the shell.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3(2), 177–210 (2014).
    [Crossref]
  2. G. V. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials (Wiley, New York, 2005).
  3. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, New York, 2006).
  4. W. Zhao and X. Zhao, “Fabrication and characterization of metamaterials at optical frequencies,” Opt. Mater. 32(3), 422–426 (2010).
    [Crossref]
  5. L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
    [Crossref]
  6. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
    [Crossref]
  7. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  8. P. Dey, S. Zhu, K. J. Thurecht, P. M. Fredericks, and I. Blakey, “Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers,” J. Mater. Chem. B 2(19), 2827–2837 (2014).
    [Crossref]
  9. H. Chen, “Metamaterials: Constitutive parameters, performance, and chemical methods for realization,” J. Mater. Chem. 21(18), 6452–6463 (2011).
    [Crossref]
  10. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  11. S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3(1), 2328 (2013).
    [Crossref]
  12. R. Fleury, F. Monticone, and A. Alù, “Invisibility and cloaking: Origins, present, and future perspectives,” Phys. Rev. Appl. 4(3), 037001 (2015).
    [Crossref]
  13. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
    [Crossref]
  14. A. Alù and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express 15(12), 7578 (2007).
    [Crossref]
  15. D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6(1), 46–48 (2012).
    [Crossref]
  16. C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
    [Crossref]
  17. A. Alù and N. Engheta, “Effects of size and frequency dispersion in plasmonic cloaking,” Phys. Rev. E 78(4), 045602 (2008).
    [Crossref]
  18. S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
    [Crossref]
  19. S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
    [Crossref]
  20. S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
    [Crossref]
  21. M. Farhat, P. Y. Chen, S. Guenneau, S. Enoch, R. McPhedran, C. Rockstuhl, and F. Lederer, “Understanding the functionality of an array of invisibility cloaks,” Phys. Rev. B 84(23), 235105 (2011).
    [Crossref]
  22. A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479 (2011).
    [Crossref]
  23. P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
    [Crossref]
  24. M. G. Silveirinha, A. Alù, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78(7), 075107 (2008).
    [Crossref]
  25. D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
    [Crossref]
  26. G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
    [Crossref]
  27. G. Labate and L. Matekovits, “Invisibility and cloaking structures as weak or strong solutions of Devaney-Wolf theorem,” Opt. Express 24(17), 19245 (2016).
    [Crossref]
  28. A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
    [Crossref]
  29. A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical scattering cancellation through arrays of plasmonic nanoparticles: A review,” Photonics 2(2), 540–552 (2015).
    [Crossref]
  30. A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
    [Crossref]
  31. A. Alù and N. Engheta, “Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking,” New J. Phys. 10(11), 115036 (2008).
    [Crossref]
  32. R. Fleury and A. Alu, “Cloaking and invisibility: A review,” Prog. Electromagn. Res. 147, 171–202 (2014).
    [Crossref]
  33. M. G. Silveirinha, A. Alù, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B 78(20), 205109 (2008).
    [Crossref]
  34. A. L. Rodarte, R. J. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C 1(35), 5527–5532 (2013).
    [Crossref]
  35. M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
    [Crossref]
  36. T. C. Choy, Effective Medium Theory: Principles and Applications, 2nd ed (Oxford University Press, Oxford, 2015).
  37. R. Mathon and R. L. Johnston, “The approximate solution of elliptic boundary-value problems by fundamental solutions,” SIAM J. Numer. Anal. 14(4), 638–650 (1977).
    [Crossref]
  38. T. Wriedt, A. Doicu, and Y. Eremin, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic Press, San Diego, 2000).
  39. L. L. Foldy, “The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers,” Phys. Rev. 67(3-4), 107–119 (1945).
    [Crossref]
  40. M. Lax, “Multiple scattering of waves. II. The effective field in dense systems,” Phys. Rev. 85(4), 621–629 (1952).
    [Crossref]
  41. K. Huang, K. Sølna, and H. Zhao, “Generalized Foldy-Lax formulation,” J. Comput. Phys. 229(12), 4544–4553 (2010).
    [Crossref]
  42. M. Born and E. Wolf, Principles of Optics, 7th ed (Cambridge University Press, 1999).
  43. A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley-IEEE, 1997).
  44. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  45. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).
  46. D. I. Yakubovsky, A. V. Arsenin, Y. V. Stebunov, D. Y. Fedyanin, and V. S. Volkov, “Optical constants and structural properties of thin gold films,” Opt. Express 25(21), 25574–25587 (2017).
    [Crossref]
  47. K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
    [Crossref]
  48. À. González, “Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices,” Math. Geosci. 42(1), 49–64 (2010).
    [Crossref]
  49. A. D. Kim, “Validating MFS for Mie scattering” https://github.com/arnolddkim/PlasmonicCloaks (2020).

2017 (2)

M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
[Crossref]

D. I. Yakubovsky, A. V. Arsenin, Y. V. Stebunov, D. Y. Fedyanin, and V. S. Volkov, “Optical constants and structural properties of thin gold films,” Opt. Express 25(21), 25574–25587 (2017).
[Crossref]

2016 (1)

2015 (4)

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical scattering cancellation through arrays of plasmonic nanoparticles: A review,” Photonics 2(2), 540–552 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

R. Fleury, F. Monticone, and A. Alù, “Invisibility and cloaking: Origins, present, and future perspectives,” Phys. Rev. Appl. 4(3), 037001 (2015).
[Crossref]

2014 (4)

P. Dey, S. Zhu, K. J. Thurecht, P. M. Fredericks, and I. Blakey, “Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers,” J. Mater. Chem. B 2(19), 2827–2837 (2014).
[Crossref]

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3(2), 177–210 (2014).
[Crossref]

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

R. Fleury and A. Alu, “Cloaking and invisibility: A review,” Prog. Electromagn. Res. 147, 171–202 (2014).
[Crossref]

2013 (3)

A. L. Rodarte, R. J. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C 1(35), 5527–5532 (2013).
[Crossref]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3(1), 2328 (2013).
[Crossref]

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

2012 (6)

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[Crossref]

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6(1), 46–48 (2012).
[Crossref]

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
[Crossref]

2011 (5)

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

M. Farhat, P. Y. Chen, S. Guenneau, S. Enoch, R. McPhedran, C. Rockstuhl, and F. Lederer, “Understanding the functionality of an array of invisibility cloaks,” Phys. Rev. B 84(23), 235105 (2011).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479 (2011).
[Crossref]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
[Crossref]

H. Chen, “Metamaterials: Constitutive parameters, performance, and chemical methods for realization,” J. Mater. Chem. 21(18), 6452–6463 (2011).
[Crossref]

2010 (5)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

W. Zhao and X. Zhao, “Fabrication and characterization of metamaterials at optical frequencies,” Opt. Mater. 32(3), 422–426 (2010).
[Crossref]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
[Crossref]

À. González, “Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices,” Math. Geosci. 42(1), 49–64 (2010).
[Crossref]

K. Huang, K. Sølna, and H. Zhao, “Generalized Foldy-Lax formulation,” J. Comput. Phys. 229(12), 4544–4553 (2010).
[Crossref]

2009 (2)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref]

2008 (4)

A. Alù and N. Engheta, “Effects of size and frequency dispersion in plasmonic cloaking,” Phys. Rev. E 78(4), 045602 (2008).
[Crossref]

M. G. Silveirinha, A. Alù, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78(7), 075107 (2008).
[Crossref]

M. G. Silveirinha, A. Alù, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B 78(20), 205109 (2008).
[Crossref]

A. Alù and N. Engheta, “Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking,” New J. Phys. 10(11), 115036 (2008).
[Crossref]

2007 (1)

1977 (1)

R. Mathon and R. L. Johnston, “The approximate solution of elliptic boundary-value problems by fundamental solutions,” SIAM J. Numer. Anal. 14(4), 638–650 (1977).
[Crossref]

1952 (1)

M. Lax, “Multiple scattering of waves. II. The effective field in dense systems,” Phys. Rev. 85(4), 621–629 (1952).
[Crossref]

1945 (1)

L. L. Foldy, “The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers,” Phys. Rev. 67(3-4), 107–119 (1945).
[Crossref]

Aizpurua, J.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Alu, A.

R. Fleury and A. Alu, “Cloaking and invisibility: A review,” Prog. Electromagn. Res. 147, 171–202 (2014).
[Crossref]

Alù, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical scattering cancellation through arrays of plasmonic nanoparticles: A review,” Photonics 2(2), 540–552 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

R. Fleury, F. Monticone, and A. Alù, “Invisibility and cloaking: Origins, present, and future perspectives,” Phys. Rev. Appl. 4(3), 037001 (2015).
[Crossref]

G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
[Crossref]

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[Crossref]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
[Crossref]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref]

A. Alù and N. Engheta, “Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking,” New J. Phys. 10(11), 115036 (2008).
[Crossref]

M. G. Silveirinha, A. Alù, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78(7), 075107 (2008).
[Crossref]

M. G. Silveirinha, A. Alù, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B 78(20), 205109 (2008).
[Crossref]

A. Alù and N. Engheta, “Effects of size and frequency dispersion in plasmonic cloaking,” Phys. Rev. E 78(4), 045602 (2008).
[Crossref]

A. Alù and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express 15(12), 7578 (2007).
[Crossref]

Argyropoulos, C.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

Arsenin, A. V.

Balmain, K. G.

G. V. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials (Wiley, New York, 2005).

Barnard, J. S.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Baumberg, J. J.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Belov, P. A.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6(1), 46–48 (2012).
[Crossref]

Bilotti, F.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical scattering cancellation through arrays of plasmonic nanoparticles: A review,” Photonics 2(2), 540–552 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
[Crossref]

G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
[Crossref]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479 (2011).
[Crossref]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
[Crossref]

Blakey, I.

P. Dey, S. Zhu, K. J. Thurecht, P. M. Fredericks, and I. Blakey, “Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers,” J. Mater. Chem. B 2(19), 2827–2837 (2014).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed (Cambridge University Press, 1999).

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Bürgi, T.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3(1), 2328 (2013).
[Crossref]

Chen, H.

H. Chen, “Metamaterials: Constitutive parameters, performance, and chemical methods for realization,” J. Mater. Chem. 21(18), 6452–6463 (2011).
[Crossref]

Chen, P. Y.

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[Crossref]

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

M. Farhat, P. Y. Chen, S. Guenneau, S. Enoch, R. McPhedran, C. Rockstuhl, and F. Lederer, “Understanding the functionality of an array of invisibility cloaks,” Phys. Rev. B 84(23), 235105 (2011).
[Crossref]

Choy, T. C.

T. C. Choy, Effective Medium Theory: Principles and Applications, 2nd ed (Oxford University Press, Oxford, 2015).

Cunningham, A.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3(1), 2328 (2013).
[Crossref]

D’Aguanno, G.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

Dey, P.

P. Dey, S. Zhu, K. J. Thurecht, P. M. Fredericks, and I. Blakey, “Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers,” J. Mater. Chem. B 2(19), 2827–2837 (2014).
[Crossref]

Dintinger, J.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3(1), 2328 (2013).
[Crossref]

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

Doicu, A.

T. Wriedt, A. Doicu, and Y. Eremin, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic Press, San Diego, 2000).

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref]

Eleftheriades, G. V.

G. V. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials (Wiley, New York, 2005).

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Engheta, N.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref]

M. G. Silveirinha, A. Alù, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78(7), 075107 (2008).
[Crossref]

A. Alù and N. Engheta, “Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking,” New J. Phys. 10(11), 115036 (2008).
[Crossref]

A. Alù and N. Engheta, “Effects of size and frequency dispersion in plasmonic cloaking,” Phys. Rev. E 78(4), 045602 (2008).
[Crossref]

M. G. Silveirinha, A. Alù, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B 78(20), 205109 (2008).
[Crossref]

A. Alù and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express 15(12), 7578 (2007).
[Crossref]

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, New York, 2006).

Enoch, S.

M. Farhat, P. Y. Chen, S. Guenneau, S. Enoch, R. McPhedran, C. Rockstuhl, and F. Lederer, “Understanding the functionality of an array of invisibility cloaks,” Phys. Rev. B 84(23), 235105 (2011).
[Crossref]

Eremin, Y.

T. Wriedt, A. Doicu, and Y. Eremin, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic Press, San Diego, 2000).

Farhat, M.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3(1), 2328 (2013).
[Crossref]

G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
[Crossref]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

M. Farhat, P. Y. Chen, S. Guenneau, S. Enoch, R. McPhedran, C. Rockstuhl, and F. Lederer, “Understanding the functionality of an array of invisibility cloaks,” Phys. Rev. B 84(23), 235105 (2011).
[Crossref]

Fedyanin, D. Y.

Filonov, D. S.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6(1), 46–48 (2012).
[Crossref]

Fleury, R.

R. Fleury, F. Monticone, and A. Alù, “Invisibility and cloaking: Origins, present, and future perspectives,” Phys. Rev. Appl. 4(3), 037001 (2015).
[Crossref]

R. Fleury and A. Alu, “Cloaking and invisibility: A review,” Prog. Electromagn. Res. 147, 171–202 (2014).
[Crossref]

Foldy, L. L.

L. L. Foldy, “The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers,” Phys. Rev. 67(3-4), 107–119 (1945).
[Crossref]

Fredericks, P. M.

P. Dey, S. Zhu, K. J. Thurecht, P. M. Fredericks, and I. Blakey, “Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers,” J. Mater. Chem. B 2(19), 2827–2837 (2014).
[Crossref]

Ghosh, S.

M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
[Crossref]

A. L. Rodarte, R. J. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C 1(35), 5527–5532 (2013).
[Crossref]

González, À.

À. González, “Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices,” Math. Geosci. 42(1), 49–64 (2010).
[Crossref]

Gopinathan, A.

M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
[Crossref]

Guenneau, S.

M. Farhat, P. Y. Chen, S. Guenneau, S. Enoch, R. McPhedran, C. Rockstuhl, and F. Lederer, “Understanding the functionality of an array of invisibility cloaks,” Phys. Rev. B 84(23), 235105 (2011).
[Crossref]

Hasan, S. B.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3(1), 2328 (2013).
[Crossref]

Herrmann, L. O.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Hirst, L. S.

M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
[Crossref]

A. L. Rodarte, R. J. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C 1(35), 5527–5532 (2013).
[Crossref]

Huang, K.

K. Huang, K. Sølna, and H. Zhao, “Generalized Foldy-Lax formulation,” J. Comput. Phys. 229(12), 4544–4553 (2010).
[Crossref]

Huang, K. C.

M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley-IEEE, 1997).

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Johnston, R. L.

R. Mathon and R. L. Johnston, “The approximate solution of elliptic boundary-value problems by fundamental solutions,” SIAM J. Numer. Anal. 14(4), 638–650 (1977).
[Crossref]

Kasera, S.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Kerkhoff, A.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

Keshavarz, A.

M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
[Crossref]

Kim, A. D.

A. D. Kim, “Validating MFS for Mie scattering” https://github.com/arnolddkim/PlasmonicCloaks (2020).

Kivshar, Y. S.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6(1), 46–48 (2012).
[Crossref]

Kress, S. J.

K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Labate, G.

Lax, M.

M. Lax, “Multiple scattering of waves. II. The effective field in dense systems,” Phys. Rev. 85(4), 621–629 (1952).
[Crossref]

Lederer, F.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3(1), 2328 (2013).
[Crossref]

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
[Crossref]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

M. Farhat, P. Y. Chen, S. Guenneau, S. Enoch, R. McPhedran, C. Rockstuhl, and F. Lederer, “Understanding the functionality of an array of invisibility cloaks,” Phys. Rev. B 84(23), 235105 (2011).
[Crossref]

Liu, Y.

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3(2), 177–210 (2014).
[Crossref]

Matekovits, L.

Mathon, R.

R. Mathon and R. L. Johnston, “The approximate solution of elliptic boundary-value problems by fundamental solutions,” SIAM J. Numer. Anal. 14(4), 638–650 (1977).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

McPhedran, R.

M. Farhat, P. Y. Chen, S. Guenneau, S. Enoch, R. McPhedran, C. Rockstuhl, and F. Lederer, “Understanding the functionality of an array of invisibility cloaks,” Phys. Rev. B 84(23), 235105 (2011).
[Crossref]

Melin, K.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Monti, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical scattering cancellation through arrays of plasmonic nanoparticles: A review,” Photonics 2(2), 540–552 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
[Crossref]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479 (2011).
[Crossref]

Monticone, F.

R. Fleury, F. Monticone, and A. Alù, “Invisibility and cloaking: Origins, present, and future perspectives,” Phys. Rev. Appl. 4(3), 037001 (2015).
[Crossref]

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

Moreno, G.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

Mühlig, S.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3(1), 2328 (2013).
[Crossref]

G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
[Crossref]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Pandolfi, R. J.

A. L. Rodarte, R. J. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C 1(35), 5527–5532 (2013).
[Crossref]

Quint, D. A.

M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
[Crossref]

Quint, M. T.

M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
[Crossref]

Rainwater, D.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

Rockstuhl, C.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3(1), 2328 (2013).
[Crossref]

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
[Crossref]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

M. Farhat, P. Y. Chen, S. Guenneau, S. Enoch, R. McPhedran, C. Rockstuhl, and F. Lederer, “Understanding the functionality of an array of invisibility cloaks,” Phys. Rev. B 84(23), 235105 (2011).
[Crossref]

Rodarte, A. L.

A. L. Rodarte, R. J. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C 1(35), 5527–5532 (2013).
[Crossref]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Sarang, S.

M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
[Crossref]

Scharf, T.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3(1), 2328 (2013).
[Crossref]

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

Scherman, O. A.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref]

M. G. Silveirinha, A. Alù, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78(7), 075107 (2008).
[Crossref]

M. G. Silveirinha, A. Alù, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B 78(20), 205109 (2008).
[Crossref]

Slobozhanyuk, A. P.

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6(1), 46–48 (2012).
[Crossref]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Sølna, K.

K. Huang, K. Sølna, and H. Zhao, “Generalized Foldy-Lax formulation,” J. Comput. Phys. 229(12), 4544–4553 (2010).
[Crossref]

Soric, J.

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[Crossref]

Soric, J. C.

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

Stebunov, Y. V.

Stockman, M. I.

Stokes, B. J.

M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
[Crossref]

Subramaniam, A. B.

M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
[Crossref]

Thurecht, K. J.

P. Dey, S. Zhu, K. J. Thurecht, P. M. Fredericks, and I. Blakey, “Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers,” J. Mater. Chem. B 2(19), 2827–2837 (2014).
[Crossref]

Toscano, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical scattering cancellation through arrays of plasmonic nanoparticles: A review,” Photonics 2(2), 540–552 (2015).
[Crossref]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
[Crossref]

G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479 (2011).
[Crossref]

Tricarico, S.

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
[Crossref]

Tserkezis, C.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

Valev, V. K.

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Vegni, L.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

G. Labate, L. Matekovits, A. Monti, F. Bilotti, A. Toscano, L. Vegni, A. Alù, A. Toscano, F. Bilotti, M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–3418 (2012).
[Crossref]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
[Crossref]

Volkov, V. S.

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed (Cambridge University Press, 1999).

Wriedt, T.

T. Wriedt, A. Doicu, and Y. Eremin, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic Press, San Diego, 2000).

Yakubovsky, D. I.

Yao, K.

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3(2), 177–210 (2014).
[Crossref]

Zhao, H.

K. Huang, K. Sølna, and H. Zhao, “Generalized Foldy-Lax formulation,” J. Comput. Phys. 229(12), 4544–4553 (2010).
[Crossref]

Zhao, W.

W. Zhao and X. Zhao, “Fabrication and characterization of metamaterials at optical frequencies,” Opt. Mater. 32(3), 422–426 (2010).
[Crossref]

Zhao, X.

W. Zhao and X. Zhao, “Fabrication and characterization of metamaterials at optical frequencies,” Opt. Mater. 32(3), 422–426 (2010).
[Crossref]

Zhu, S.

P. Dey, S. Zhu, K. J. Thurecht, P. M. Fredericks, and I. Blakey, “Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers,” J. Mater. Chem. B 2(19), 2827–2837 (2014).
[Crossref]

Ziolkowski, R. W.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, New York, 2006).

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref]

Adv. Mater. (1)

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[Crossref]

J. Appl. Phys. (1)

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

J. Comput. Phys. (1)

K. Huang, K. Sølna, and H. Zhao, “Generalized Foldy-Lax formulation,” J. Comput. Phys. 229(12), 4544–4553 (2010).
[Crossref]

J. Mater. Chem. (1)

H. Chen, “Metamaterials: Constitutive parameters, performance, and chemical methods for realization,” J. Mater. Chem. 21(18), 6452–6463 (2011).
[Crossref]

J. Mater. Chem. B (1)

P. Dey, S. Zhu, K. J. Thurecht, P. M. Fredericks, and I. Blakey, “Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers,” J. Mater. Chem. B 2(19), 2827–2837 (2014).
[Crossref]

J. Mater. Chem. C (1)

A. L. Rodarte, R. J. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C 1(35), 5527–5532 (2013).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Math. Geosci. (1)

À. González, “Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices,” Math. Geosci. 42(1), 49–64 (2010).
[Crossref]

Nanophotonics (1)

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

Nanotechnol. Rev. (1)

K. Yao and Y. Liu, “Plasmonic metamaterials,” Nanotechnol. Rev. 3(2), 177–210 (2014).
[Crossref]

Nat. Commun. (1)

L. O. Herrmann, V. K. Valev, C. Tserkezis, J. S. Barnard, S. Kasera, O. A. Scherman, J. Aizpurua, and J. J. Baumberg, “Threading plasmonic nanoparticle strings with light,” Nat. Commun. 5(1), 4568 (2014).
[Crossref]

New J. Phys. (2)

A. Alù and N. Engheta, “Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking,” New J. Phys. 10(11), 115036 (2008).
[Crossref]

D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012).
[Crossref]

Opt. Commun. (1)

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. (1)

W. Zhao and X. Zhao, “Fabrication and characterization of metamaterials at optical frequencies,” Opt. Mater. 32(3), 422–426 (2010).
[Crossref]

Photonics (1)

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical scattering cancellation through arrays of plasmonic nanoparticles: A review,” Photonics 2(2), 540–552 (2015).
[Crossref]

Phys. Rev. (2)

L. L. Foldy, “The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers,” Phys. Rev. 67(3-4), 107–119 (1945).
[Crossref]

M. Lax, “Multiple scattering of waves. II. The effective field in dense systems,” Phys. Rev. 85(4), 621–629 (1952).
[Crossref]

Phys. Rev. Appl. (1)

R. Fleury, F. Monticone, and A. Alù, “Invisibility and cloaking: Origins, present, and future perspectives,” Phys. Rev. Appl. 4(3), 037001 (2015).
[Crossref]

Phys. Rev. B (5)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

M. G. Silveirinha, A. Alù, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78(7), 075107 (2008).
[Crossref]

M. Farhat, P. Y. Chen, S. Guenneau, S. Enoch, R. McPhedran, C. Rockstuhl, and F. Lederer, “Understanding the functionality of an array of invisibility cloaks,” Phys. Rev. B 84(23), 235105 (2011).
[Crossref]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

M. G. Silveirinha, A. Alù, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B 78(20), 205109 (2008).
[Crossref]

Phys. Rev. E (2)

A. Alù and N. Engheta, “Effects of size and frequency dispersion in plasmonic cloaking,” Phys. Rev. E 78(4), 045602 (2008).
[Crossref]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
[Crossref]

Phys. Rev. Lett. (2)

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref]

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

Phys. Status Solidi RRL (1)

D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking,” Phys. Status Solidi RRL 6(1), 46–48 (2012).
[Crossref]

Prog. Electromagn. Res. (1)

R. Fleury and A. Alu, “Cloaking and invisibility: A review,” Prog. Electromagn. Res. 147, 171–202 (2014).
[Crossref]

Sci. Rep. (2)

M. T. Quint, S. Sarang, D. A. Quint, A. Keshavarz, B. J. Stokes, A. B. Subramaniam, K. C. Huang, A. Gopinathan, L. S. Hirst, and S. Ghosh, “Plasmon-actuated nano-assembled microshells,” Sci. Rep. 7(1), 17788–11 (2017).
[Crossref]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3(1), 2328 (2013).
[Crossref]

SIAM J. Numer. Anal. (1)

R. Mathon and R. L. Johnston, “The approximate solution of elliptic boundary-value problems by fundamental solutions,” SIAM J. Numer. Anal. 14(4), 638–650 (1977).
[Crossref]

Other (9)

T. Wriedt, A. Doicu, and Y. Eremin, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic Press, San Diego, 2000).

T. C. Choy, Effective Medium Theory: Principles and Applications, 2nd ed (Oxford University Press, Oxford, 2015).

G. V. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials (Wiley, New York, 2005).

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, New York, 2006).

A. D. Kim, “Validating MFS for Mie scattering” https://github.com/arnolddkim/PlasmonicCloaks (2020).

M. Born and E. Wolf, Principles of Optics, 7th ed (Cambridge University Press, 1999).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley-IEEE, 1997).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Plasmonic cloaking with 3D nano-assembled shells. (a) Schematic depicting the difference of optical scattering from a bare sphere [left] and sphere coated with AuNPs [right] (b) Shell of finite-sized AuNPs of thickness $R_{s} - R_{c}$ surrounding the core of radius $R_{c}$ (c) The corresponding set of point scatterers used in the model.
Fig. 2.
Fig. 2. Comparison of the exact solution and the MFS approximation for a silica sphere with relative refractive index $m = 1.4$ and diameter $d = 750$ nm. The left plot shows the scattering efficiency $\sigma _{E}$ given by the total scattering cross-section $\sigma _{t}$ normalized by the geometric cross-section $\sigma _{g} = \pi d^{2}/4$ . The solid blue curve is the result from the exact solution and the orange circles is the result computed using the MFS. The right plot shows the relative error of the MFS approximation.
Fig. 3.
Fig. 3. Experimental results (Exp data) by Mühlig et al. [11] for the scattering efficiency $\sigma _{E}$ compared with Maxwell-Garnett theory (MG) and results from our model (simulated). The gray-shaded region highlights the agreement between the experimental results and our model. The arrow indicates the scattering minimum predicted by Maxwell-Garnett theory which, is blue-shifted from the other two results.
Fig. 4.
Fig. 4. Comparisons of the scattering efficiency $\sigma _{E}$ for a 750 nm silica core (square symbols) with that for a core and shell (circle symbols) made up of $10$ nm AuNPs for filling fractions (a) $f = 0.05$ , (b) $f = 0.15$ , and (c) $f = 0.30$ . The extinction spectrum for a single 10 nm AuNP is shown in (d), with its FWHM band highlighted in blue in (a) - (d).
Fig. 5.
Fig. 5. Comparisons of the scattering efficiency $\sigma _{E}$ for a 750 nm silica core (square symbols) with that by a core and shell made up of 5 nm AuNPs (triangle symbols) and 20 nm AuNPs (diamond symbols) for filling fractions (a) $f = 0.10$ , and (b) $f = 0.30$ . A comparison of the extinction for single 5 and 20 nm AuNP is shown in (c).
Fig. 6.
Fig. 6. A plot of the scattering suppression (scattering efficiency of silica core minus scattering efficiency of plasmonic cloak) as a function of filling fraction $f$ and wavelength $\lambda$ for a core diameter of $750$ nm and AuNPs with diameter $10$ nm.
Fig. 7.
Fig. 7. A plot of the scattering suppression as a function of core diameter $d$ and wavelength $\lambda$ for a filling fraction of $f = 30\%$ and AuNPs with diameter $10$ nm.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

( 2 + k 1 2 ) ψ int = 0 , in D ,
( 2 + k 0 2 ) ψ ext = k 0 2 n = 1 N V n ψ ext , in E .
ψ int = ψ inc + ψ s on B ,
ν ψ int = ν ψ inc + ν ψ s on B ,
σ s = 4 π | α | 2 .
σ t = 4 π k 0 Im [ α ] .
α = [ σ s 4 π ( k 0 σ t 4 π ) 2 ] 1 / 2 + i k 0 σ t 4 π .
N = f volume of shell volume of metal NP ,
σ E = σ t ( λ ) / σ g ,
G 1 ( r r ) = e i k 1 | r r | 4 π | r r | ,
r j int = r j + ν ^ j , j = 1 , , M ,
ψ int ( r ) j = 1 M c j int G 1 ( r r j int ) , r D .
ψ ext = ψ inc + ψ B + n = 1 N Ψ n ,
G 0 ( r r ) = e i k 0 | r r | 4 π | r r | ,
r j ext = r j ν ^ j , j = 1 , , M .
ψ B ( r ) j = 1 M c j ext G 0 ( r r j ext )
( 2 + k 0 2 ) ψ B = 0 , r E .
Ψ n = α n G 0 ( r r n NP ) Ψ E ( r n NP ) ,
Ψ E ( r n NP ) = ψ inc ( r n NP ) + ψ B ( r n NP ) + n = 1 n n N α n G 0 ( r n NP r n NP ) Ψ E ( r n NP ) .
j = 0 M c j int G 1 ( r i r j int ) j = 1 M c j ext G 0 ( r i r j ext ) n = 1 N α n G 0 ( r i r n NP ) Ψ E ( r n NP ) = ψ inc ( r i ) , i = 1 , , M .
j = 0 M c j int ν G 1 ( r i r j int ) j = 1 M c j ext ν G 0 ( r i r j ext ) n = 1 N α n ν G 0 ( r i r n NP ) Ψ E ( r n NP ) = ν ψ inc ( r i ) , i = 1 , , M .
Ψ E ( r n NP ) n = 1 n n N α n G 0 ( r n NP r n NP ) Ψ E ( r n NP ) j = 1 M c j ext G 0 ( r n NP r j ext ) = ψ inc ( r n ) , n = 1 , , N .
ψ s ( r ) = ψ B + n = 1 N Ψ n j = 1 M c j ext G 0 ( r r j ext ) + n = 1 N α n G 0 ( r r n NP ) Ψ E ( r n NP ) , r E .
ψ s ( r ) f ( o ^ , ı ^ ) e i k 0 R R .
G 0 ( R o ^ r ) e i k 0 o ^ r e i k 0 R 4 π R , R 1.
ψ s ( r ) [ 1 4 π j = 1 M c j ext e i k 0 o ^ r j ext + n = 1 N α n e i k 0 o ^ r n NP Ψ E ( r n NP ) ] e i k 0 R R , R 1.
f ( o ^ , ı ^ ) 1 4 π j = 1 M c j ext e i k 0 o ^ r j ext + 1 4 π n = 1 N α n e i k 0 o ^ r n NP Ψ E ( r n NP ) .
σ t = 4 π k 0 Im [ f ( ı ^ , ı ^ ) ] .