Abstract

We introduce the concept of a liquid compound refractive X-ray zoom lens. The lens is generated by pumping a suitable liquid lens material like water, alcohol or heated lithium through a line of nozzles each forming a jet with the cross section of lens elements. The system is housed, so there is a liquid-circulation. This lens can be used in white beam at high brilliance synchrotron sources, as radiation damages are cured by the continuous reformation of the lens. The focal length can be varied by closing nozzles, thus reducing the number of lens elements in the beam.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Miniaturized compound refractive X-ray zoom lens

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr
Opt. Express 25(19) 22455-22466 (2017)

Generalized pupil function of a compound X-ray refractive lens

Sergey Gasilov, Tomy dos Santos Rolo, Alberto Mittone, Sergey Polyakov, Sergey Terentyev, Tomas Farago, Vladimir Blank, Alberto Bravin, and Tilo Baumbach
Opt. Express 25(21) 25090-25097 (2017)

Diamond refractive micro-lenses for full-field X-ray imaging and microscopy produced with ion beam lithography

Polina Medvedskaya, Ivan Lyatun, Sergey Shevyrtalov, Maxim Polikarpov, Irina Snigireva, Vyacheslav Yunkin, and Anatoly Snigirev
Opt. Express 28(4) 4773-4785 (2020)

References

  • View by:
  • |
  • |
  • |

  1. T. Tomie, “X-ray lens,” Japanese patent 6-045288 (February 18, 1994); U.S. patents 5,594,773 (January 14, 1997) and 5,684,852 (1997).
  2. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
    [Crossref]
  3. B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
    [Crossref]
  4. B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Gunzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive x-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
    [Crossref]
  5. A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 122–127 (2008).
    [Crossref]
  6. B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67-68, 453–460 (2003).
    [Crossref]
  7. Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 962–965 (2001).
    [Crossref]
  8. F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys.: Conf. Ser. 499, 012007 (2014).
    [Crossref]
  9. E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys.: Conf. Ser. 186, 012070 (2009).
    [Crossref]
  10. V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 582(1), 120–122 (2007).
    [Crossref]
  11. H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
    [Crossref]
  12. C. G. Schroer and B. Lengeler, “Focusing hard x-rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94(5), 054802 (2005).
    [Crossref]
  13. F. Marschall, “Entwicklung eines Röntgenmikroskops für Photonenenergien von 15 keV bis 30 keV,” KIT Scientific Publishing, Karlsruhe, 126 p., ISBN 9783731502630 (2014).
  14. A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy X-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys.: Conf. Ser. 186, 012073 (2009).
    [Crossref]
  15. G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigirev, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(2), 125–133 (2011).
    [Crossref]
  16. G. M. A. Duller, D. R. Hall, and A. Stallwood, “F-Switch: Novel ‘Random Access’ Manipulator for Large Numbers of Compound Refractive Lenses,” in Proc. 9th Edition of the Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation Conf. (MEDSI'16), Barcelona, Spain, Sep. 2016, paper WEPE22, pp. 345-347, ISBN: 978-3-95450-188-5, https://doi.org/10.18429/JACoW-MEDSI2016-WEPE22 (2017).
  17. E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
    [Crossref]
  18. A. Last, “Röntgenlinsenanordnung, sowie Herstellungsverfahren dafür“, patent DE102017123851B4, filing date 13.10.2017, patent office Munich (2017).
  19. V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, R. Simon, and M. DiMichiel, “X-ray Lenses Fabricated by LIGA Technology,” AIP Conf. Proc. 879, 770–773 (2007).
    [Crossref]
  20. M. H. Allahyarzadeh, M. Aliofkhazraei, A. R. Rezvanian, V. Torabinejad, and A. R. Sabour Rouhaghdam, “Ni-W electrodeposited coatings: Characterization, properties and applications,” Surf. Coat. Technol. 307(Part A), 978–1010 (2016).
    [Crossref]
  21. E. Gullikson, “Index of refraction,” http://henke.lbl.gov/optical_constants/getdb2.html , retrieved 28. Nov 2019.

2017 (1)

2016 (2)

M. H. Allahyarzadeh, M. Aliofkhazraei, A. R. Rezvanian, V. Torabinejad, and A. R. Sabour Rouhaghdam, “Ni-W electrodeposited coatings: Characterization, properties and applications,” Surf. Coat. Technol. 307(Part A), 978–1010 (2016).
[Crossref]

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

2014 (1)

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys.: Conf. Ser. 499, 012007 (2014).
[Crossref]

2011 (1)

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigirev, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(2), 125–133 (2011).
[Crossref]

2009 (2)

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy X-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys.: Conf. Ser. 186, 012073 (2009).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys.: Conf. Ser. 186, 012070 (2009).
[Crossref]

2008 (1)

A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 122–127 (2008).
[Crossref]

2007 (2)

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 582(1), 120–122 (2007).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, R. Simon, and M. DiMichiel, “X-ray Lenses Fabricated by LIGA Technology,” AIP Conf. Proc. 879, 770–773 (2007).
[Crossref]

2005 (1)

C. G. Schroer and B. Lengeler, “Focusing hard x-rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94(5), 054802 (2005).
[Crossref]

2004 (1)

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

2003 (1)

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67-68, 453–460 (2003).
[Crossref]

2002 (1)

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Gunzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive x-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref]

2001 (1)

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 962–965 (2001).
[Crossref]

1996 (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Aliofkhazraei, M.

M. H. Allahyarzadeh, M. Aliofkhazraei, A. R. Rezvanian, V. Torabinejad, and A. R. Sabour Rouhaghdam, “Ni-W electrodeposited coatings: Characterization, properties and applications,” Surf. Coat. Technol. 307(Part A), 978–1010 (2016).
[Crossref]

Allahyarzadeh, M. H.

M. H. Allahyarzadeh, M. Aliofkhazraei, A. R. Rezvanian, V. Torabinejad, and A. R. Sabour Rouhaghdam, “Ni-W electrodeposited coatings: Characterization, properties and applications,” Surf. Coat. Technol. 307(Part A), 978–1010 (2016).
[Crossref]

Baron, A. Q. R.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 962–965 (2001).
[Crossref]

Benner, B.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Gunzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive x-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref]

Bozovic, N.

A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 122–127 (2008).
[Crossref]

Bytchkov, A.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigirev, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(2), 125–133 (2011).
[Crossref]

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy X-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys.: Conf. Ser. 186, 012073 (2009).
[Crossref]

Curfs, C.

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy X-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys.: Conf. Ser. 186, 012073 (2009).
[Crossref]

David, C.

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67-68, 453–460 (2003).
[Crossref]

Detlefs, C.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

DiMichiel, M.

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 582(1), 120–122 (2007).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, R. Simon, and M. DiMichiel, “X-ray Lenses Fabricated by LIGA Technology,” AIP Conf. Proc. 879, 770–773 (2007).
[Crossref]

Duller, G. M. A.

G. M. A. Duller, D. R. Hall, and A. Stallwood, “F-Switch: Novel ‘Random Access’ Manipulator for Large Numbers of Compound Refractive Lenses,” in Proc. 9th Edition of the Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation Conf. (MEDSI'16), Barcelona, Spain, Sep. 2016, paper WEPE22, pp. 345-347, ISBN: 978-3-95450-188-5, https://doi.org/10.18429/JACoW-MEDSI2016-WEPE22 (2017).

Evans-Lutterodt, K.

A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 122–127 (2008).
[Crossref]

Friis Poulsen, H.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Gerhardus, A.

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Gunzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive x-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref]

Gleyzolle, H.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigirev, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(2), 125–133 (2011).
[Crossref]

Göttert, J.

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 582(1), 120–122 (2007).
[Crossref]

Greving, I.

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
[Crossref]

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys.: Conf. Ser. 499, 012007 (2014).
[Crossref]

Gullikson, E.

E. Gullikson, “Index of refraction,” http://henke.lbl.gov/optical_constants/getdb2.html , retrieved 28. Nov 2019.

Gunzler, T. F.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Gunzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive x-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref]

Hall, D. R.

G. M. A. Duller, D. R. Hall, and A. Stallwood, “F-Switch: Novel ‘Random Access’ Manipulator for Large Numbers of Compound Refractive Lenses,” in Proc. 9th Edition of the Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation Conf. (MEDSI'16), Barcelona, Spain, Sep. 2016, paper WEPE22, pp. 345-347, ISBN: 978-3-95450-188-5, https://doi.org/10.18429/JACoW-MEDSI2016-WEPE22 (2017).

Hansen, O.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Hoszowska, J.

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67-68, 453–460 (2003).
[Crossref]

Ishii, M.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 962–965 (2001).
[Crossref]

Ishikawa, T.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 962–965 (2001).
[Crossref]

Jensen, F.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Kluge, M.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys.: Conf. Ser. 499, 012007 (2014).
[Crossref]

Kohn, V.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Kornemann, E.

Krywka, C.

Kuhlmann, M.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Gunzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive x-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref]

Kurapova, O.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

Last, A.

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
[Crossref]

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys.: Conf. Ser. 499, 012007 (2014).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys.: Conf. Ser. 186, 012070 (2009).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 582(1), 120–122 (2007).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, R. Simon, and M. DiMichiel, “X-ray Lenses Fabricated by LIGA Technology,” AIP Conf. Proc. 879, 770–773 (2007).
[Crossref]

A. Last, “Röntgenlinsenanordnung, sowie Herstellungsverfahren dafür“, patent DE102017123851B4, filing date 13.10.2017, patent office Munich (2017).

Lengeler, B.

C. G. Schroer and B. Lengeler, “Focusing hard x-rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94(5), 054802 (2005).
[Crossref]

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Gunzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive x-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Márkus, O.

Marschall, F.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys.: Conf. Ser. 499, 012007 (2014).
[Crossref]

F. Marschall, “Entwicklung eines Röntgenmikroskops für Photonenenergien von 15 keV bis 30 keV,” KIT Scientific Publishing, Karlsruhe, 126 p., ISBN 9783731502630 (2014).

Meyer, J.

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Gunzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive x-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref]

Michael-Lindhard, J.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Mohr, J.

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
[Crossref]

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys.: Conf. Ser. 499, 012007 (2014).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 582(1), 120–122 (2007).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, R. Simon, and M. DiMichiel, “X-ray Lenses Fabricated by LIGA Technology,” AIP Conf. Proc. 879, 770–773 (2007).
[Crossref]

Nazmov, V.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys.: Conf. Ser. 499, 012007 (2014).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys.: Conf. Ser. 186, 012070 (2009).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 582(1), 120–122 (2007).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, R. Simon, and M. DiMichiel, “X-ray Lenses Fabricated by LIGA Technology,” AIP Conf. Proc. 879, 770–773 (2007).
[Crossref]

Nhammer, B.

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67-68, 453–460 (2003).
[Crossref]

Ogurreck, M.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys.: Conf. Ser. 499, 012007 (2014).
[Crossref]

Ohishi, Y.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 962–965 (2001).
[Crossref]

Opolka, A.

Reznikova, E.

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys.: Conf. Ser. 186, 012070 (2009).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 582(1), 120–122 (2007).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, R. Simon, and M. DiMichiel, “X-ray Lenses Fabricated by LIGA Technology,” AIP Conf. Proc. 879, 770–773 (2007).
[Crossref]

Rezvanian, A. R.

M. H. Allahyarzadeh, M. Aliofkhazraei, A. R. Rezvanian, V. Torabinejad, and A. R. Sabour Rouhaghdam, “Ni-W electrodeposited coatings: Characterization, properties and applications,” Surf. Coat. Technol. 307(Part A), 978–1010 (2016).
[Crossref]

Rossat, M.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigirev, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(2), 125–133 (2011).
[Crossref]

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy X-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys.: Conf. Ser. 186, 012073 (2009).
[Crossref]

Rothuizen, H.

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67-68, 453–460 (2003).
[Crossref]

Sabour Rouhaghdam, A. R.

M. H. Allahyarzadeh, M. Aliofkhazraei, A. R. Rezvanian, V. Torabinejad, and A. R. Sabour Rouhaghdam, “Ni-W electrodeposited coatings: Characterization, properties and applications,” Surf. Coat. Technol. 307(Part A), 978–1010 (2016).
[Crossref]

Saile, V.

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys.: Conf. Ser. 186, 012070 (2009).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 582(1), 120–122 (2007).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, R. Simon, and M. DiMichiel, “X-ray Lenses Fabricated by LIGA Technology,” AIP Conf. Proc. 879, 770–773 (2007).
[Crossref]

Schroer, C. G.

C. G. Schroer and B. Lengeler, “Focusing hard x-rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94(5), 054802 (2005).
[Crossref]

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Gunzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive x-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref]

Shimomura, O.

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 962–965 (2001).
[Crossref]

Simionovici, A.

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67-68, 453–460 (2003).
[Crossref]

Simon, M.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys.: Conf. Ser. 499, 012007 (2014).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys.: Conf. Ser. 186, 012070 (2009).
[Crossref]

Simon, R.

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, R. Simon, and M. DiMichiel, “X-ray Lenses Fabricated by LIGA Technology,” AIP Conf. Proc. 879, 770–773 (2007).
[Crossref]

Simons, H.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Snigirev, A.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigirev, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(2), 125–133 (2011).
[Crossref]

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy X-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys.: Conf. Ser. 186, 012073 (2009).
[Crossref]

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Snigirev, I.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigirev, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(2), 125–133 (2011).
[Crossref]

Snigireva, I.

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy X-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys.: Conf. Ser. 186, 012073 (2009).
[Crossref]

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Somogyi, A.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

Stallwood, A.

G. M. A. Duller, D. R. Hall, and A. Stallwood, “F-Switch: Novel ‘Random Access’ Manipulator for Large Numbers of Compound Refractive Lenses,” in Proc. 9th Edition of the Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation Conf. (MEDSI'16), Barcelona, Spain, Sep. 2016, paper WEPE22, pp. 345-347, ISBN: 978-3-95450-188-5, https://doi.org/10.18429/JACoW-MEDSI2016-WEPE22 (2017).

Stein, A.

A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 122–127 (2008).
[Crossref]

Stöhr, F.

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Storm, M.

Taylor, A.

A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 122–127 (2008).
[Crossref]

Tomie, T.

T. Tomie, “X-ray lens,” Japanese patent 6-045288 (February 18, 1994); U.S. patents 5,594,773 (January 14, 1997) and 5,684,852 (1997).

Torabinejad, V.

M. H. Allahyarzadeh, M. Aliofkhazraei, A. R. Rezvanian, V. Torabinejad, and A. R. Sabour Rouhaghdam, “Ni-W electrodeposited coatings: Characterization, properties and applications,” Surf. Coat. Technol. 307(Part A), 978–1010 (2016).
[Crossref]

Vaughan, G.

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy X-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys.: Conf. Ser. 186, 012073 (2009).
[Crossref]

Vaughan, G. B. M.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigirev, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(2), 125–133 (2011).
[Crossref]

Vogt, H.

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys.: Conf. Ser. 499, 012007 (2014).
[Crossref]

Weitkamp, T.

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys.: Conf. Ser. 186, 012070 (2009).
[Crossref]

Wright, J.

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy X-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys.: Conf. Ser. 186, 012073 (2009).
[Crossref]

Wright, J. P.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigirev, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(2), 125–133 (2011).
[Crossref]

Zhou, T.

Zimprich, C.

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Gunzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive x-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref]

AIP Conf. Proc. (2)

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gunzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, R. Simon, and M. DiMichiel, “X-ray Lenses Fabricated by LIGA Technology,” AIP Conf. Proc. 879, 770–773 (2007).
[Crossref]

J. Phys.: Conf. Ser. (3)

A. Snigirev, I. Snigireva, G. Vaughan, J. Wright, M. Rossat, A. Bytchkov, and C. Curfs, “High energy X-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys.: Conf. Ser. 186, 012073 (2009).
[Crossref]

F. Marschall, A. Last, M. Simon, M. Kluge, V. Nazmov, H. Vogt, M. Ogurreck, I. Greving, and J. Mohr, “X-ray full field microscopy at 30 keV,” J. Phys.: Conf. Ser. 499, 012007 (2014).
[Crossref]

E. Reznikova, T. Weitkamp, V. Nazmov, M. Simon, A. Last, and V. Saile, “Transmission hard x-ray microscope with increased view field using planar refractive objectives and condensers made of SU-8 polymer,” J. Phys.: Conf. Ser. 186, 012070 (2009).
[Crossref]

J. Synchrotron Radiat. (2)

B. Lengeler, C. G. Schroer, B. Benner, A. Gerhardus, T. F. Gunzler, M. Kuhlmann, J. Meyer, and C. Zimprich, “Parabolic refractive x-ray lenses,” J. Synchrotron Radiat. 9(3), 119–124 (2002).
[Crossref]

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigirev, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(2), 125–133 (2011).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. (1)

A. Stein, K. Evans-Lutterodt, N. Bozovic, and A. Taylor, “Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 26(1), 122–127 (2008).
[Crossref]

Microelectron. Eng. (1)

B. Nhammer, C. David, H. Rothuizen, J. Hoszowska, and A. Simionovici, “Deep reactive ion etching of silicon and diamond for the fabrication of planar refractive hard x-ray lenses,” Microelectron. Eng. 67-68, 453–460 (2003).
[Crossref]

Nature (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. A (2)

Y. Ohishi, A. Q. R. Baron, M. Ishii, T. Ishikawa, and O. Shimomura, “Refractive x-ray lens for high pressure experiments at SPring-8,” Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 962–965 (2001).
[Crossref]

V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, M. DiMichiel, and J. Göttert, “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 582(1), 120–122 (2007).
[Crossref]

Opt. Commun. (1)

H. Simons, F. Stöhr, J. Michael-Lindhard, F. Jensen, O. Hansen, C. Detlefs, and H. Friis Poulsen, “Full-field hard x-ray microscopy with interdigitated silicon lenses,” Opt. Commun. 359, 460–464 (2016).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (1)

C. G. Schroer and B. Lengeler, “Focusing hard x-rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94(5), 054802 (2005).
[Crossref]

Surf. Coat. Technol. (1)

M. H. Allahyarzadeh, M. Aliofkhazraei, A. R. Rezvanian, V. Torabinejad, and A. R. Sabour Rouhaghdam, “Ni-W electrodeposited coatings: Characterization, properties and applications,” Surf. Coat. Technol. 307(Part A), 978–1010 (2016).
[Crossref]

Other (5)

E. Gullikson, “Index of refraction,” http://henke.lbl.gov/optical_constants/getdb2.html , retrieved 28. Nov 2019.

A. Last, “Röntgenlinsenanordnung, sowie Herstellungsverfahren dafür“, patent DE102017123851B4, filing date 13.10.2017, patent office Munich (2017).

T. Tomie, “X-ray lens,” Japanese patent 6-045288 (February 18, 1994); U.S. patents 5,594,773 (January 14, 1997) and 5,684,852 (1997).

G. M. A. Duller, D. R. Hall, and A. Stallwood, “F-Switch: Novel ‘Random Access’ Manipulator for Large Numbers of Compound Refractive Lenses,” in Proc. 9th Edition of the Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation Conf. (MEDSI'16), Barcelona, Spain, Sep. 2016, paper WEPE22, pp. 345-347, ISBN: 978-3-95450-188-5, https://doi.org/10.18429/JACoW-MEDSI2016-WEPE22 (2017).

F. Marschall, “Entwicklung eines Röntgenmikroskops für Photonenenergien von 15 keV bis 30 keV,” KIT Scientific Publishing, Karlsruhe, 126 p., ISBN 9783731502630 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Ratio delta/beta of CRL lens materials; filled markers for liquids [21].
Fig. 2.
Fig. 2. Sketch of the device with the nozzles (gray box) and the CRL formed of liquid jets (blue) alternatively focusing the X-ray beam entering from the left side (yellow) in vertical and horizontal direction. Left: Only one nozzle is opened, this results in a line focus of the beam. Right: All nozzles opened, the beam (yellow) gets point focused at the right bottom side of the image.
Fig. 3.
Fig. 3. Simulated jet ejected by a nozzle with double parabolic cross section with a speed of 44.5 m/s for water (σ = 0.0728 N/m, p=7.7 bar, a) and b)) and methanol (σ = 0.0226 N/m, p=5.2 bar, c) and d)) up to a distance of 2 mm from the nozzles exit. Figures b) and d) show a cross-section through the liquid at the position of minimum distance between the two parabolic surfaces.
Fig. 4.
Fig. 4. Simulated deviation of the jet’s cross section from the nozzle exits cross section over the distance d from the nozzle for methanol at a speed of 44.5 m/s and different nozzle cross sections (equal scale geometry above the diagrams). Left: Aperture = 70 µm, parabola radius = 6 µm; right: Aperture = 500 µm, parabola radius = 390 µm.
Fig. 5.
Fig. 5. Deviation from target geometry for two lenses with different parabola radius R and aperture A. The target web width in both cases is w = 0.04 mm.
Fig. 6.
Fig. 6. Velocity distribution of the simulated liquid jet at a distance d = 0.1 mm downstream the nozzle exit. In both cases the starting velocity is v = 44.5 m/s. Left: Aperture = 70 µm, parabola radius = 6 µm; right: Aperture = 500 µm, parabola radius = 390 µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f = R 2 δ N + L 6
n = 1 δ + i β
W e l = ρ c v l 2 σ
R e = ρ c v l η

Metrics