G. Chang, A. Liu, C. Yu, Y. Ji, Y. Wang, and J. Zhang, “Orthogonal waveform with multiple diversities for MIMO radar,” IEEE Sens. J. 18(11), 4462–4476 (2018).

[Crossref]

B. Zhang, X. Wang, and S. Pan, “Photonics-based instantaneous multi-parameter measurement of a linear frequency modulation microwave signal,” J. Lightwave Technol. 36(13), 2589–2596 (2018).

[Crossref]

A. Serbes, “On the estimation of LFM signal parameters: analytical formulation,” IEEE Trans. Aerosp. Electron. Syst. 54(2), 848–860 (2018).

[Crossref]

C. Gao, K. Teh, A. Liu, and H. Sun, “Piecewise LFM waveform for MIMO radar,” IEEE Trans. Aerosp. Electron. Syst. 52(2), 590–602 (2016).

[Crossref]

W. Wang, “Large time-bandwidth product MIMO radar waveform design based on chirp rate diversity,” IEEE Sens. J. 15(2), 1027–1034 (2015).

[Crossref]

R. Jeevanmai and N. D. Rani, “Sidelobe reduction using frequency modulated pulse compression techniques in radar,” Int. J. Latest Trends Eng. Tech. 7(3), 171–179 (2013).

C. Cuadrado-Laborde, A. Carrascosa, A. Díez, J. L. Cruz, and M. V. Andres, “Photonic fractional Fourier transformer with a single dispersive device,” Opt. Express 21(7), 8558–8563 (2013).

[Crossref]

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photonics Technol. Lett. 22(19), 1437–1439 (2010).

[Crossref]

R. Tao, X. Li, and Y. Li, “Time-delay estimation of chirp signals in the fractional Fourier domain,” IEEE Trans. Signal Process. 57(7), 2852–2855 (2009).

[Crossref]

Y. Chan, M. Chua, and V. Koo, “Sidelobes reduction using simple two and tri-stages nonlinear frequency modulation (NLFM),” Prog. Electromagn. Res. 98, 33–52 (2009).

[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).

[Crossref]

M. Drummond, P. Monteiro, and R. Nogueira, “Photonic RF instantaneous frequency measurement system by means of a polarization domain interferometer,” Opt. Express 17(7), 5433–5438 (2009).

[Crossref]

L. Qi, R. Tao, and S. Zhou, “Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform,” Sci China Ser F 47(2), 184–198 (2004).

[Crossref]

X. Xia, “Discrete chirp-Fourier transform and its application to chirp rate estimation,” IEEE Trans. Signal Process. 48(11), 3122–3133 (2000).

[Crossref]

L. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42(11), 3084–3091 (1994).

[Crossref]

M. Roberton and E. R. Brown, “Integrated radar and communications based on chirped spread-spectrum techniques,” in MTT-S International Microwave Symposium Digest (IEEE, 2003), pp. 611–614.

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).

[Crossref]

Y. Chan, M. Chua, and V. Koo, “Sidelobes reduction using simple two and tri-stages nonlinear frequency modulation (NLFM),” Prog. Electromagn. Res. 98, 33–52 (2009).

[Crossref]

G. Chang, A. Liu, C. Yu, Y. Ji, Y. Wang, and J. Zhang, “Orthogonal waveform with multiple diversities for MIMO radar,” IEEE Sens. J. 18(11), 4462–4476 (2018).

[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).

[Crossref]

Y. Chan, M. Chua, and V. Koo, “Sidelobes reduction using simple two and tri-stages nonlinear frequency modulation (NLFM),” Prog. Electromagn. Res. 98, 33–52 (2009).

[Crossref]

D. Gaglione, C. Clemente, C. V. Ilioudis, A. R. Persico, I. K. Proudler, and J. J. Soraghan, “Fractional Fourier Based Waveform for a Joint Radar-Communication System,” in Radar Conference (IEEE, 2016), pp. 1–6.

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).

[Crossref]

F. Qazi and A. Fam, “Good code sets based on Piecewise Linear FM,” in Radar Conference (IEEE, 2012), pp. 0522–0527.

F. Qazi and A. Fam, “Discrete frequency-coding waveform sets based on piecewise linear FM,” in Radar Conference (IEEE, 2014), pp. 0469–0473.

D. Gaglione, C. Clemente, C. V. Ilioudis, A. R. Persico, I. K. Proudler, and J. J. Soraghan, “Fractional Fourier Based Waveform for a Joint Radar-Communication System,” in Radar Conference (IEEE, 2016), pp. 1–6.

C. Gao, K. Teh, A. Liu, and H. Sun, “Piecewise LFM waveform for MIMO radar,” IEEE Trans. Aerosp. Electron. Syst. 52(2), 590–602 (2016).

[Crossref]

C. Gao, K. Teh, and A. Liu, “Frequency coding waveform with segment LFM,” in Synthetic Aperture Radar 5th Asia-Pacific Conference (IEEE, 2015), pp. 507–510.

D. Gaglione, C. Clemente, C. V. Ilioudis, A. R. Persico, I. K. Proudler, and J. J. Soraghan, “Fractional Fourier Based Waveform for a Joint Radar-Communication System,” in Radar Conference (IEEE, 2016), pp. 1–6.

R. Jeevanmai and N. D. Rani, “Sidelobe reduction using frequency modulated pulse compression techniques in radar,” Int. J. Latest Trends Eng. Tech. 7(3), 171–179 (2013).

G. Chang, A. Liu, C. Yu, Y. Ji, Y. Wang, and J. Zhang, “Orthogonal waveform with multiple diversities for MIMO radar,” IEEE Sens. J. 18(11), 4462–4476 (2018).

[Crossref]

M. A. Khan, R. K. Rao, and X. Wang, “Performance of Multiuser MIMO Communication System using Chirp Modulation,” in International Symposium on Performance Evaluation of Computer and Telecommunication Systems (IEEE, 2013), pp. 115–119.

Y. Chan, M. Chua, and V. Koo, “Sidelobes reduction using simple two and tri-stages nonlinear frequency modulation (NLFM),” Prog. Electromagn. Res. 98, 33–52 (2009).

[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).

[Crossref]

R. Tao, X. Li, and Y. Li, “Time-delay estimation of chirp signals in the fractional Fourier domain,” IEEE Trans. Signal Process. 57(7), 2852–2855 (2009).

[Crossref]

R. Tao, X. Li, and Y. Li, “Time-delay estimation of chirp signals in the fractional Fourier domain,” IEEE Trans. Signal Process. 57(7), 2852–2855 (2009).

[Crossref]

G. Chang, A. Liu, C. Yu, Y. Ji, Y. Wang, and J. Zhang, “Orthogonal waveform with multiple diversities for MIMO radar,” IEEE Sens. J. 18(11), 4462–4476 (2018).

[Crossref]

C. Gao, K. Teh, A. Liu, and H. Sun, “Piecewise LFM waveform for MIMO radar,” IEEE Trans. Aerosp. Electron. Syst. 52(2), 590–602 (2016).

[Crossref]

C. Gao, K. Teh, and A. Liu, “Frequency coding waveform with segment LFM,” in Synthetic Aperture Radar 5th Asia-Pacific Conference (IEEE, 2015), pp. 507–510.

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).

[Crossref]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters,” IEEE Photonics Technol. Lett. 23(1), 39–41 (2011).

[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).

[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).

[Crossref]

A. Serbes and A. Omair, “A fast and accurate chirp rate estimation algorithm based on the fractional Fourier transform,” in 25th European Signal Processing Conference (IEEE, 2017), pp. 1145–1149.

B. Zhang, X. Wang, and S. Pan, “Photonics-based instantaneous multi-parameter measurement of a linear frequency modulation microwave signal,” J. Lightwave Technol. 36(13), 2589–2596 (2018).

[Crossref]

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).

[Crossref]

S. Pan, J. Fu, and J. Yao, “Photonic approach to the simultaneous measurement of the frequency, amplitude, pulse width, and time of arrival of a microwave signal,” Opt. Lett. 37(1), 7–9 (2012).

[Crossref]

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photonics Technol. Lett. 22(19), 1437–1439 (2010).

[Crossref]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters,” IEEE Photonics Technol. Lett. 23(1), 39–41 (2011).

[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).

[Crossref]

D. Gaglione, C. Clemente, C. V. Ilioudis, A. R. Persico, I. K. Proudler, and J. J. Soraghan, “Fractional Fourier Based Waveform for a Joint Radar-Communication System,” in Radar Conference (IEEE, 2016), pp. 1–6.

D. Gaglione, C. Clemente, C. V. Ilioudis, A. R. Persico, I. K. Proudler, and J. J. Soraghan, “Fractional Fourier Based Waveform for a Joint Radar-Communication System,” in Radar Conference (IEEE, 2016), pp. 1–6.

F. Qazi and A. Fam, “Good code sets based on Piecewise Linear FM,” in Radar Conference (IEEE, 2012), pp. 0522–0527.

F. Qazi, “Triangular FM Based Discrete Frequency-Coding Waveform Sets,” in Military Communications Conference (IEEE, 2014), pp. 766–771.

F. Qazi and A. Fam, “Discrete frequency-coding waveform sets based on piecewise linear FM,” in Radar Conference (IEEE, 2014), pp. 0469–0473.

L. Qi, R. Tao, and S. Zhou, “Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform,” Sci China Ser F 47(2), 184–198 (2004).

[Crossref]

R. Jeevanmai and N. D. Rani, “Sidelobe reduction using frequency modulated pulse compression techniques in radar,” Int. J. Latest Trends Eng. Tech. 7(3), 171–179 (2013).

M. A. Khan, R. K. Rao, and X. Wang, “Performance of Multiuser MIMO Communication System using Chirp Modulation,” in International Symposium on Performance Evaluation of Computer and Telecommunication Systems (IEEE, 2013), pp. 115–119.

M. Roberton and E. R. Brown, “Integrated radar and communications based on chirped spread-spectrum techniques,” in MTT-S International Microwave Symposium Digest (IEEE, 2003), pp. 611–614.

A. Serbes, “On the estimation of LFM signal parameters: analytical formulation,” IEEE Trans. Aerosp. Electron. Syst. 54(2), 848–860 (2018).

[Crossref]

A. Serbes and A. Omair, “A fast and accurate chirp rate estimation algorithm based on the fractional Fourier transform,” in 25th European Signal Processing Conference (IEEE, 2017), pp. 1145–1149.

D. Gaglione, C. Clemente, C. V. Ilioudis, A. R. Persico, I. K. Proudler, and J. J. Soraghan, “Fractional Fourier Based Waveform for a Joint Radar-Communication System,” in Radar Conference (IEEE, 2016), pp. 1–6.

C. Gao, K. Teh, A. Liu, and H. Sun, “Piecewise LFM waveform for MIMO radar,” IEEE Trans. Aerosp. Electron. Syst. 52(2), 590–602 (2016).

[Crossref]

R. Tao, X. Li, and Y. Li, “Time-delay estimation of chirp signals in the fractional Fourier domain,” IEEE Trans. Signal Process. 57(7), 2852–2855 (2009).

[Crossref]

L. Qi, R. Tao, and S. Zhou, “Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform,” Sci China Ser F 47(2), 184–198 (2004).

[Crossref]

C. Gao, K. Teh, A. Liu, and H. Sun, “Piecewise LFM waveform for MIMO radar,” IEEE Trans. Aerosp. Electron. Syst. 52(2), 590–602 (2016).

[Crossref]

C. Gao, K. Teh, and A. Liu, “Frequency coding waveform with segment LFM,” in Synthetic Aperture Radar 5th Asia-Pacific Conference (IEEE, 2015), pp. 507–510.

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).

[Crossref]

W. Wang, “Large time-bandwidth product MIMO radar waveform design based on chirp rate diversity,” IEEE Sens. J. 15(2), 1027–1034 (2015).

[Crossref]

B. Zhang, X. Wang, and S. Pan, “Photonics-based instantaneous multi-parameter measurement of a linear frequency modulation microwave signal,” J. Lightwave Technol. 36(13), 2589–2596 (2018).

[Crossref]

M. A. Khan, R. K. Rao, and X. Wang, “Performance of Multiuser MIMO Communication System using Chirp Modulation,” in International Symposium on Performance Evaluation of Computer and Telecommunication Systems (IEEE, 2013), pp. 115–119.

G. Chang, A. Liu, C. Yu, Y. Ji, Y. Wang, and J. Zhang, “Orthogonal waveform with multiple diversities for MIMO radar,” IEEE Sens. J. 18(11), 4462–4476 (2018).

[Crossref]

X. Xia, “Discrete chirp-Fourier transform and its application to chirp rate estimation,” IEEE Trans. Signal Process. 48(11), 3122–3133 (2000).

[Crossref]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters,” IEEE Photonics Technol. Lett. 23(1), 39–41 (2011).

[Crossref]

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).

[Crossref]

S. Pan, J. Fu, and J. Yao, “Photonic approach to the simultaneous measurement of the frequency, amplitude, pulse width, and time of arrival of a microwave signal,” Opt. Lett. 37(1), 7–9 (2012).

[Crossref]

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photonics Technol. Lett. 22(19), 1437–1439 (2010).

[Crossref]

G. Chang, A. Liu, C. Yu, Y. Ji, Y. Wang, and J. Zhang, “Orthogonal waveform with multiple diversities for MIMO radar,” IEEE Sens. J. 18(11), 4462–4476 (2018).

[Crossref]

G. Chang, A. Liu, C. Yu, Y. Ji, Y. Wang, and J. Zhang, “Orthogonal waveform with multiple diversities for MIMO radar,” IEEE Sens. J. 18(11), 4462–4476 (2018).

[Crossref]

L. Qi, R. Tao, and S. Zhou, “Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform,” Sci China Ser F 47(2), 184–198 (2004).

[Crossref]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters,” IEEE Photonics Technol. Lett. 23(1), 39–41 (2011).

[Crossref]

X. Zou, W. Pan, B. Luo, and L. Yan, “Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters,” IEEE Photonics Technol. Lett. 23(1), 39–41 (2011).

[Crossref]

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photonics Technol. Lett. 22(19), 1437–1439 (2010).

[Crossref]

G. Chang, A. Liu, C. Yu, Y. Ji, Y. Wang, and J. Zhang, “Orthogonal waveform with multiple diversities for MIMO radar,” IEEE Sens. J. 18(11), 4462–4476 (2018).

[Crossref]

W. Wang, “Large time-bandwidth product MIMO radar waveform design based on chirp rate diversity,” IEEE Sens. J. 15(2), 1027–1034 (2015).

[Crossref]

A. Serbes, “On the estimation of LFM signal parameters: analytical formulation,” IEEE Trans. Aerosp. Electron. Syst. 54(2), 848–860 (2018).

[Crossref]

C. Gao, K. Teh, A. Liu, and H. Sun, “Piecewise LFM waveform for MIMO radar,” IEEE Trans. Aerosp. Electron. Syst. 52(2), 590–602 (2016).

[Crossref]

X. Xia, “Discrete chirp-Fourier transform and its application to chirp rate estimation,” IEEE Trans. Signal Process. 48(11), 3122–3133 (2000).

[Crossref]

L. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42(11), 3084–3091 (1994).

[Crossref]

R. Tao, X. Li, and Y. Li, “Time-delay estimation of chirp signals in the fractional Fourier domain,” IEEE Trans. Signal Process. 57(7), 2852–2855 (2009).

[Crossref]

R. Jeevanmai and N. D. Rani, “Sidelobe reduction using frequency modulated pulse compression techniques in radar,” Int. J. Latest Trends Eng. Tech. 7(3), 171–179 (2013).

B. Hraimel, “Optical single-sideband modulation with tunable optical carrier to sideband ratio in radio over fiber systems,” J. Lightwave Technol. 29(5), 775–781 (2011).

[Crossref]

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).

[Crossref]

B. Zhang, X. Wang, and S. Pan, “Photonics-based instantaneous multi-parameter measurement of a linear frequency modulation microwave signal,” J. Lightwave Technol. 36(13), 2589–2596 (2018).

[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).

[Crossref]

M. Drummond, P. Monteiro, and R. Nogueira, “Photonic RF instantaneous frequency measurement system by means of a polarization domain interferometer,” Opt. Express 17(7), 5433–5438 (2009).

[Crossref]

C. Cuadrado-Laborde, A. Carrascosa, A. Díez, J. L. Cruz, and M. V. Andres, “Photonic fractional Fourier transformer with a single dispersive device,” Opt. Express 21(7), 8558–8563 (2013).

[Crossref]

Y. Chan, M. Chua, and V. Koo, “Sidelobes reduction using simple two and tri-stages nonlinear frequency modulation (NLFM),” Prog. Electromagn. Res. 98, 33–52 (2009).

[Crossref]

L. Qi, R. Tao, and S. Zhou, “Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform,” Sci China Ser F 47(2), 184–198 (2004).

[Crossref]

M. A. Khan, R. K. Rao, and X. Wang, “Performance of Multiuser MIMO Communication System using Chirp Modulation,” in International Symposium on Performance Evaluation of Computer and Telecommunication Systems (IEEE, 2013), pp. 115–119.

M. Roberton and E. R. Brown, “Integrated radar and communications based on chirped spread-spectrum techniques,” in MTT-S International Microwave Symposium Digest (IEEE, 2003), pp. 611–614.

D. Gaglione, C. Clemente, C. V. Ilioudis, A. R. Persico, I. K. Proudler, and J. J. Soraghan, “Fractional Fourier Based Waveform for a Joint Radar-Communication System,” in Radar Conference (IEEE, 2016), pp. 1–6.

F. Qazi and A. Fam, “Good code sets based on Piecewise Linear FM,” in Radar Conference (IEEE, 2012), pp. 0522–0527.

F. Qazi and A. Fam, “Discrete frequency-coding waveform sets based on piecewise linear FM,” in Radar Conference (IEEE, 2014), pp. 0469–0473.

F. Qazi, “Triangular FM Based Discrete Frequency-Coding Waveform Sets,” in Military Communications Conference (IEEE, 2014), pp. 766–771.

C. Gao, K. Teh, and A. Liu, “Frequency coding waveform with segment LFM,” in Synthetic Aperture Radar 5th Asia-Pacific Conference (IEEE, 2015), pp. 507–510.

A. Serbes and A. Omair, “A fast and accurate chirp rate estimation algorithm based on the fractional Fourier transform,” in 25th European Signal Processing Conference (IEEE, 2017), pp. 1145–1149.