Abstract

The topological magnetoelectric effect is associated with the photonic spin-orbit interaction. However, due to the proportionate fine structure constant of the topological term, the topological magnetoelectric effect is usually weak. In this paper, we demonstrate that the axion term enables manipulation of the spin Hall shift of light around Fano resonance. And, the excited surface plasmon near the nanoparticle's interface could enhance the topological magnetoelectric effect for several orders. Numerical simulation of near field and far-field scattering confirms our theoretical results. Our work may pave the way to exploit the topological magnetoelectric effect in practical applications, such as optical sensing and nanoprobing.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78(19), 195424 (2008).
    [Crossref]
  2. M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80(11), 113304 (2009).
    [Crossref]
  3. L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P. Armitage, “Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator,” Science 354(6316), 1124–1127 (2016).
    [Crossref]
  4. A. Karch, “Electric-magnetic duality and topological insulators,” Phys. Rev. Lett. 103(17), 171601 (2009).
    [Crossref]
  5. M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
    [Crossref]
  6. J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
    [Crossref]
  7. J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
    [Crossref]
  8. X. L. Qi, R. Li, J. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323(5918), 1184–1187 (2009).
    [Crossref]
  9. S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
    [Crossref]
  10. Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, “MoTe2: A type-II Weyl topological metal,” Phys. Rev. Lett. 117(5), 056805 (2016).
    [Crossref]
  11. L. Ge, T. Zhan, D. Han, X. Liu, and J. Zi, “Unusual electromagnetic scattering by cylinders of topological insulator,” Opt. Express 22(25), 30833–30842 (2014).
    [Crossref]
  12. A. Lakhtakia and T. G. Mackay, “Electromagnetic scattering by homogeneous, isotropic, dielectric-magnetic sphere with topologically insulating surface states,” J. Opt. Soc. Am. B 33(4), 603–609 (2016).
    [Crossref]
  13. D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
    [Crossref]
  14. J. Soni, S. Mansha, S. Dutta Gupta, A. Banerjee, and N. Ghosh, “Giant Goos-Hänchen shift in scattering: the role of interfering localized plasmon modes,” Opt. Lett. 39(14), 4100–4103 (2014).
    [Crossref]
  15. J. Soni, S. Ghosh, S. Mansha, A. Kumar, S. Dutta Gupta, A. Banerjee, and N. Ghosh, “Enhancing spin-orbit interaction of light by plasmonic nanostructures,” Opt. Lett. 38(10), 1748–1750 (2013).
    [Crossref]
  16. W. Li, J. Liu, Y. Gao, K. Zhou, and S. Liu, “Photonic spin Hall effect on an ellipsoidal Rayleigh particle in scattering far-field,” Opt. Express 27(20), 28194–28203 (2019).
    [Crossref]
  17. L.-K. Shi and J. C. W. Song, “Plasmon geometric phase and plasmon Hall shift,” Phys. Rev. X  8(2), 021020 (2018).
    [Crossref]
  18. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  19. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  20. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
    [Crossref]
  21. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
    [Crossref]
  22. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref]
  23. I. Staude, T. Pertsch, and Y. S. Kivshar, “All-dielectric resonant meta-optics lightens up,” ACS Photonics 6(4), 802–814 (2019).
    [Crossref]
  24. O. G. Rodriguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
    [Crossref]
  25. D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
    [Crossref]
  26. W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
    [Crossref]
  27. W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological insulator particles as optically induced oscillators: Toward dynamical force measurements and optical rheology,” ACS Photonics 5(3), 741–745 (2018).
    [Crossref]
  28. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 1983).
  29. L. Ge, D. Han, and J. Zi, “Electromagnetic scattering by spheres of topological insulators,” Opt. Commun. 354, 225–230 (2015).
    [Crossref]
  30. A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
    [Crossref]
  31. R. Schütky, C. Ertler, A. Trügler, and U. Hohenester, “Surface plasmons in doped topological insulators,” Phys. Rev. B 88(19), 195311 (2013).
    [Crossref]
  32. R. Shi, D. L. Gao, H. Hu, Y. Q. Wang, and L. Gao, “Enhanced broadband spin Hall effects by core-shell nanoparticles,” Opt. Express 27(4), 4808–4817 (2019).
    [Crossref]
  33. D. L. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
    [Crossref]
  34. J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105(16), 166803 (2010).
    [Crossref]
  35. X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
    [Crossref]
  36. X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
    [Crossref]
  37. J. Bohn, T. Bucher, K. E. Chong, A. Komar, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
    [Crossref]
  38. F. Zangeneh-Nejad and R. Fleury, “Topological Fano resonances,” Phys. Rev. Lett. 122(1), 014301 (2019).
    [Crossref]
  39. G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
    [Crossref]

2020 (1)

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

2019 (6)

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

W. Li, J. Liu, Y. Gao, K. Zhou, and S. Liu, “Photonic spin Hall effect on an ellipsoidal Rayleigh particle in scattering far-field,” Opt. Express 27(20), 28194–28203 (2019).
[Crossref]

I. Staude, T. Pertsch, and Y. S. Kivshar, “All-dielectric resonant meta-optics lightens up,” ACS Photonics 6(4), 802–814 (2019).
[Crossref]

R. Shi, D. L. Gao, H. Hu, Y. Q. Wang, and L. Gao, “Enhanced broadband spin Hall effects by core-shell nanoparticles,” Opt. Express 27(4), 4808–4817 (2019).
[Crossref]

F. Zangeneh-Nejad and R. Fleury, “Topological Fano resonances,” Phys. Rev. Lett. 122(1), 014301 (2019).
[Crossref]

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

2018 (6)

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref]

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

D. L. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
[Crossref]

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological insulator particles as optically induced oscillators: Toward dynamical force measurements and optical rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

L.-K. Shi and J. C. W. Song, “Plasmon geometric phase and plasmon Hall shift,” Phys. Rev. X  8(2), 021020 (2018).
[Crossref]

2017 (1)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

2016 (3)

Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, “MoTe2: A type-II Weyl topological metal,” Phys. Rev. Lett. 117(5), 056805 (2016).
[Crossref]

A. Lakhtakia and T. G. Mackay, “Electromagnetic scattering by homogeneous, isotropic, dielectric-magnetic sphere with topologically insulating surface states,” J. Opt. Soc. Am. B 33(4), 603–609 (2016).
[Crossref]

L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P. Armitage, “Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator,” Science 354(6316), 1124–1127 (2016).
[Crossref]

2015 (2)

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

L. Ge, D. Han, and J. Zi, “Electromagnetic scattering by spheres of topological insulators,” Opt. Commun. 354, 225–230 (2015).
[Crossref]

2014 (3)

2013 (3)

J. Soni, S. Ghosh, S. Mansha, A. Kumar, S. Dutta Gupta, A. Banerjee, and N. Ghosh, “Enhancing spin-orbit interaction of light by plasmonic nanostructures,” Opt. Lett. 38(10), 1748–1750 (2013).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

R. Schütky, C. Ertler, A. Trügler, and U. Hohenester, “Surface plasmons in doped topological insulators,” Phys. Rev. B 88(19), 195311 (2013).
[Crossref]

2012 (1)

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

2010 (5)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105(16), 166803 (2010).
[Crossref]

O. G. Rodriguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
[Crossref]

2009 (4)

X. L. Qi, R. Li, J. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323(5918), 1184–1187 (2009).
[Crossref]

A. Karch, “Electric-magnetic duality and topological insulators,” Phys. Rev. Lett. 103(17), 171601 (2009).
[Crossref]

M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80(11), 113304 (2009).
[Crossref]

D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref]

2008 (1)

X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78(19), 195424 (2008).
[Crossref]

2006 (1)

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Alidoust, N.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Araneda, G.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Armitage, N. P.

L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P. Armitage, “Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator,” Science 354(6316), 1124–1127 (2016).
[Crossref]

Banerjee, A.

Belopolski, I.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Bernevig, B. A.

Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, “MoTe2: A type-II Weyl topological metal,” Phys. Rev. Lett. 117(5), 056805 (2016).
[Crossref]

Bian, G.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Blatt, R.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Bliokh, K. Y.

O. G. Rodriguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref]

Bohn, J.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 1983).

Bucher, T.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Campos, W. H.

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological insulator particles as optically induced oscillators: Toward dynamical force measurements and optical rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Cava, R. J.

Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, “MoTe2: A type-II Weyl topological metal,” Phys. Rev. Lett. 117(5), 056805 (2016).
[Crossref]

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Chang, M.-C.

M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80(11), 113304 (2009).
[Crossref]

Chang, T. R.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Chen, L.

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

Chen, Y.

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

Cheng, S.

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

Cheskis, D.

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

Choi, D. Y.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Chong, K. E.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Chou, F. C.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Colombe, Y.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Dai, X.

Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, “MoTe2: A type-II Weyl topological metal,” Phys. Rev. Lett. 117(5), 056805 (2016).
[Crossref]

Dainty, C.

O. G. Rodriguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref]

de Carvalho, V. E.

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological insulator particles as optically induced oscillators: Toward dynamical force measurements and optical rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Dogariu, A.

D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref]

Drew, H. D.

J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105(16), 166803 (2010).
[Crossref]

Dutta Gupta, S.

Ertler, C.

R. Schütky, C. Ertler, A. Trügler, and U. Hohenester, “Surface plasmons in doped topological insulators,” Phys. Rev. B 88(19), 195311 (2013).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Fleury, R.

F. Zangeneh-Nejad and R. Fleury, “Topological Fano resonances,” Phys. Rev. Lett. 122(1), 014301 (2019).
[Crossref]

Fonseca, J. M.

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological insulator particles as optically induced oscillators: Toward dynamical force measurements and optical rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Gao, D. L.

R. Shi, D. L. Gao, H. Hu, Y. Q. Wang, and L. Gao, “Enhanced broadband spin Hall effects by core-shell nanoparticles,” Opt. Express 27(4), 4808–4817 (2019).
[Crossref]

D. L. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
[Crossref]

Gao, L.

R. Shi, D. L. Gao, H. Hu, Y. Q. Wang, and L. Gao, “Enhanced broadband spin Hall effects by core-shell nanoparticles,” Opt. Express 27(4), 4808–4817 (2019).
[Crossref]

D. L. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
[Crossref]

Gao, Y.

Ge, L.

L. Ge, D. Han, and J. Zi, “Electromagnetic scattering by spheres of topological insulators,” Opt. Commun. 354, 225–230 (2015).
[Crossref]

L. Ge, T. Zhan, D. Han, X. Liu, and J. Zi, “Unusual electromagnetic scattering by cylinders of topological insulator,” Opt. Express 22(25), 30833–30842 (2014).
[Crossref]

Ghosh, N.

Ghosh, S.

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Gorodetski, Y.

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

Gresch, D.

Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, “MoTe2: A type-II Weyl topological metal,” Phys. Rev. Lett. 117(5), 056805 (2016).
[Crossref]

Haefner, D.

D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Han, D.

L. Ge, D. Han, and J. Zi, “Electromagnetic scattering by spheres of topological insulators,” Opt. Commun. 354, 225–230 (2015).
[Crossref]

L. Ge, T. Zhan, D. Han, X. Liu, and J. Zi, “Unusual electromagnetic scattering by cylinders of topological insulator,” Opt. Express 22(25), 30833–30842 (2014).
[Crossref]

Hasan, M. Z.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
[Crossref]

He, K.

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

Higginbottom, D. B.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Hohenester, U.

R. Schütky, C. Ertler, A. Trügler, and U. Hohenester, “Surface plasmons in doped topological insulators,” Phys. Rev. B 88(19), 195311 (2013).
[Crossref]

Hu, H.

Huang, C. Y.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Huang, J.

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 1983).

Hughes, T. L.

X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78(19), 195424 (2008).
[Crossref]

Jeng, H. T.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Kane, C. L.

M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
[Crossref]

Karch, A.

A. Karch, “Electric-magnetic duality and topological insulators,” Phys. Rev. Lett. 103(17), 171601 (2009).
[Crossref]

Kargarian, M.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

Kivshar, Y. S.

I. Staude, T. Pertsch, and Y. S. Kivshar, “All-dielectric resonant meta-optics lightens up,” ACS Photonics 6(4), 802–814 (2019).
[Crossref]

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Koirala, N.

L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P. Armitage, “Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator,” Science 354(6316), 1124–1127 (2016).
[Crossref]

Komar, A.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Krizan, J. W.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Kumar, A.

Kushwaha, S.

Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, “MoTe2: A type-II Weyl topological metal,” Phys. Rev. Lett. 117(5), 056805 (2016).
[Crossref]

Kushwaha, S. K.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Lai, Y.

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

Lakhtakia, A.

Lara, D.

O. G. Rodriguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref]

Lei, B.

Li, R.

X. L. Qi, R. Li, J. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323(5918), 1184–1187 (2009).
[Crossref]

Li, W.

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Lin, H.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Ling, X.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Liu, C.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Liu, J.

Liu, S.

Liu, W.

Liu, X.

Liu, Y.

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Luk’yanchuk, B. S.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref]

Luo, H.

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Ma, H.

MacDonald, A. H.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

Maciejko, J.

J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105(16), 166803 (2010).
[Crossref]

Mackay, T. G.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Mansha, S.

Mendes, J. B. S.

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological insulator particles as optically induced oscillators: Toward dynamical force measurements and optical rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Miroshnichenko, A. E.

D. L. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Moon, J.

L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P. Armitage, “Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator,” Science 354(6316), 1124–1127 (2016).
[Crossref]

Moura-Melo, W. A.

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological insulator particles as optically induced oscillators: Toward dynamical force measurements and optical rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

Nechayev, S.

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

Neshev, D. N.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Neupane, M.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Oh, S.

L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P. Armitage, “Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator,” Science 354(6316), 1124–1127 (2016).
[Crossref]

Ostrovskaya, E. A.

O. G. Rodriguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref]

Pertsch, T.

I. Staude, T. Pertsch, and Y. S. Kivshar, “All-dielectric resonant meta-optics lightens up,” ACS Photonics 6(4), 802–814 (2019).
[Crossref]

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Qi, X. L.

J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105(16), 166803 (2010).
[Crossref]

X. L. Qi, R. Li, J. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323(5918), 1184–1187 (2009).
[Crossref]

Qi, X.-L.

X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78(19), 195424 (2008).
[Crossref]

Rajesh, D.

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

Rauschenbeutel, A.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Rocha, M. S.

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological insulator particles as optically induced oscillators: Toward dynamical force measurements and optical rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Rodriguez-Herrera, O. G.

O. G. Rodriguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Salehi, M.

L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P. Armitage, “Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator,” Science 354(6316), 1124–1127 (2016).
[Crossref]

Sankar, R.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Schütky, R.

R. Schütky, C. Ertler, A. Trügler, and U. Hohenester, “Surface plasmons in doped topological insulators,” Phys. Rev. B 88(19), 195311 (2013).
[Crossref]

Sheng, L.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref]

Shi, L.-K.

L.-K. Shi and J. C. W. Song, “Plasmon geometric phase and plasmon Hall shift,” Phys. Rev. X  8(2), 021020 (2018).
[Crossref]

Shi, R.

R. Shi, D. L. Gao, H. Hu, Y. Q. Wang, and L. Gao, “Enhanced broadband spin Hall effects by core-shell nanoparticles,” Opt. Express 27(4), 4808–4817 (2019).
[Crossref]

D. L. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
[Crossref]

Shibayev, P. P.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

Soluyanov, A. A.

Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, “MoTe2: A type-II Weyl topological metal,” Phys. Rev. Lett. 117(5), 056805 (2016).
[Crossref]

Song, J. C. W.

L.-K. Shi and J. C. W. Song, “Plasmon geometric phase and plasmon Hall shift,” Phys. Rev. X  8(2), 021020 (2018).
[Crossref]

Soni, J.

Staude, I.

I. Staude, T. Pertsch, and Y. S. Kivshar, “All-dielectric resonant meta-optics lightens up,” ACS Photonics 6(4), 802–814 (2019).
[Crossref]

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Sternklar, S.

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

Sukhov, S.

D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref]

Tribelsky, M. I.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref]

Troyer, M.

Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, “MoTe2: A type-II Weyl topological metal,” Phys. Rev. Lett. 117(5), 056805 (2016).
[Crossref]

Trügler, A.

R. Schütky, C. Ertler, A. Trügler, and U. Hohenester, “Surface plasmons in doped topological insulators,” Phys. Rev. B 88(19), 195311 (2013).
[Crossref]

Tsai, W. F.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Tse, W. K.

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

Volz, J.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Walser, S.

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Wang, Y.

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

Wang, Y. Q.

Wang, Z.

Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, “MoTe2: A type-II Weyl topological metal,” Phys. Rev. Lett. 117(5), 056805 (2016).
[Crossref]

Wen, S.

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Wu, L.

L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P. Armitage, “Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator,” Science 354(6316), 1124–1127 (2016).
[Crossref]

Wu, W.

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

Xie, W.

Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, “MoTe2: A type-II Weyl topological metal,” Phys. Rev. Lett. 117(5), 056805 (2016).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
[Crossref]

Xu, S. Y.

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Xue, Q.

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

Yang, M.-F.

M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80(11), 113304 (2009).
[Crossref]

Yin, C.

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

Yu, J.

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

Zang, J.

X. L. Qi, R. Li, J. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323(5918), 1184–1187 (2009).
[Crossref]

Zangeneh-Nejad, F.

F. Zangeneh-Nejad and R. Fleury, “Topological Fano resonances,” Phys. Rev. Lett. 122(1), 014301 (2019).
[Crossref]

Zeng, X.

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

Zhan, T.

Zhang, J.

Zhang, S. C.

J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105(16), 166803 (2010).
[Crossref]

X. L. Qi, R. Li, J. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323(5918), 1184–1187 (2009).
[Crossref]

Zhang, S.-C.

X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78(19), 195424 (2008).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Zhou, K.

Zhou, X.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Zhu, K.

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

Zi, J.

L. Ge, D. Han, and J. Zi, “Electromagnetic scattering by spheres of topological insulators,” Opt. Commun. 354, 225–230 (2015).
[Crossref]

L. Ge, T. Zhan, D. Han, X. Liu, and J. Zi, “Unusual electromagnetic scattering by cylinders of topological insulator,” Opt. Express 22(25), 30833–30842 (2014).
[Crossref]

ACS Photonics (2)

I. Staude, T. Pertsch, and Y. S. Kivshar, “All-dielectric resonant meta-optics lightens up,” ACS Photonics 6(4), 802–814 (2019).
[Crossref]

W. H. Campos, J. M. Fonseca, V. E. de Carvalho, J. B. S. Mendes, M. S. Rocha, and W. A. Moura-Melo, “Topological insulator particles as optically induced oscillators: Toward dynamical force measurements and optical rheology,” ACS Photonics 5(3), 741–745 (2018).
[Crossref]

Appl. Phys. Lett. (3)

D. Rajesh, S. Nechayev, D. Cheskis, S. Sternklar, and Y. Gorodetski, “Probing spin-orbit interaction via Fano interference,” Appl. Phys. Lett. 113(26), 261104 (2018).
[Crossref]

J. Yu, W. Wu, Y. Wang, K. Zhu, X. Zeng, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, K. He, and Q. Xue, “Giant photoinduced anomalous Hall effect of the topological surface states in three dimensional topological insulators Bi2Te3,” Appl. Phys. Lett. 116(14), 141603 (2020).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

D. L. Gao, R. Shi, A. E. Miroshnichenko, and L. Gao, “Enhanced spin Hall effect of light in spheres with dual symmetry,” Laser Photonics Rev. 12(11), 1800130 (2018).
[Crossref]

Nano Lett. (1)

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Nat. Mater. (2)

A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Nat. Photonics (1)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Nat. Phys. (1)

G. Araneda, S. Walser, Y. Colombe, D. B. Higginbottom, J. Volz, R. Blatt, and A. Rauschenbeutel, “Wavelength-scale errors in optical localization due to spin-orbit coupling of light,” Nat. Phys. 15(1), 17–21 (2019).
[Crossref]

Opt. Commun. (1)

L. Ge, D. Han, and J. Zi, “Electromagnetic scattering by spheres of topological insulators,” Opt. Commun. 354, 225–230 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B (4)

J. Yu, K. Zhu, X. Zeng, L. Chen, Y. Chen, Y. Liu, C. Yin, S. Cheng, Y. Lai, J. Huang, K. He, and Q. Xue, “Helicity-dependent photocurrent of the top and bottom Dirac surface states of epitaxial thin films of three-dimensional topological insulators Sb2Te3,” Phys. Rev. B 100(23), 235108 (2019).
[Crossref]

X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78(19), 195424 (2008).
[Crossref]

M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80(11), 113304 (2009).
[Crossref]

R. Schütky, C. Ertler, A. Trügler, and U. Hohenester, “Surface plasmons in doped topological insulators,” Phys. Rev. B 88(19), 195311 (2013).
[Crossref]

Phys. Rev. Lett. (7)

J. Maciejko, X. L. Qi, H. D. Drew, and S. C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105(16), 166803 (2010).
[Crossref]

O. G. Rodriguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010).
[Crossref]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[Crossref]

A. Karch, “Electric-magnetic duality and topological insulators,” Phys. Rev. Lett. 103(17), 171601 (2009).
[Crossref]

Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, “MoTe2: A type-II Weyl topological metal,” Phys. Rev. Lett. 117(5), 056805 (2016).
[Crossref]

D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref]

F. Zangeneh-Nejad and R. Fleury, “Topological Fano resonances,” Phys. Rev. Lett. 122(1), 014301 (2019).
[Crossref]

Phys. Rev. X? (1)

L.-K. Shi and J. C. W. Song, “Plasmon geometric phase and plasmon Hall shift,” Phys. Rev. X  8(2), 021020 (2018).
[Crossref]

Rev. Mod. Phys. (2)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010).
[Crossref]

Sci. Rep. (1)

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref]

Science (3)

L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P. Armitage, “Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator,” Science 354(6316), 1124–1127 (2016).
[Crossref]

X. L. Qi, R. Li, J. Zang, and S. C. Zhang, “Inducing a magnetic monopole with topological surface states,” Science 323(5918), 1184–1187 (2009).
[Crossref]

S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, “Observation of Fermi arc surface states in a topological metal,” Science 347(6219), 294–298 (2015).
[Crossref]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Illustration of spin Hall shift of scattered light by a topological nanoparticle. The red arrowed line represents the spin Hall shift ${\Delta _{\rm{SH}}}$, which is the transverse displacement between the real position and the detected position of the nanoparticle from far-field.
Fig. 2.
Fig. 2. (a) and (b) Mie scattering coefficients and cross-polarized scattering coefficient versus the incident wavelength for different axion angle. (c) and (d) Bulk scattering and surface scattering due to surface Hall current versus the incident wavelength. The nanoparticle’s radius a = 60 nm and the background is vacuum.
Fig. 3.
Fig. 3. Near-field distributions of the nanoparticle without ($\Theta \textrm{ = }0$) and with ($\Theta \textrm{ = 41}\pi$) topology. Outside the particle: the normalized electric field in the y-z plane, on the surface of the particle: the local spin angular momentum (SAM) density on the surface. The black arrows on the surface of the particle represent the direction of the spin flow. The incident wavelength is 590 nm, and remaining parameters are the same as those in Fig. 2.
Fig. 4.
Fig. 4. (a) Spin Hall shifts and (b) normalized scattering intensity for nanoparticles without ($\Theta \textrm{ = }0$) and with($\Theta \textrm{ = 41}\pi$) topology around Fano resonance. The inset shows the position of wavelength (590 nm) that we chose can be tuned from behind Fano resonance to before Fano resonance by topological magnetoelectric (TME) effect. The remaining parameters are the same as those in Fig. 2.
Fig. 5.
Fig. 5. Comparison of far-field scattering solutions by Mie theory (our model) and commercial full-wave simulation. The solutions are in good agreement. The remaining parameters are the same as those in Fig. 2.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E i n c = n = 1 E n ( M o m n ( 1 ) i N e m n ( 1 ) i M e m n ( 1 ) + N o m n ( 1 ) ) H i n c = k ω μ n = 1 E n ( M e m n ( 1 ) + i N o m n ( 1 ) + i M o m n ( 1 ) + N e m n ( 1 ) )
e r × ( E int E inc E sca ) r = a  = 0 e r × ( H int H inc H sca ) r = a  = 0
E s c a = n = 1 E n [ i ( b n + i b n T ) M e m n ( 3 ) ( b n i b n T ) M o m n ( 3 ) + i ( a n + i a n T ) N e m n ( 3 ) ( a n i a n T ) N o m n ( 3 ) ] H s c a = k 2 ω μ 2 n = 1 E n [ ( a n + i a n T ) M e m n ( 3 )  +  i ( a n i a n T ) M o m n ( 3 ) + ( b n + i b n T ) N e m n ( 3 ) + i ( b n i b n T ) N o m n ( 3 ) ]
a n = μ b m 2 j n ( m x ) [ x j n ( x ) ] β 2 μ j n ( x ) [ m x j n ( m x ) ] μ b m 2 j n ( m x ) [ x h n ( x ) ] β 2 μ h n ( x ) [ m x j n ( m x ) ]
b n = μ j n ( m x ) [ x j n ( x ) ] μ b j n ( x ) [ m x j n ( m x ) ] β 1 μ j n ( m x ) [ x h n ( x ) ] β 2 μ b h n ( x ) [ m x j n ( m x ) ] β 1
a n T = Ω χ 1 [ m x j n ( m x ) ] { μ j n ( x ) [ x h n ( x ) ] μ h n ( x ) [ x j n ( x ) ] } m [ x h n ( x ) ] { μ j n ( m x ) [ x h n ( x ) ] μ b h n ( x ) [ m x j n ( m x ) ] β 1 }
b n T = Ω χ 2 j n ( m x ) { μ m j n ( x ) [ x h n ( x ) ] μ m h n ( x ) [ x j n ( x ) ] } h n ( x ) { μ b m 2 j n ( m x ) [ x h n ( x ) ] β 2 μ h n ( x ) [ m x j n ( m x ) ] } ,
A n = a n i a n T , B n = b n i b n T
E s c a = n = 1 E n [ i B n M e m n ( 3 ) B n M o m n ( 3 ) + i A n N e m n ( 3 ) A n N o m n ( 3 ) ] H s c a = k 2 ω μ 2 n = 1 E n [ A n M e m n ( 3 )  +  i A n M o m n ( 3 ) + B n N e m n ( 3 ) + i B n N o m n ( 3 ) ]
Δ S H = sin θ k Re [ n = 1 ( 2 n + 1 ) A n π n S 1  + ( n = 1 ( 2 n + 1 ) B n π n ) S 2 ] | S 1 | 2  +  | S 2 | 2  

Metrics