Abstract

In this paper, we propose the design of a metasurface that can achieve three functions in different frequency bands. The proposed metasurface is composed of two kinds of unit cells which are designed on the basis of the spatial k-dispersion engineering of spoof surface plasmon polaritons (SSPPs). By arranging these two kinds of unit cells in the chessboard configuration, the three functions of transmission, anomalous refraction and absorption can be integrated into one metasurface. High transmission and strong absorption can be achieved in 2.0-9.0 GHz and 12.6-20.0 GHz, respectively. Meanwhile, anomalous refraction can be achieved in 10-11.7 GHz due to forward scattering cancellation of two unit cells. To verify the design, a prototype was fabricated and measured. The measured results are consistent with the simulation ones. The metasurface can integrate multiple functions into one aperture and therefore has potential application values in multifunctional microwave devices such as shared-aperture antennas, etc.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Bianchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and Axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref]
  2. Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
    [Crossref]
  3. V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, and V. Yunkin, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
    [Crossref]
  4. P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
    [Crossref]
  5. L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
    [Crossref]
  6. H. Y. Shi, L. Y. Wang, M. R. Zhao, J. Chen, A. X. Zhang, and Z. Xu, “Transparent metasurface for generating microwave vortex beams with cross-polarization conversion,” Materials 11(12), 2448 (2018).
    [Crossref]
  7. J. J. Yang, Y. Z. Cheng, C. C. Ge, and R. Z. Gong, “Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction,” Materials 11(4), 626 (2018).
    [Crossref]
  8. S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
    [Crossref]
  9. J. C. Zhao, Y. Z. Cheng, and Z. Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
    [Crossref]
  10. S. Sui, J. B. Yu, H. Ma, J. Q. Zhang, J. F. Wang, Z. Xu, and S. B. Qu, “Ultra-wideband polarization conversion metasurface based on topology optimal design and geometry tailor,” Sci. Rep. 31(7), 843–846 (2016).
  11. N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
    [Crossref]
  12. J. R. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
    [Crossref]
  13. D. Veksler, E. Maguid, N. Shitrit, D. Ozeri, V. Kleiner, and E. Hasman, “Multiple wavefront shaping by metasurface based on mixed random antenna groups,” ACS Photonics 2(5), 661–667 (2015).
    [Crossref]
  14. H. M. Kou, Y. Zhu, M. X. Chen, Y. P. Zeng, Y. B. Pan, and J. K. Guo, “Microwave absorbing performances of silica matrix composites reinforced by carbon nanotubes and carbon fiber,” Int. J. Appl. Ceram. Technol. 10(2), 245–250 (2013).
    [Crossref]
  15. S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
    [Crossref]
  16. L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
    [Crossref]
  17. X. Yan, L. J. Liang, J. Yang, W. W. Liu, X. Ding, D. G. Xu, Y. T. Zhang, T. J. Cui, and J. Q. Yao, “Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface,” Opt. Express 23(22), 29128–29137 (2015).
    [Crossref]
  18. K. Chen, L. Cui, Y. J. Feng, J. M. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
    [Crossref]
  19. J. Lončar, A. Grbic, and S. Hrabar, “A reflective polarization converting metasurface at X-band frequencies,” IEEE Trans. Antennas Propag. 66(6), 3213–3218 (2018).
    [Crossref]
  20. W. B. Pan, C. Huang, P. Chen, X. L. Ma, C. G. Hu, and X. G. Luo, “A low-RCS and high-gain partially reflecting surface antenna,” IEEE Trans. Antennas Propag. 62(2), 945–949 (2014).
    [Crossref]
  21. J. Y. Ren, W. Jiang, K. Z. Zhang, and S. X. Gong, “A High-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property,” Antennas Wirel. Propag. Lett. 17(5), 853–856 (2018).
    [Crossref]
  22. Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
    [Crossref]
  23. M. L. Wan, J. N. He, Y. L. Song, and F. Q. Zhou, “Electromagnetically induced transparency and absorption in plasmonic metasurfaces based on near-field coupling,” Phys. Lett. A 379(30-31), 1791–1795 (2015).
    [Crossref]
  24. Y. B. Long, H. D. Deng, H. T. Xu, L. Shen, W. B. Guo, C. Y. Liu, W. H. Huang, W. T. Peng, L. X. Li, H. J. Lin, and C. Guo, “Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer,” Opt. Mater. Express 7(1), 100–110 (2017).
    [Crossref]
  25. J. L. Li, J. J. Jiang, Y. He, W. H. Xu, M. Chen, L. Miao, and S. W. Bie, “Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface,” Antennas Wirel. Propag. Lett. 15, 774–777 (2016).
    [Crossref]
  26. S. Narayan, B. Sangeetha, T. V. Sruthi, V. Shambulingappa, and R. U. Nair, “Design of low observable antenna using active hybrid-element FSS structure for stealth applications,” AEU-Int. J. Electron Comm. 80, 137–143 (2017).
    [Crossref]
  27. A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
    [Crossref]
  28. H. P. Li, G. M. Wang, J. G. Liang, and X. J. Gao, “Wideband multifunctional metasurface for polarization conversion and gain enhancement,” Prog. Electromagn. Res. 155, 115–125 (2016).
    [Crossref]
  29. T. Cai, S. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
    [Crossref]
  30. C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
    [Crossref]
  31. E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
    [Crossref]
  32. Y. Zhuang, G. Wang, T. Cai, and Q. Zhang, “Design of bifunctional metasurface based on independent control of transmission and reflection,” Opt. Express 26(3), 3594 (2018).
    [Crossref]
  33. H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
    [Crossref]
  34. X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidalb, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U. S. A. 110(1), 40–45 (2013).
    [Crossref]
  35. Y. J. Guo, K. Xu, and X. Tang, “Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters,” Opt. Express 26(8), 10589–10598 (2018).
    [Crossref]
  36. K. Xu, Y. Guo, and X. Deng, “Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves,” Opt. Express 27(4), 4354–4363 (2019).
    [Crossref]
  37. Y. Guo, K Xu, and X. Deng, “Tunable enhanced sensing of ferrite film using meander-shaped spoof surface plasmon polariton waveguide,” Appl. Phys. Express 12(1), 015502 (2019).
    [Crossref]
  38. L. Y. Feng, J. Zhang, S. Qu, H. Ma, J. Wang, J. Wang, and Z. Xu, “High-efficiency polarization conversion based on spatial dispersion modulation of spoof surface plasmon polaritons,” Opt. Express 24(22), 24938 (2016).
    [Crossref]

2019 (2)

K. Xu, Y. Guo, and X. Deng, “Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves,” Opt. Express 27(4), 4354–4363 (2019).
[Crossref]

Y. Guo, K Xu, and X. Deng, “Tunable enhanced sensing of ferrite film using meander-shaped spoof surface plasmon polariton waveguide,” Appl. Phys. Express 12(1), 015502 (2019).
[Crossref]

2018 (8)

Y. J. Guo, K. Xu, and X. Tang, “Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters,” Opt. Express 26(8), 10589–10598 (2018).
[Crossref]

Y. Zhuang, G. Wang, T. Cai, and Q. Zhang, “Design of bifunctional metasurface based on independent control of transmission and reflection,” Opt. Express 26(3), 3594 (2018).
[Crossref]

J. Y. Ren, W. Jiang, K. Z. Zhang, and S. X. Gong, “A High-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property,” Antennas Wirel. Propag. Lett. 17(5), 853–856 (2018).
[Crossref]

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

H. Y. Shi, L. Y. Wang, M. R. Zhao, J. Chen, A. X. Zhang, and Z. Xu, “Transparent metasurface for generating microwave vortex beams with cross-polarization conversion,” Materials 11(12), 2448 (2018).
[Crossref]

J. J. Yang, Y. Z. Cheng, C. C. Ge, and R. Z. Gong, “Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction,” Materials 11(4), 626 (2018).
[Crossref]

J. C. Zhao, Y. Z. Cheng, and Z. Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

J. Lončar, A. Grbic, and S. Hrabar, “A reflective polarization converting metasurface at X-band frequencies,” IEEE Trans. Antennas Propag. 66(6), 3213–3218 (2018).
[Crossref]

2017 (8)

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

J. R. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref]

K. Chen, L. Cui, Y. J. Feng, J. M. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
[Crossref]

Y. B. Long, H. D. Deng, H. T. Xu, L. Shen, W. B. Guo, C. Y. Liu, W. H. Huang, W. T. Peng, L. X. Li, H. J. Lin, and C. Guo, “Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer,” Opt. Mater. Express 7(1), 100–110 (2017).
[Crossref]

S. Narayan, B. Sangeetha, T. V. Sruthi, V. Shambulingappa, and R. U. Nair, “Design of low observable antenna using active hybrid-element FSS structure for stealth applications,” AEU-Int. J. Electron Comm. 80, 137–143 (2017).
[Crossref]

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

T. Cai, S. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

2016 (7)

L. Y. Feng, J. Zhang, S. Qu, H. Ma, J. Wang, J. Wang, and Z. Xu, “High-efficiency polarization conversion based on spatial dispersion modulation of spoof surface plasmon polaritons,” Opt. Express 24(22), 24938 (2016).
[Crossref]

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

H. P. Li, G. M. Wang, J. G. Liang, and X. J. Gao, “Wideband multifunctional metasurface for polarization conversion and gain enhancement,” Prog. Electromagn. Res. 155, 115–125 (2016).
[Crossref]

J. L. Li, J. J. Jiang, Y. He, W. H. Xu, M. Chen, L. Miao, and S. W. Bie, “Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface,” Antennas Wirel. Propag. Lett. 15, 774–777 (2016).
[Crossref]

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

S. Sui, J. B. Yu, H. Ma, J. Q. Zhang, J. F. Wang, Z. Xu, and S. B. Qu, “Ultra-wideband polarization conversion metasurface based on topology optimal design and geometry tailor,” Sci. Rep. 31(7), 843–846 (2016).

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

2015 (3)

D. Veksler, E. Maguid, N. Shitrit, D. Ozeri, V. Kleiner, and E. Hasman, “Multiple wavefront shaping by metasurface based on mixed random antenna groups,” ACS Photonics 2(5), 661–667 (2015).
[Crossref]

X. Yan, L. J. Liang, J. Yang, W. W. Liu, X. Ding, D. G. Xu, Y. T. Zhang, T. J. Cui, and J. Q. Yao, “Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface,” Opt. Express 23(22), 29128–29137 (2015).
[Crossref]

M. L. Wan, J. N. He, Y. L. Song, and F. Q. Zhou, “Electromagnetically induced transparency and absorption in plasmonic metasurfaces based on near-field coupling,” Phys. Lett. A 379(30-31), 1791–1795 (2015).
[Crossref]

2014 (1)

W. B. Pan, C. Huang, P. Chen, X. L. Ma, C. G. Hu, and X. G. Luo, “A low-RCS and high-gain partially reflecting surface antenna,” IEEE Trans. Antennas Propag. 62(2), 945–949 (2014).
[Crossref]

2013 (4)

H. M. Kou, Y. Zhu, M. X. Chen, Y. P. Zeng, Y. B. Pan, and J. K. Guo, “Microwave absorbing performances of silica matrix composites reinforced by carbon nanotubes and carbon fiber,” Int. J. Appl. Ceram. Technol. 10(2), 245–250 (2013).
[Crossref]

N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidalb, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U. S. A. 110(1), 40–45 (2013).
[Crossref]

2012 (3)

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref]

L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Bianchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and Axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

2011 (1)

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

2000 (1)

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, and V. Yunkin, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Aieta, F.

N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Bianchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and Axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

Aoust, G.

N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

Aristov, V.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, and V. Yunkin, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Asadchy, V. S.

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

Bai, B. F.

L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Bianchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Bianchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and Axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

Bie, S. W.

J. L. Li, J. J. Jiang, Y. He, W. H. Xu, M. Chen, L. Miao, and S. W. Bie, “Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface,” Antennas Wirel. Propag. Lett. 15, 774–777 (2016).
[Crossref]

Blanchard, R.

N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

Brongersma, M. L.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

Cai, T.

Y. Zhuang, G. Wang, T. Cai, and Q. Zhang, “Design of bifunctional metasurface based on independent control of transmission and reflection,” Opt. Express 26(3), 3594 (2018).
[Crossref]

T. Cai, S. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Capasso, F.

N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Bianchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and Axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref]

Chen, J.

H. Y. Shi, L. Y. Wang, M. R. Zhao, J. Chen, A. X. Zhang, and Z. Xu, “Transparent metasurface for generating microwave vortex beams with cross-polarization conversion,” Materials 11(12), 2448 (2018).
[Crossref]

Chen, K.

Chen, L.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Chen, M.

J. L. Li, J. J. Jiang, Y. He, W. H. Xu, M. Chen, L. Miao, and S. W. Bie, “Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface,” Antennas Wirel. Propag. Lett. 15, 774–777 (2016).
[Crossref]

Chen, M. X.

H. M. Kou, Y. Zhu, M. X. Chen, Y. P. Zeng, Y. B. Pan, and J. K. Guo, “Microwave absorbing performances of silica matrix composites reinforced by carbon nanotubes and carbon fiber,” Int. J. Appl. Ceram. Technol. 10(2), 245–250 (2013).
[Crossref]

Chen, P.

W. B. Pan, C. Huang, P. Chen, X. L. Ma, C. G. Hu, and X. G. Luo, “A low-RCS and high-gain partially reflecting surface antenna,” IEEE Trans. Antennas Propag. 62(2), 945–949 (2014).
[Crossref]

Chen, S.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Chen, X. Z.

L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Cheng, H.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Cheng, J. R.

J. R. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref]

Cheng, Q.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Cheng, Y. Z.

J. J. Yang, Y. Z. Cheng, C. C. Ge, and R. Z. Gong, “Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction,” Materials 11(4), 626 (2018).
[Crossref]

J. C. Zhao, Y. Z. Cheng, and Z. Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Cheng, Z. Z.

J. C. Zhao, Y. Z. Cheng, and Z. Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Cui, L.

Cui, T. J.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

X. Yan, L. J. Liang, J. Yang, W. W. Liu, X. Ding, D. G. Xu, Y. T. Zhang, T. J. Cui, and J. Q. Yao, “Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface,” Opt. Express 23(22), 29128–29137 (2015).
[Crossref]

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidalb, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U. S. A. 110(1), 40–45 (2013).
[Crossref]

Deng, H. D.

Deng, L. J.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Deng, X.

K. Xu, Y. Guo, and X. Deng, “Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves,” Opt. Express 27(4), 4354–4363 (2019).
[Crossref]

Y. Guo, K Xu, and X. Deng, “Tunable enhanced sensing of ferrite film using meander-shaped spoof surface plasmon polariton waveguide,” Appl. Phys. Express 12(1), 015502 (2019).
[Crossref]

Ding, J.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Ding, X.

Du, L. L.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Elsakka, A. A.

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

Faniayeu, I. A.

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

Feng, L. Y.

Feng, M. D.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Feng, Y. J.

Gaburro, Z.

N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Bianchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and Axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

Gao, X. J.

H. P. Li, G. M. Wang, J. G. Liang, and X. J. Gao, “Wideband multifunctional metasurface for polarization conversion and gain enhancement,” Prog. Electromagn. Res. 155, 115–125 (2016).
[Crossref]

Garcia-Vidalb, F. J.

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidalb, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U. S. A. 110(1), 40–45 (2013).
[Crossref]

Ge, C. C.

J. J. Yang, Y. Z. Cheng, C. C. Ge, and R. Z. Gong, “Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction,” Materials 11(4), 626 (2018).
[Crossref]

Genevet, P.

N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Bianchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and Axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref]

Gong, R. Z.

J. J. Yang, Y. Z. Cheng, C. C. Ge, and R. Z. Gong, “Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction,” Materials 11(4), 626 (2018).
[Crossref]

Gong, S. X.

J. Y. Ren, W. Jiang, K. Z. Zhang, and S. X. Gong, “A High-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property,” Antennas Wirel. Propag. Lett. 17(5), 853–856 (2018).
[Crossref]

Grbic, A.

J. Lončar, A. Grbic, and S. Hrabar, “A reflective polarization converting metasurface at X-band frequencies,” IEEE Trans. Antennas Propag. 66(6), 3213–3218 (2018).
[Crossref]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

Grigoriev, M.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, and V. Yunkin, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Guo, C.

Guo, J. K.

H. M. Kou, Y. Zhu, M. X. Chen, Y. P. Zeng, Y. B. Pan, and J. K. Guo, “Microwave absorbing performances of silica matrix composites reinforced by carbon nanotubes and carbon fiber,” Int. J. Appl. Ceram. Technol. 10(2), 245–250 (2013).
[Crossref]

Guo, J. P.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Guo, W. B.

Guo, Y.

K. Xu, Y. Guo, and X. Deng, “Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves,” Opt. Express 27(4), 4354–4363 (2019).
[Crossref]

Y. Guo, K Xu, and X. Deng, “Tunable enhanced sensing of ferrite film using meander-shaped spoof surface plasmon polariton waveguide,” Appl. Phys. Express 12(1), 015502 (2019).
[Crossref]

Guo, Y. J.

Han, J. G.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Hasman, E.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

D. Veksler, E. Maguid, N. Shitrit, D. Ozeri, V. Kleiner, and E. Hasman, “Multiple wavefront shaping by metasurface based on mixed random antenna groups,” ACS Photonics 2(5), 661–667 (2015).
[Crossref]

He, J. N.

M. L. Wan, J. N. He, Y. L. Song, and F. Q. Zhou, “Electromagnetically induced transparency and absorption in plasmonic metasurfaces based on near-field coupling,” Phys. Lett. A 379(30-31), 1791–1795 (2015).
[Crossref]

He, Q.

T. Cai, S. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

He, Y.

J. L. Li, J. J. Jiang, Y. He, W. H. Xu, M. Chen, L. Miao, and S. W. Bie, “Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface,” Antennas Wirel. Propag. Lett. 15, 774–777 (2016).
[Crossref]

Hrabar, S.

J. Lončar, A. Grbic, and S. Hrabar, “A reflective polarization converting metasurface at X-band frequencies,” IEEE Trans. Antennas Propag. 66(6), 3213–3218 (2018).
[Crossref]

Hu, C. G.

W. B. Pan, C. Huang, P. Chen, X. L. Ma, C. G. Hu, and X. G. Luo, “A low-RCS and high-gain partially reflecting surface antenna,” IEEE Trans. Antennas Propag. 62(2), 945–949 (2014).
[Crossref]

Huang, C.

W. B. Pan, C. Huang, P. Chen, X. L. Ma, C. G. Hu, and X. G. Luo, “A low-RCS and high-gain partially reflecting surface antenna,” IEEE Trans. Antennas Propag. 62(2), 945–949 (2014).
[Crossref]

Huang, L. L.

L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Huang, W. H.

Inampudi, S.

J. R. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref]

Ji, W.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Jiang, J. J.

J. L. Li, J. J. Jiang, Y. He, W. H. Xu, M. Chen, L. Miao, and S. W. Bie, “Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface,” Antennas Wirel. Propag. Lett. 15, 774–777 (2016).
[Crossref]

Jiang, M. H.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Jiang, T.

Jiang, W.

J. Y. Ren, W. Jiang, K. Z. Zhang, and S. X. Gong, “A High-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property,” Antennas Wirel. Propag. Lett. 17(5), 853–856 (2018).
[Crossref]

Jin, G. F.

L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Kats, M. A.

N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Bianchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and Axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

Kleiner, V.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

D. Veksler, E. Maguid, N. Shitrit, D. Ozeri, V. Kleiner, and E. Hasman, “Multiple wavefront shaping by metasurface based on mixed random antenna groups,” ACS Photonics 2(5), 661–667 (2015).
[Crossref]

Kou, H. M.

H. M. Kou, Y. Zhu, M. X. Chen, Y. P. Zeng, Y. B. Pan, and J. K. Guo, “Microwave absorbing performances of silica matrix composites reinforced by carbon nanotubes and carbon fiber,” Int. J. Appl. Ceram. Technol. 10(2), 245–250 (2013).
[Crossref]

Kuznetsov, S.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, and V. Yunkin, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Li, G. X.

L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Li, H. P.

H. P. Li, G. M. Wang, J. G. Liang, and X. J. Gao, “Wideband multifunctional metasurface for polarization conversion and gain enhancement,” Prog. Electromagn. Res. 155, 115–125 (2016).
[Crossref]

Li, J.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Li, J. F.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Li, J. L.

J. L. Li, J. J. Jiang, Y. He, W. H. Xu, M. Chen, L. Miao, and S. W. Bie, “Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface,” Antennas Wirel. Propag. Lett. 15, 774–777 (2016).
[Crossref]

Li, L. L.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Li, L. X.

Li, Y. B.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Li, Z.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Liang, J. G.

H. P. Li, G. M. Wang, J. G. Liang, and X. J. Gao, “Wideband multifunctional metasurface for polarization conversion and gain enhancement,” Prog. Electromagn. Res. 155, 115–125 (2016).
[Crossref]

Liang, L. J.

Liang, Y. Y.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Lin, H. J.

Lin, J.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref]

Liu, C. Y.

Liu, H. Z.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Liu, S.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Liu, W. W.

Liu, Z.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Loncar, J.

J. Lončar, A. Grbic, and S. Hrabar, “A reflective polarization converting metasurface at X-band frequencies,” IEEE Trans. Antennas Propag. 66(6), 3213–3218 (2018).
[Crossref]

Long, Y. B.

Luan, K.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Luo, X. G.

W. B. Pan, C. Huang, P. Chen, X. L. Ma, C. G. Hu, and X. G. Luo, “A low-RCS and high-gain partially reflecting surface antenna,” IEEE Trans. Antennas Propag. 62(2), 945–949 (2014).
[Crossref]

Ma, H.

S. Sui, J. B. Yu, H. Ma, J. Q. Zhang, J. F. Wang, Z. Xu, and S. B. Qu, “Ultra-wideband polarization conversion metasurface based on topology optimal design and geometry tailor,” Sci. Rep. 31(7), 843–846 (2016).

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

L. Y. Feng, J. Zhang, S. Qu, H. Ma, J. Wang, J. Wang, and Z. Xu, “High-efficiency polarization conversion based on spatial dispersion modulation of spoof surface plasmon polaritons,” Opt. Express 24(22), 24938 (2016).
[Crossref]

Ma, X. L.

W. B. Pan, C. Huang, P. Chen, X. L. Ma, C. G. Hu, and X. G. Luo, “A low-RCS and high-gain partially reflecting surface antenna,” IEEE Trans. Antennas Propag. 62(2), 945–949 (2014).
[Crossref]

Maguid, E.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

D. Veksler, E. Maguid, N. Shitrit, D. Ozeri, V. Kleiner, and E. Hasman, “Multiple wavefront shaping by metasurface based on mixed random antenna groups,” ACS Photonics 2(5), 661–667 (2015).
[Crossref]

Martin-Cano, D.

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidalb, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U. S. A. 110(1), 40–45 (2013).
[Crossref]

Meng, H. Y.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Miao, L.

J. L. Li, J. J. Jiang, Y. He, W. H. Xu, M. Chen, L. Miao, and S. W. Bie, “Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface,” Antennas Wirel. Propag. Lett. 15, 774–777 (2016).
[Crossref]

Mosallaei, H.

J. R. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref]

Muhlenbernd, H.

L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Nair, R. U.

S. Narayan, B. Sangeetha, T. V. Sruthi, V. Shambulingappa, and R. U. Nair, “Design of low observable antenna using active hybrid-element FSS structure for stealth applications,” AEU-Int. J. Electron Comm. 80, 137–143 (2017).
[Crossref]

Narayan, S.

S. Narayan, B. Sangeetha, T. V. Sruthi, V. Shambulingappa, and R. U. Nair, “Design of low observable antenna using active hybrid-element FSS structure for stealth applications,” AEU-Int. J. Electron Comm. 80, 137–143 (2017).
[Crossref]

Noor, A.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Ozeri, D.

D. Veksler, E. Maguid, N. Shitrit, D. Ozeri, V. Kleiner, and E. Hasman, “Multiple wavefront shaping by metasurface based on mixed random antenna groups,” ACS Photonics 2(5), 661–667 (2015).
[Crossref]

Pan, W. B.

W. B. Pan, C. Huang, P. Chen, X. L. Ma, C. G. Hu, and X. G. Luo, “A low-RCS and high-gain partially reflecting surface antenna,” IEEE Trans. Antennas Propag. 62(2), 945–949 (2014).
[Crossref]

Pan, Y. B.

H. M. Kou, Y. Zhu, M. X. Chen, Y. P. Zeng, Y. B. Pan, and J. K. Guo, “Microwave absorbing performances of silica matrix composites reinforced by carbon nanotubes and carbon fiber,” Int. J. Appl. Ceram. Technol. 10(2), 245–250 (2013).
[Crossref]

Pang, Y. Q.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Peng, W. T.

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

Qiu, C. W.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Qu, S.

Qu, S. B.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

S. Sui, J. B. Yu, H. Ma, J. Q. Zhang, J. F. Wang, Z. Xu, and S. B. Qu, “Ultra-wideband polarization conversion metasurface based on topology optimal design and geometry tailor,” Sci. Rep. 31(7), 843–846 (2016).

Ren, J. Y.

J. Y. Ren, W. Jiang, K. Z. Zhang, and S. X. Gong, “A High-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property,” Antennas Wirel. Propag. Lett. 17(5), 853–856 (2018).
[Crossref]

Sangeetha, B.

S. Narayan, B. Sangeetha, T. V. Sruthi, V. Shambulingappa, and R. U. Nair, “Design of low observable antenna using active hybrid-element FSS structure for stealth applications,” AEU-Int. J. Electron Comm. 80, 137–143 (2017).
[Crossref]

Shabelnikov, L.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, and V. Yunkin, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Shambulingappa, V.

S. Narayan, B. Sangeetha, T. V. Sruthi, V. Shambulingappa, and R. U. Nair, “Design of low observable antenna using active hybrid-element FSS structure for stealth applications,” AEU-Int. J. Electron Comm. 80, 137–143 (2017).
[Crossref]

Shen, L.

Shen, X. P.

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidalb, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U. S. A. 110(1), 40–45 (2013).
[Crossref]

Shi, H. Y.

H. Y. Shi, L. Y. Wang, M. R. Zhao, J. Chen, A. X. Zhang, and Z. Xu, “Transparent metasurface for generating microwave vortex beams with cross-polarization conversion,” Materials 11(12), 2448 (2018).
[Crossref]

Shitrit, N.

D. Veksler, E. Maguid, N. Shitrit, D. Ozeri, V. Kleiner, and E. Hasman, “Multiple wavefront shaping by metasurface based on mixed random antenna groups,” ACS Photonics 2(5), 661–667 (2015).
[Crossref]

Song, Y. L.

M. L. Wan, J. N. He, Y. L. Song, and F. Q. Zhou, “Electromagnetically induced transparency and absorption in plasmonic metasurfaces based on near-field coupling,” Phys. Lett. A 379(30-31), 1791–1795 (2015).
[Crossref]

Sruthi, T. V.

S. Narayan, B. Sangeetha, T. V. Sruthi, V. Shambulingappa, and R. U. Nair, “Design of low observable antenna using active hybrid-element FSS structure for stealth applications,” AEU-Int. J. Electron Comm. 80, 137–143 (2017).
[Crossref]

Sui, S.

S. Sui, J. B. Yu, H. Ma, J. Q. Zhang, J. F. Wang, Z. Xu, and S. B. Qu, “Ultra-wideband polarization conversion metasurface based on topology optimal design and geometry tailor,” Sci. Rep. 31(7), 843–846 (2016).

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Sun, S.

T. Cai, S. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Tan, Q. F.

L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Tang, S.

T. Cai, S. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Tang, W. X.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Tang, X.

Tcvetkova, S. N.

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

Tetienne, J. P.

N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

Tian, J.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Tian, Z.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Tretyakov, S. A.

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

Veksler, D.

D. Veksler, E. Maguid, N. Shitrit, D. Ozeri, V. Kleiner, and E. Hasman, “Multiple wavefront shaping by metasurface based on mixed random antenna groups,” ACS Photonics 2(5), 661–667 (2015).
[Crossref]

Wan, M. L.

M. L. Wan, J. N. He, Y. L. Song, and F. Q. Zhou, “Electromagnetically induced transparency and absorption in plasmonic metasurfaces based on near-field coupling,” Phys. Lett. A 379(30-31), 1791–1795 (2015).
[Crossref]

Wan, X.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Wang, F. Q.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Wang, G.

Wang, G. M.

T. Cai, S. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

H. P. Li, G. M. Wang, J. G. Liang, and X. J. Gao, “Wideband multifunctional metasurface for polarization conversion and gain enhancement,” Prog. Electromagn. Res. 155, 115–125 (2016).
[Crossref]

Wang, J.

Wang, J. F.

S. Sui, J. B. Yu, H. Ma, J. Q. Zhang, J. F. Wang, Z. Xu, and S. B. Qu, “Ultra-wideband polarization conversion metasurface based on topology optimal design and geometry tailor,” Sci. Rep. 31(7), 843–846 (2016).

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Wang, L. Y.

H. Y. Shi, L. Y. Wang, M. R. Zhao, J. Chen, A. X. Zhang, and Z. Xu, “Transparent metasurface for generating microwave vortex beams with cross-polarization conversion,” Materials 11(12), 2448 (2018).
[Crossref]

Wang, T. Q.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Wei, X.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Wei, Z. C.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Xia, S.

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Xu, D. G.

Xu, H. T.

Xu, H. X.

T. Cai, S. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Xu, K

Y. Guo, K Xu, and X. Deng, “Tunable enhanced sensing of ferrite film using meander-shaped spoof surface plasmon polariton waveguide,” Appl. Phys. Express 12(1), 015502 (2019).
[Crossref]

Xu, K.

Xu, Q.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Xu, W. H.

J. L. Li, J. J. Jiang, Y. He, W. H. Xu, M. Chen, L. Miao, and S. W. Bie, “Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface,” Antennas Wirel. Propag. Lett. 15, 774–777 (2016).
[Crossref]

Xu, Y. Q.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Xu, Z.

H. Y. Shi, L. Y. Wang, M. R. Zhao, J. Chen, A. X. Zhang, and Z. Xu, “Transparent metasurface for generating microwave vortex beams with cross-polarization conversion,” Materials 11(12), 2448 (2018).
[Crossref]

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

S. Sui, J. B. Yu, H. Ma, J. Q. Zhang, J. F. Wang, Z. Xu, and S. B. Qu, “Ultra-wideband polarization conversion metasurface based on topology optimal design and geometry tailor,” Sci. Rep. 31(7), 843–846 (2016).

L. Y. Feng, J. Zhang, S. Qu, H. Ma, J. Wang, J. Wang, and Z. Xu, “High-efficiency polarization conversion based on spatial dispersion modulation of spoof surface plasmon polaritons,” Opt. Express 24(22), 24938 (2016).
[Crossref]

Yan, X.

Yang, J.

Yang, J. J.

J. J. Yang, Y. Z. Cheng, C. C. Ge, and R. Z. Gong, “Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction,” Materials 11(4), 626 (2018).
[Crossref]

Yannai, M.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

Yao, J. Q.

Yu, J. B.

S. Sui, J. B. Yu, H. Ma, J. Q. Zhang, J. F. Wang, Z. Xu, and S. B. Qu, “Ultra-wideband polarization conversion metasurface based on topology optimal design and geometry tailor,” Sci. Rep. 31(7), 843–846 (2016).

Yu, N. F.

N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Bianchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and Axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

Yu, P.

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

Yulevich, I.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

Yunkin, V.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, and V. Yunkin, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Zeng, Y. P.

H. M. Kou, Y. Zhu, M. X. Chen, Y. P. Zeng, Y. B. Pan, and J. K. Guo, “Microwave absorbing performances of silica matrix composites reinforced by carbon nanotubes and carbon fiber,” Int. J. Appl. Ceram. Technol. 10(2), 245–250 (2013).
[Crossref]

Zentgraf, T.

L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Zhang, A. X.

H. Y. Shi, L. Y. Wang, M. R. Zhao, J. Chen, A. X. Zhang, and Z. Xu, “Transparent metasurface for generating microwave vortex beams with cross-polarization conversion,” Materials 11(12), 2448 (2018).
[Crossref]

Zhang, H. B.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Zhang, J.

Zhang, J. Q.

S. Sui, J. B. Yu, H. Ma, J. Q. Zhang, J. F. Wang, Z. Xu, and S. B. Qu, “Ultra-wideband polarization conversion metasurface based on topology optimal design and geometry tailor,” Sci. Rep. 31(7), 843–846 (2016).

Zhang, K. Z.

J. Y. Ren, W. Jiang, K. Z. Zhang, and S. X. Gong, “A High-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property,” Antennas Wirel. Propag. Lett. 17(5), 853–856 (2018).
[Crossref]

Zhang, L.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Zhang, Q.

Zhang, S.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Zhang, W. L.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Zhang, Y. T.

Zhao, J. C.

J. C. Zhao, Y. Z. Cheng, and Z. Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Zhao, J. M.

Zhao, M. R.

H. Y. Shi, L. Y. Wang, M. R. Zhao, J. Chen, A. X. Zhang, and Z. Xu, “Transparent metasurface for generating microwave vortex beams with cross-polarization conversion,” Materials 11(12), 2448 (2018).
[Crossref]

Zhou, F. Q.

M. L. Wan, J. N. He, Y. L. Song, and F. Q. Zhou, “Electromagnetically induced transparency and absorption in plasmonic metasurfaces based on near-field coupling,” Phys. Lett. A 379(30-31), 1791–1795 (2015).
[Crossref]

Zhou, L.

T. Cai, S. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Zhou, P. H.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Zhou, X. Y.

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Zhu, B.

Zhu, Y.

H. M. Kou, Y. Zhu, M. X. Chen, Y. P. Zeng, Y. B. Pan, and J. K. Guo, “Microwave absorbing performances of silica matrix composites reinforced by carbon nanotubes and carbon fiber,” Int. J. Appl. Ceram. Technol. 10(2), 245–250 (2013).
[Crossref]

Zhuang, Y.

ACS Photonics (2)

D. Veksler, E. Maguid, N. Shitrit, D. Ozeri, V. Kleiner, and E. Hasman, “Multiple wavefront shaping by metasurface based on mixed random antenna groups,” ACS Photonics 2(5), 661–667 (2015).
[Crossref]

S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, “Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces,” ACS Photonics 3(10), 1968–1977 (2016).
[Crossref]

Adv. Opt. Mater. (1)

T. Cai, S. Tang, G. M. Wang, H. X. Xu, S. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

AEU-Int. J. Electron Comm. (1)

S. Narayan, B. Sangeetha, T. V. Sruthi, V. Shambulingappa, and R. U. Nair, “Design of low observable antenna using active hybrid-element FSS structure for stealth applications,” AEU-Int. J. Electron Comm. 80, 137–143 (2017).
[Crossref]

Antennas Wirel. Propag. Lett. (2)

J. Y. Ren, W. Jiang, K. Z. Zhang, and S. X. Gong, “A High-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property,” Antennas Wirel. Propag. Lett. 17(5), 853–856 (2018).
[Crossref]

J. L. Li, J. J. Jiang, Y. He, W. H. Xu, M. Chen, L. Miao, and S. W. Bie, “Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface,” Antennas Wirel. Propag. Lett. 15, 774–777 (2016).
[Crossref]

Appl. Phys. Express (1)

Y. Guo, K Xu, and X. Deng, “Tunable enhanced sensing of ferrite film using meander-shaped spoof surface plasmon polariton waveguide,” Appl. Phys. Express 12(1), 015502 (2019).
[Crossref]

Appl. Phys. Lett. (4)

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

H. Cheng, X. Wei, P. Yu, Z. Li, Z. Liu, J. Li, S. Chen, and J. Tian, “Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces,” Appl. Phys. Lett. 110(17), 171903 (2017).
[Crossref]

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, and V. Yunkin, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

S. Sui, H. Ma, J. F. Wang, M. D. Feng, Y. Q. Pang, S. Xia, Z. Xu, and S. B. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

N. F. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J. P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4700423 (2013).
[Crossref]

IEEE Photonics J. (1)

J. C. Zhao, Y. Z. Cheng, and Z. Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

IEEE Trans. Antennas Propag. (3)

J. Lončar, A. Grbic, and S. Hrabar, “A reflective polarization converting metasurface at X-band frequencies,” IEEE Trans. Antennas Propag. 66(6), 3213–3218 (2018).
[Crossref]

W. B. Pan, C. Huang, P. Chen, X. L. Ma, C. G. Hu, and X. G. Luo, “A low-RCS and high-gain partially reflecting surface antenna,” IEEE Trans. Antennas Propag. 62(2), 945–949 (2014).
[Crossref]

A. A. Elsakka, V. S. Asadchy, I. A. Faniayeu, S. N. Tcvetkova, and S. A. Tretyakov, “Multifunctional cascaded metamaterials: integrated transmitarrays,” IEEE Trans. Antennas Propag. 64(10), 4266–4276 (2016).
[Crossref]

Int. J. Appl. Ceram. Technol. (1)

H. M. Kou, Y. Zhu, M. X. Chen, Y. P. Zeng, Y. B. Pan, and J. K. Guo, “Microwave absorbing performances of silica matrix composites reinforced by carbon nanotubes and carbon fiber,” Int. J. Appl. Ceram. Technol. 10(2), 245–250 (2013).
[Crossref]

J. Appl. Phys. (1)

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Light: Sci. Appl. (1)

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light: Sci. Appl. 6(8), e17027 (2017).
[Crossref]

Materials (2)

H. Y. Shi, L. Y. Wang, M. R. Zhao, J. Chen, A. X. Zhang, and Z. Xu, “Transparent metasurface for generating microwave vortex beams with cross-polarization conversion,” Materials 11(12), 2448 (2018).
[Crossref]

J. J. Yang, Y. Z. Cheng, C. C. Ge, and R. Z. Gong, “Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction,” Materials 11(4), 626 (2018).
[Crossref]

Nano Lett. (2)

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Bianchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and Axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

L. L. Huang, X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Nanomaterials (1)

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288 (2018).
[Crossref]

Nat. Commun. (2)

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref]

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Opt. Express (6)

Opt. Mater. Express (1)

Phys. Lett. A (1)

M. L. Wan, J. N. He, Y. L. Song, and F. Q. Zhou, “Electromagnetically induced transparency and absorption in plasmonic metasurfaces based on near-field coupling,” Phys. Lett. A 379(30-31), 1791–1795 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

X. P. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidalb, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U. S. A. 110(1), 40–45 (2013).
[Crossref]

Prog. Electromagn. Res. (1)

H. P. Li, G. M. Wang, J. G. Liang, and X. J. Gao, “Wideband multifunctional metasurface for polarization conversion and gain enhancement,” Prog. Electromagn. Res. 155, 115–125 (2016).
[Crossref]

Sci. Rep. (2)

J. R. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref]

S. Sui, J. B. Yu, H. Ma, J. Q. Zhang, J. F. Wang, Z. Xu, and S. B. Qu, “Ultra-wideband polarization conversion metasurface based on topology optimal design and geometry tailor,” Sci. Rep. 31(7), 843–846 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Topology of the unit cells for exciting the SSPPs. The geometric parameters are: l = 7.5 mm, a = 0.15 mm, b = 0.2 mm. (b) Dispersion relation of the SSPPs.
Fig. 2.
Fig. 2. (a) Topology of unit 1 (left) and unit 2 (right). (b) The S parameters of unit 1 and unit 2. (c) The transmission phase difference of two units.
Fig. 3.
Fig. 3. (a) The electric fields distributions of two units at several frequencies. (b) The surface currents distributions of two units at several frequencies.
Fig. 4.
Fig. 4. (a) Configuration of the metasurface. The geometric dimensions are: W = 423 mm, H = 23 mm. (b) Simulated S-parameters of the metasurface. (c) Simulated far-fields at 3 GHz to 15 GHz.
Fig. 5.
Fig. 5. The power pattern of the metasurface with the total power of 1 W.
Fig. 6.
Fig. 6. (a) Prototype of the metasurface. (b) Far-field measurement environment of the metasurface. (c) S-parameter measurement environment.
Fig. 7.
Fig. 7. Measured results. (a) Simulated and measured far field of the metasurface at 10.2 GHz. (b) Measured S-parameters of the metasurface.

Metrics