Abstract

In this paper, we report a high power single frequency 1030 nm fiber laser with near-diffraction-limited beam quality based on a polarization-maintaining tapered Yb-doped fiber (T-YDF). The T-YDF has advantages of effectively suppressing stimulated Brillouin scattering (SBS) while maintaining good beam quality. As a result, a record output power of 379 W single frequency, linearly polarized, nearly single-mode fiber amplifier operating at 1030 nm is demonstrated. The polarization extinction ratio is as high as 16.3 dB, and the M2 is measured to be 1.12. Further, the dependence of the thermal-induced mode instability (TMI) threshold on the polarization state of an input signal laser is investigated for the first time. By changing the polarization state of the injected seed laser, the output power can increase to 550 W while the beam quality can be maintained well (M2=1.47). The slope efficiency of the whole amplifier is about 80%. No sign of SBS appears even at the highest output power and the further brightness scaling of both situations is limited by the TMI effect. To the best of our knowledge, this result is the highest output power of all-fiberized single frequency fiber amplifiers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm

Clément Dixneuf, Germain Guiraud, Yves-Vincent Bardin, Quentin Rosa, Mathieu Goeppner, Adèle Hilico, Christophe Pierre, Johan Boullet, Nicholas Traynor, and Giorgio Santarelli
Opt. Express 28(8) 10960-10969 (2020)

170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier

Lei Zhang, Shuzhen Cui, Chi Liu, Jun Zhou, and Yan Feng
Opt. Express 21(5) 5456-5462 (2013)

Single-frequency 332  W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality

Pengfei Ma, Pu Zhou, Yanxing Ma, Rongtao Su, Xiaojun Xu, and Zejin Liu
Appl. Opt. 52(20) 4854-4857 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Steinke, H. Tunnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
    [Crossref]
  2. F. Yang, Q. Ye, Z. Pan, D. Chen, H. Cai, R. Qu, Z. Yang, and Q. Zhang, “100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application,” Opt. Commun. 285(2), 149–152 (2012).
    [Crossref]
  3. S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17(16), 13711–13726 (2009).
    [Crossref]
  4. Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
    [Crossref]
  5. S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers,” J. Opt. Soc. Am. B 34(3), A49–A61 (2017).
    [Crossref]
  6. X. L. Wang, P. Zhou, H. Xiao, Y. X. Ma, X. J. Xu, and Z. J. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
    [Crossref]
  7. P. Ma, P. Zhou, Y. Ma, R. Su, X. Xu, and Z. Liu, “Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality,” Appl. Opt. 52(20), 4854–4857 (2013).
    [Crossref]
  8. L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, “170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier,” Opt. Express 21(5), 5456–5462 (2013).
    [Crossref]
  9. L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1–4 (2017).
    [Crossref]
  10. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
    [Crossref]
  11. B. Pulford, T. Ehrenreich, R. Holten, F. Kong, T. W. Hawkins, L. Dong, and I. Dajani, “400-W near diffraction-limited single-frequency all-solid photonic bandgap fiber amplifier,” Opt. Lett. 40(10), 2297–2300 (2015).
    [Crossref]
  12. C. Robin, I. Dajani, and F. Chiragh, “Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output,” Proc. SPIE 7914, 79140B (2011).
    [Crossref]
  13. C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
    [Crossref]
  14. C. Zeringue, C. Vergien, and I. Dajani, “Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition,” Opt. Lett. 36(5), 618–620 (2011).
    [Crossref]
  15. T. Theeg, C. Ottenhues, H. Sayinc, J. Neumann, and D. Kracht, “Core-pumped single-frequency fiber amplifier with an output power of 158 W,” Opt. Lett. 41(1), 9–12 (2016).
    [Crossref]
  16. T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
    [Crossref]
  17. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
    [Crossref]
  18. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref]
  19. A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21(13), 15168–15182 (2013).
    [Crossref]
  20. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–92 (2015).
    [Crossref]
  21. H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
    [Crossref]
  22. Y. S. Chen, H. Z. Xu, Y. B. Xing, L. Liao, Y. B. Wang, F. F. Zhang, X. L. He, H. Q. Li, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Impact of gamma-ray radiation-induced photodarkening on mode instability degradation of an ytterbium-doped fiber amplifier,” Opt. Express 26(16), 20430–20441 (2018).
    [Crossref]
  23. K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
    [Crossref]
  24. R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
    [Crossref]
  25. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
    [Crossref]
  26. Z. Sanjabi Eznaveh, G. López-Galmiche, E. Antonio-López, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
    [Crossref]
  27. S. Naderi, I. Dajani, J. Grosek, T. Madden, and T. Dinh, “Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers,” Proc. SPIE 8964, 89641W (2014).
    [Crossref]
  28. H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Wavelength dependence of maximal diffraction-limited output power of fiber lasers,” Proc. SPIE 9344, 93441Y (2015).
    [Crossref]
  29. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
    [Crossref]
  30. M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” Proc. SPIE 10083, 100830M (2017).
    [Crossref]
  31. J. J. Smith and A. V. Smith, “Influence of signal bandwidth on mode instability thresholds of fiber amplifiers,” Proc. SPIE 9344, 93440L (2015).
    [Crossref]
  32. F. Wellmann, M. Steinke, F. Meylahn, N. Bode, B. Willke, L. Overmeyer, J. Neumann, and D. Kracht, “High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors,” Opt. Express 27(20), 28523–28533 (2019).
    [Crossref]
  33. C. Dixneuf, G. Guiraud, Y. Bardin, Q. Rosa, M. Goeppner, A. Hilico, C. Pierre, J. Boullet, N. Traynor, and G. Santarelli, “Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm,” Opt. Express 28(8), 10960–10969 (2020).
    [Crossref]
  34. A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
    [Crossref]
  35. M. D. Mermelstein, K. Brar, M. J. Andrejco, A. D. Yablon, M. Fishteyn, C. Headley, and D. J. DiGiovanni, “All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier,” Proc. SPIE 6873, 68730L (2008).
    [Crossref]
  36. S. Hochheim, M. Steinke, P. Wessels, O. de Varona, J. Koponen, T. Lowder, S. Novotny, J. Neumann, and D. Kracht, “Single-frequency chirally coupled-core all-fiber amplifier with 100 W in a linearly polarized TEM00 mode,” Opt. Lett. 45(4), 939–942 (2020).
    [Crossref]
  37. G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
    [Crossref]
  38. V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008).
    [Crossref]
  39. V. Filippov, J. Kerttula, Y. Chamorovskii, K. Golant, and O. G. Okhotnikov, “Highly efficient 750 W tapered double-clad ytterbium fiber laser,” Opt. Express 18(12), 12499–12512 (2010).
    [Crossref]
  40. C. Pierre, G. Guiraud, C. Vincont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America), CJ_9_3 (2017).
  41. L. Huang, Z. Zhou, C. Shi, R. Tao, P. Ma, X. Wang, and P. Zhou, “Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser,” Sci. China: Technol. Sci. 61(7), 971–981 (2018).
    [Crossref]
  42. K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
    [Crossref]
  43. J. Kerttula, V. Filippov, V. Ustimchik, Y. Chamorovskiy, and O. G. Okhotnikov, “Mode evolution in long tapered fibers with high tapering ratio,” Opt. Express 20(23), 25461–25470 (2012).
    [Crossref]
  44. C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, “Theoretical study of mode evolution in active long tapered multimode fiber,” Opt. Express 24(17), 19473–19490 (2016).
    [Crossref]
  45. B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308–311 (2018).
    [Crossref]
  46. B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
    [Crossref]
  47. Q. Han, Y. Yao, X. Tang, Y. Chen, W. Yan, T. Liu, and H. Song, “Highly efficient Er–Yb co-doped double-clad fiber amplifier with an Yb-band resonant cavity,” Laser Phys. Lett. 14(2), 025105 (2017).
    [Crossref]
  48. C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
    [Crossref]
  49. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
    [Crossref]
  50. N. A. Naderi, I. Dajani, and A. Flores, “High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth,” Opt. Lett. 41(5), 1018–1021 (2016).
    [Crossref]
  51. Q. Chu, P. Zhao, H. Lin, Y. Liu, C. Li, B. Wang, C. Guo, X. Tang, C. Tang, and F. Jing, “kW-level 1030 nm polarization-maintained fiber laser with narrow linewidth and near-diffraction-limited beam quality,” Appl. Opt. 57(12), 2992–2996 (2018).
    [Crossref]
  52. H. Deng, D. Chen, Q. Zhao, C. Yang, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, and S. Xu, “An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system,” J. Opt. 19(6), 065502 (2017).
    [Crossref]
  53. H. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
    [Crossref]
  54. K. Brar, M. S. Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
    [Crossref]

2020 (2)

2019 (2)

F. Wellmann, M. Steinke, F. Meylahn, N. Bode, B. Willke, L. Overmeyer, J. Neumann, and D. Kracht, “High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors,” Opt. Express 27(20), 28523–28533 (2019).
[Crossref]

B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
[Crossref]

2018 (5)

2017 (8)

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers,” J. Opt. Soc. Am. B 34(3), A49–A61 (2017).
[Crossref]

L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1–4 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” Proc. SPIE 10083, 100830M (2017).
[Crossref]

H. Deng, D. Chen, Q. Zhao, C. Yang, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, and S. Xu, “An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system,” J. Opt. 19(6), 065502 (2017).
[Crossref]

Q. Han, Y. Yao, X. Tang, Y. Chen, W. Yan, T. Liu, and H. Song, “Highly efficient Er–Yb co-doped double-clad fiber amplifier with an Yb-band resonant cavity,” Laser Phys. Lett. 14(2), 025105 (2017).
[Crossref]

2016 (3)

2015 (8)

B. Pulford, T. Ehrenreich, R. Holten, F. Kong, T. W. Hawkins, L. Dong, and I. Dajani, “400-W near diffraction-limited single-frequency all-solid photonic bandgap fiber amplifier,” Opt. Lett. 40(10), 2297–2300 (2015).
[Crossref]

J. J. Smith and A. V. Smith, “Influence of signal bandwidth on mode instability thresholds of fiber amplifiers,” Proc. SPIE 9344, 93440L (2015).
[Crossref]

H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Wavelength dependence of maximal diffraction-limited output power of fiber lasers,” Proc. SPIE 9344, 93441Y (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

Z. Sanjabi Eznaveh, G. López-Galmiche, E. Antonio-López, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–92 (2015).
[Crossref]

H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

2014 (6)

K. Brar, M. S. Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

S. Naderi, I. Dajani, J. Grosek, T. Madden, and T. Dinh, “Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers,” Proc. SPIE 8964, 89641W (2014).
[Crossref]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref]

C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
[Crossref]

2013 (4)

2012 (5)

X. L. Wang, P. Zhou, H. Xiao, Y. X. Ma, X. J. Xu, and Z. J. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

F. Yang, Q. Ye, Z. Pan, D. Chen, H. Cai, R. Qu, Z. Yang, and Q. Zhang, “100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application,” Opt. Commun. 285(2), 149–152 (2012).
[Crossref]

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

J. Kerttula, V. Filippov, V. Ustimchik, Y. Chamorovskiy, and O. G. Okhotnikov, “Mode evolution in long tapered fibers with high tapering ratio,” Opt. Express 20(23), 25461–25470 (2012).
[Crossref]

H. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (1)

2008 (2)

M. D. Mermelstein, K. Brar, M. J. Andrejco, A. D. Yablon, M. Fishteyn, C. Headley, and D. J. DiGiovanni, “All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier,” Proc. SPIE 6873, 68730L (2008).
[Crossref]

V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008).
[Crossref]

2007 (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

2005 (1)

1995 (1)

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[Crossref]

Afzal, R.

K. Brar, M. S. Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Alegria, C.

Alvarez-Chavez, J. A.

Amezcua Correa, R.

Z. Sanjabi Eznaveh, G. López-Galmiche, E. Antonio-López, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
[Crossref]

Andrejco, M. J.

M. D. Mermelstein, K. Brar, M. J. Andrejco, A. D. Yablon, M. Fishteyn, C. Headley, and D. J. DiGiovanni, “All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier,” Proc. SPIE 6873, 68730L (2008).
[Crossref]

Antonio-López, E.

Z. Sanjabi Eznaveh, G. López-Galmiche, E. Antonio-López, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
[Crossref]

Babazadeh, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Bardin, Y.

Bode, N.

Booker, P.

M. Steinke, H. Tunnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Boullet, J.

C. Dixneuf, G. Guiraud, Y. Bardin, Q. Rosa, M. Goeppner, A. Hilico, C. Pierre, J. Boullet, N. Traynor, and G. Santarelli, “Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm,” Opt. Express 28(8), 10960–10969 (2020).
[Crossref]

C. Pierre, G. Guiraud, C. Vincont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America), CJ_9_3 (2017).

Brar, K.

K. Brar, M. S. Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

M. D. Mermelstein, K. Brar, M. J. Andrejco, A. D. Yablon, M. Fishteyn, C. Headley, and D. J. DiGiovanni, “All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier,” Proc. SPIE 6873, 68730L (2008).
[Crossref]

Cai, H.

F. Yang, Q. Ye, Z. Pan, D. Chen, H. Cai, R. Qu, Z. Yang, and Q. Zhang, “100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application,” Opt. Commun. 285(2), 149–152 (2012).
[Crossref]

Chamorovskii, Y.

Chamorovskiy, Y.

Chamorovskiy, Y. K.

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Chen, D.

H. Deng, D. Chen, Q. Zhao, C. Yang, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, and S. Xu, “An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system,” J. Opt. 19(6), 065502 (2017).
[Crossref]

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

F. Yang, Q. Ye, Z. Pan, D. Chen, H. Cai, R. Qu, Z. Yang, and Q. Zhang, “100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application,” Opt. Commun. 285(2), 149–152 (2012).
[Crossref]

Chen, Y.

Q. Han, Y. Yao, X. Tang, Y. Chen, W. Yan, T. Liu, and H. Song, “Highly efficient Er–Yb co-doped double-clad fiber amplifier with an Yb-band resonant cavity,” Laser Phys. Lett. 14(2), 025105 (2017).
[Crossref]

Chen, Y. S.

Chiragh, F.

C. Robin, I. Dajani, and F. Chiragh, “Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output,” Proc. SPIE 7914, 79140B (2011).
[Crossref]

Chryssou, C. E.

Chu, Q.

Codemard, C. A.

Courtney, S.

K. Brar, M. S. Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Cui, S.

Dai, N. L.

Dajani, I.

de Varona, O.

S. Hochheim, M. Steinke, P. Wessels, O. de Varona, J. Koponen, T. Lowder, S. Novotny, J. Neumann, and D. Kracht, “Single-frequency chirally coupled-core all-fiber amplifier with 100 W in a linearly polarized TEM00 mode,” Opt. Lett. 45(4), 939–942 (2020).
[Crossref]

M. Steinke, H. Tunnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Deng, H.

H. Deng, D. Chen, Q. Zhao, C. Yang, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, and S. Xu, “An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system,” J. Opt. 19(6), 065502 (2017).
[Crossref]

DiGiovanni, D. J.

M. D. Mermelstein, K. Brar, M. J. Andrejco, A. D. Yablon, M. Fishteyn, C. Headley, and D. J. DiGiovanni, “All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier,” Proc. SPIE 6873, 68730L (2008).
[Crossref]

Dilley, C.

K. Brar, M. S. Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Dinh, T.

S. Naderi, I. Dajani, J. Grosek, T. Madden, and T. Dinh, “Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers,” Proc. SPIE 8964, 89641W (2014).
[Crossref]

Dixneuf, C.

Dong, L.

Dunn, C.

Dupriez, P.

Ebrahim-Zadeh, M.

Ehrenreich, T.

Eidam, T.

Feng, Y.

Feng, Z.

H. Deng, D. Chen, Q. Zhao, C. Yang, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, and S. Xu, “An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system,” J. Opt. 19(6), 065502 (2017).
[Crossref]

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Filatova, S. A.

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Filippov, V.

Fishteyn, M.

M. D. Mermelstein, K. Brar, M. J. Andrejco, A. D. Yablon, M. Fishteyn, C. Headley, and D. J. DiGiovanni, “All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier,” Proc. SPIE 6873, 68730L (2008).
[Crossref]

Flores, A.

Fu, S.

Goeppner, M.

Golant, K.

Gouhier, B.

B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
[Crossref]

B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308–311 (2018).
[Crossref]

Grosek, J.

S. Naderi, I. Dajani, J. Grosek, T. Madden, and T. Dinh, “Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers,” Proc. SPIE 8964, 89641W (2014).
[Crossref]

Gu, G.

Guiraud, G.

C. Dixneuf, G. Guiraud, Y. Bardin, Q. Rosa, M. Goeppner, A. Hilico, C. Pierre, J. Boullet, N. Traynor, and G. Santarelli, “Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm,” Opt. Express 28(8), 10960–10969 (2020).
[Crossref]

B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
[Crossref]

B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308–311 (2018).
[Crossref]

C. Pierre, G. Guiraud, C. Vincont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America), CJ_9_3 (2017).

Guo, C.

Hamedani Golshan, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Han, Q.

Q. Han, Y. Yao, X. Tang, Y. Chen, W. Yan, T. Liu, and H. Song, “Highly efficient Er–Yb co-doped double-clad fiber amplifier with an Yb-band resonant cavity,” Laser Phys. Lett. 14(2), 025105 (2017).
[Crossref]

Hawkins, T.

Hawkins, T. W.

He, X. L.

Headley, C.

M. D. Mermelstein, K. Brar, M. J. Andrejco, A. D. Yablon, M. Fishteyn, C. Headley, and D. J. DiGiovanni, “All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier,” Proc. SPIE 6873, 68730L (2008).
[Crossref]

Heidariazar, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Hejaz, K.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Henrie, J.

K. Brar, M. S. Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[Crossref]

Hilico, A.

Hochheim, S.

Holten, R.

Honea, E.

K. Brar, M. S. Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[Crossref]

Huang, L.

L. Huang, Z. Zhou, C. Shi, R. Tao, P. Ma, X. Wang, and P. Zhou, “Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser,” Sci. China: Technol. Sci. 61(7), 971–981 (2018).
[Crossref]

L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1–4 (2017).
[Crossref]

Jahn, P.

M. Steinke, H. Tunnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Jansen, F.

Jauregui, C.

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[Crossref]

Jiang, Z.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Jing, F.

Jones, M.

Kalichevsky-Dong, M. T.

Karow, M.

M. Steinke, H. Tunnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Kerttula, J.

Kertulla, J.

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Kong, F.

Koponen, J.

Kracht, D.

Kuhn, V.

M. Steinke, H. Tunnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Kumar, S. C.

Kurkov, A. S.

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Lafouti, M.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Leng, J.

Leuchs, M. S.

K. Brar, M. S. Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Li, C.

Q. Chu, P. Zhao, H. Lin, Y. Liu, C. Li, B. Wang, C. Guo, X. Tang, C. Tang, and F. Jing, “kW-level 1030 nm polarization-maintained fiber laser with narrow linewidth and near-diffraction-limited beam quality,” Appl. Opt. 57(12), 2992–2996 (2018).
[Crossref]

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Li, H. Q.

Li, J. Y.

Li, L.

Li, R.

Liao, L.

Limpert, J.

Lin, H.

Lin, W.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Liu, C.

Liu, T.

Q. Han, Y. Yao, X. Tang, Y. Chen, W. Yan, T. Liu, and H. Song, “Highly efficient Er–Yb co-doped double-clad fiber amplifier with an Yb-band resonant cavity,” Laser Phys. Lett. 14(2), 025105 (2017).
[Crossref]

Liu, Y.

Liu, Z.

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–92 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

P. Ma, P. Zhou, Y. Ma, R. Su, X. Xu, and Z. Liu, “Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality,” Appl. Opt. 52(20), 4854–4857 (2013).
[Crossref]

Liu, Z. J.

X. L. Wang, P. Zhou, H. Xiao, Y. X. Ma, X. J. Xu, and Z. J. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

López-Galmiche, G.

Z. Sanjabi Eznaveh, G. López-Galmiche, E. Antonio-López, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
[Crossref]

Lowder, T.

Lu, Q.

Ma, P.

L. Huang, Z. Zhou, C. Shi, R. Tao, P. Ma, X. Wang, and P. Zhou, “Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser,” Sci. China: Technol. Sci. 61(7), 971–981 (2018).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1–4 (2017).
[Crossref]

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–92 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

P. Ma, P. Zhou, Y. Ma, R. Su, X. Xu, and Z. Liu, “Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality,” Appl. Opt. 52(20), 4854–4857 (2013).
[Crossref]

Ma, Y.

Ma, Y. X.

X. L. Wang, P. Zhou, H. Xiao, Y. X. Ma, X. J. Xu, and Z. J. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

Madden, T.

S. Naderi, I. Dajani, J. Grosek, T. Madden, and T. Dinh, “Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers,” Proc. SPIE 8964, 89641W (2014).
[Crossref]

Mermelstein, M. D.

M. D. Mermelstein, K. Brar, M. J. Andrejco, A. D. Yablon, M. Fishteyn, C. Headley, and D. J. DiGiovanni, “All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier,” Proc. SPIE 6873, 68730L (2008).
[Crossref]

Meylahn, F.

Mo, S.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Modsching, N.

H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Wavelength dependence of maximal diffraction-limited output power of fiber lasers,” Proc. SPIE 9344, 93441Y (2015).
[Crossref]

H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref]

Naderi, N. A.

Naderi, S.

S. Naderi, I. Dajani, J. Grosek, T. Madden, and T. Dinh, “Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers,” Proc. SPIE 8964, 89641W (2014).
[Crossref]

Neumann, J.

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[Crossref]

Norouzey, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Norwood, R. A.

Novotny, S.

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[Crossref]

Okhotnikov, O. G.

Ottenhues, C.

Otto, H.

Overmeyer, L.

Pan, Z.

F. Yang, Q. Ye, Z. Pan, D. Chen, H. Cai, R. Qu, Z. Yang, and Q. Zhang, “100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application,” Opt. Commun. 285(2), 149–152 (2012).
[Crossref]

Parsons, J.

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[Crossref]

Peng, J. G.

Pessa, M.

Peyghambarian, N.

Pierre, C.

C. Dixneuf, G. Guiraud, Y. Bardin, Q. Rosa, M. Goeppner, A. Hilico, C. Pierre, J. Boullet, N. Traynor, and G. Santarelli, “Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm,” Opt. Express 28(8), 10960–10969 (2020).
[Crossref]

C. Pierre, G. Guiraud, C. Vincont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America), CJ_9_3 (2017).

Poozesh, R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Pulford, B.

Qu, R.

F. Yang, Q. Ye, Z. Pan, D. Chen, H. Cai, R. Qu, Z. Yang, and Q. Zhang, “100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application,” Opt. Commun. 285(2), 149–152 (2012).
[Crossref]

Rezaei Nasirabad, R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Robin, C.

C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
[Crossref]

C. Robin, I. Dajani, and F. Chiragh, “Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output,” Proc. SPIE 7914, 79140B (2011).
[Crossref]

Roohforouz, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Rosa, Q.

Rota-Rodrigo, S.

B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
[Crossref]

B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308–311 (2018).
[Crossref]

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[Crossref]

Saitoh, K.

Samanta, G. K.

Sanjabi Eznaveh, Z.

Z. Sanjabi Eznaveh, G. López-Galmiche, E. Antonio-López, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
[Crossref]

Santarelli, G.

C. Dixneuf, G. Guiraud, Y. Bardin, Q. Rosa, M. Goeppner, A. Hilico, C. Pierre, J. Boullet, N. Traynor, and G. Santarelli, “Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm,” Opt. Express 28(8), 10960–10969 (2020).
[Crossref]

B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
[Crossref]

B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308–311 (2018).
[Crossref]

C. Pierre, G. Guiraud, C. Vincont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America), CJ_9_3 (2017).

Sayinc, H.

T. Theeg, C. Ottenhues, H. Sayinc, J. Neumann, and D. Kracht, “Core-pumped single-frequency fiber amplifier with an output power of 158 W,” Opt. Lett. 41(1), 9–12 (2016).
[Crossref]

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

Schmidt, O.

Schreiber, T.

Shi, C.

L. Huang, Z. Zhou, C. Shi, R. Tao, P. Ma, X. Wang, and P. Zhou, “Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser,” Sci. China: Technol. Sci. 61(7), 971–981 (2018).
[Crossref]

C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, “Theoretical study of mode evolution in active long tapered multimode fiber,” Opt. Express 24(17), 19473–19490 (2016).
[Crossref]

Shi, W.

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[Crossref]

Smith, A. V.

J. J. Smith and A. V. Smith, “Influence of signal bandwidth on mode instability thresholds of fiber amplifiers,” Proc. SPIE 9344, 93440L (2015).
[Crossref]

A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21(13), 15168–15182 (2013).
[Crossref]

Smith, J. J.

J. J. Smith and A. V. Smith, “Influence of signal bandwidth on mode instability thresholds of fiber amplifiers,” Proc. SPIE 9344, 93440L (2015).
[Crossref]

A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21(13), 15168–15182 (2013).
[Crossref]

Soh, D. B. S.

Song, H.

Q. Han, Y. Yao, X. Tang, Y. Chen, W. Yan, T. Liu, and H. Song, “Highly efficient Er–Yb co-doped double-clad fiber amplifier with an Yb-band resonant cavity,” Laser Phys. Lett. 14(2), 025105 (2017).
[Crossref]

Steinke, M.

Stutzki, F.

Su, R.

Tabatabaei Jafari, N.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Tang, C.

Tang, X.

Q. Chu, P. Zhao, H. Lin, Y. Liu, C. Li, B. Wang, C. Guo, X. Tang, C. Tang, and F. Jing, “kW-level 1030 nm polarization-maintained fiber laser with narrow linewidth and near-diffraction-limited beam quality,” Appl. Opt. 57(12), 2992–2996 (2018).
[Crossref]

Q. Han, Y. Yao, X. Tang, Y. Chen, W. Yan, T. Liu, and H. Song, “Highly efficient Er–Yb co-doped double-clad fiber amplifier with an Yb-band resonant cavity,” Laser Phys. Lett. 14(2), 025105 (2017).
[Crossref]

Tao, R.

L. Huang, Z. Zhou, C. Shi, R. Tao, P. Ma, X. Wang, and P. Zhou, “Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser,” Sci. China: Technol. Sci. 61(7), 971–981 (2018).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–92 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[Crossref]

Theeg, T.

M. Steinke, H. Tunnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

T. Theeg, C. Ottenhues, H. Sayinc, J. Neumann, and D. Kracht, “Core-pumped single-frequency fiber amplifier with an output power of 158 W,” Opt. Lett. 41(1), 9–12 (2016).
[Crossref]

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

Traynor, N.

C. Dixneuf, G. Guiraud, Y. Bardin, Q. Rosa, M. Goeppner, A. Hilico, C. Pierre, J. Boullet, N. Traynor, and G. Santarelli, “Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm,” Opt. Express 28(8), 10960–10969 (2020).
[Crossref]

B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
[Crossref]

B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308–311 (2018).
[Crossref]

C. Pierre, G. Guiraud, C. Vincont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America), CJ_9_3 (2017).

Trikshev, A. I.

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Tsvetkov, V. B.

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Tunnermann, H.

M. Steinke, H. Tunnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Tünnermann, A.

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[Crossref]

Ustimchik, V.

Vergien, C.

Vincont, C.

C. Pierre, G. Guiraud, C. Vincont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America), CJ_9_3 (2017).

Wang, B.

Wang, X.

L. Huang, Z. Zhou, C. Shi, R. Tao, P. Ma, X. Wang, and P. Zhou, “Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser,” Sci. China: Technol. Sci. 61(7), 971–981 (2018).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1–4 (2017).
[Crossref]

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, “Theoretical study of mode evolution in active long tapered multimode fiber,” Opt. Express 24(17), 19473–19490 (2016).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–92 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

Wang, X. L.

X. L. Wang, P. Zhou, H. Xiao, Y. X. Ma, X. J. Xu, and Z. J. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

Wang, Y. B.

Wanzcyk, L.

Wellmann, F.

Wesels, P.

M. Steinke, H. Tunnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Wessels, P.

Willke, B.

Wirth, C.

Wu, H.

Xiao, H.

X. L. Wang, P. Zhou, H. Xiao, Y. X. Ma, X. J. Xu, and Z. J. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

Xing, Y. B.

Xu, H. Z.

Xu, S.

S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers,” J. Opt. Soc. Am. B 34(3), A49–A61 (2017).
[Crossref]

H. Deng, D. Chen, Q. Zhao, C. Yang, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, and S. Xu, “An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system,” J. Opt. 19(6), 065502 (2017).
[Crossref]

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Xu, X.

Xu, X. J.

X. L. Wang, P. Zhou, H. Xiao, Y. X. Ma, X. J. Xu, and Z. J. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

Yablon, A. D.

M. D. Mermelstein, K. Brar, M. J. Andrejco, A. D. Yablon, M. Fishteyn, C. Headley, and D. J. DiGiovanni, “All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier,” Proc. SPIE 6873, 68730L (2008).
[Crossref]

Yan, W.

Q. Han, Y. Yao, X. Tang, Y. Chen, W. Yan, T. Liu, and H. Song, “Highly efficient Er–Yb co-doped double-clad fiber amplifier with an Yb-band resonant cavity,” Laser Phys. Lett. 14(2), 025105 (2017).
[Crossref]

Yang, C.

H. Deng, D. Chen, Q. Zhao, C. Yang, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, and S. Xu, “An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system,” J. Opt. 19(6), 065502 (2017).
[Crossref]

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Yang, F.

F. Yang, Q. Ye, Z. Pan, D. Chen, H. Cai, R. Qu, Z. Yang, and Q. Zhang, “100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application,” Opt. Commun. 285(2), 149–152 (2012).
[Crossref]

Yang, L. Y.

Yang, Q.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Yang, Z.

H. Deng, D. Chen, Q. Zhao, C. Yang, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, and S. Xu, “An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system,” J. Opt. 19(6), 065502 (2017).
[Crossref]

S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers,” J. Opt. Soc. Am. B 34(3), A49–A61 (2017).
[Crossref]

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

F. Yang, Q. Ye, Z. Pan, D. Chen, H. Cai, R. Qu, Z. Yang, and Q. Zhang, “100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application,” Opt. Commun. 285(2), 149–152 (2012).
[Crossref]

Yao, Y.

Q. Han, Y. Yao, X. Tang, Y. Chen, W. Yan, T. Liu, and H. Song, “Highly efficient Er–Yb co-doped double-clad fiber amplifier with an Yb-band resonant cavity,” Laser Phys. Lett. 14(2), 025105 (2017).
[Crossref]

Ye, Q.

F. Yang, Q. Ye, Z. Pan, D. Chen, H. Cai, R. Qu, Z. Yang, and Q. Zhang, “100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application,” Opt. Commun. 285(2), 149–152 (2012).
[Crossref]

Zeringue, C.

Zervas, M. N.

M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” Proc. SPIE 10083, 100830M (2017).
[Crossref]

Zhang, F. F.

Zhang, L.

Zhang, Q.

F. Yang, Q. Ye, Z. Pan, D. Chen, H. Cai, R. Qu, Z. Yang, and Q. Zhang, “100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application,” Opt. Commun. 285(2), 149–152 (2012).
[Crossref]

Zhang, Y.

H. Deng, D. Chen, Q. Zhao, C. Yang, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, and S. Xu, “An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system,” J. Opt. 19(6), 065502 (2017).
[Crossref]

H. Deng, D. Chen, Q. Zhao, C. Yang, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, and S. Xu, “An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system,” J. Opt. 19(6), 065502 (2017).
[Crossref]

Zhao, J.

Zhao, P.

Zhao, Q.

H. Deng, D. Chen, Q. Zhao, C. Yang, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, and S. Xu, “An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system,” J. Opt. 19(6), 065502 (2017).
[Crossref]

Zhou, J.

Zhou, P.

L. Huang, Z. Zhou, C. Shi, R. Tao, P. Ma, X. Wang, and P. Zhou, “Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser,” Sci. China: Technol. Sci. 61(7), 971–981 (2018).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1–4 (2017).
[Crossref]

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited],” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, “Theoretical study of mode evolution in active long tapered multimode fiber,” Opt. Express 24(17), 19473–19490 (2016).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–92 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

P. Ma, P. Zhou, Y. Ma, R. Su, X. Xu, and Z. Liu, “Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality,” Appl. Opt. 52(20), 4854–4857 (2013).
[Crossref]

X. L. Wang, P. Zhou, H. Xiao, Y. X. Ma, X. J. Xu, and Z. J. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

Zhou, Z.

L. Huang, Z. Zhou, C. Shi, R. Tao, P. Ma, X. Wang, and P. Zhou, “Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser,” Sci. China: Technol. Sci. 61(7), 971–981 (2018).
[Crossref]

Zhu, X.

Appl. Opt. (2)

Appl. Phys. Express (1)

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Electron. Lett. (1)

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[Crossref]

M. Steinke, H. Tunnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

J. Opt. (2)

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

H. Deng, D. Chen, Q. Zhao, C. Yang, Y. Zhang, Y. Zhang, Z. Feng, Z. Yang, and S. Xu, “An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system,” J. Opt. 19(6), 065502 (2017).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Laser Phys. Lett. (6)

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14(2), 025002 (2017).
[Crossref]

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

X. L. Wang, P. Zhou, H. Xiao, Y. X. Ma, X. J. Xu, and Z. J. Liu, “310 W single-frequency all-fiber laser in master oscillator power amplification configuration,” Laser Phys. Lett. 9(8), 591–595 (2012).
[Crossref]

B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
[Crossref]

Q. Han, Y. Yao, X. Tang, Y. Chen, W. Yan, T. Liu, and H. Song, “Highly efficient Er–Yb co-doped double-clad fiber amplifier with an Yb-band resonant cavity,” Laser Phys. Lett. 14(2), 025105 (2017).
[Crossref]

Opt. Commun. (1)

F. Yang, Q. Ye, Z. Pan, D. Chen, H. Cai, R. Qu, Z. Yang, and Q. Zhang, “100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application,” Opt. Commun. 285(2), 149–152 (2012).
[Crossref]

Opt. Express (14)

S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17(16), 13711–13726 (2009).
[Crossref]

L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, “170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier,” Opt. Express 21(5), 5456–5462 (2013).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref]

A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21(13), 15168–15182 (2013).
[Crossref]

H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref]

Y. S. Chen, H. Z. Xu, Y. B. Xing, L. Liao, Y. B. Wang, F. F. Zhang, X. L. He, H. Q. Li, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Impact of gamma-ray radiation-induced photodarkening on mode instability degradation of an ytterbium-doped fiber amplifier,” Opt. Express 26(16), 20430–20441 (2018).
[Crossref]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref]

V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008).
[Crossref]

V. Filippov, J. Kerttula, Y. Chamorovskii, K. Golant, and O. G. Okhotnikov, “Highly efficient 750 W tapered double-clad ytterbium fiber laser,” Opt. Express 18(12), 12499–12512 (2010).
[Crossref]

F. Wellmann, M. Steinke, F. Meylahn, N. Bode, B. Willke, L. Overmeyer, J. Neumann, and D. Kracht, “High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors,” Opt. Express 27(20), 28523–28533 (2019).
[Crossref]

C. Dixneuf, G. Guiraud, Y. Bardin, Q. Rosa, M. Goeppner, A. Hilico, C. Pierre, J. Boullet, N. Traynor, and G. Santarelli, “Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm,” Opt. Express 28(8), 10960–10969 (2020).
[Crossref]

J. Kerttula, V. Filippov, V. Ustimchik, Y. Chamorovskiy, and O. G. Okhotnikov, “Mode evolution in long tapered fibers with high tapering ratio,” Opt. Express 20(23), 25461–25470 (2012).
[Crossref]

C. Shi, X. Wang, P. Zhou, X. Xu, and Q. Lu, “Theoretical study of mode evolution in active long tapered multimode fiber,” Opt. Express 24(17), 19473–19490 (2016).
[Crossref]

H. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref]

Opt. Lett. (9)

B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308–311 (2018).
[Crossref]

N. A. Naderi, I. Dajani, and A. Flores, “High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth,” Opt. Lett. 41(5), 1018–1021 (2016).
[Crossref]

S. Hochheim, M. Steinke, P. Wessels, O. de Varona, J. Koponen, T. Lowder, S. Novotny, J. Neumann, and D. Kracht, “Single-frequency chirally coupled-core all-fiber amplifier with 100 W in a linearly polarized TEM00 mode,” Opt. Lett. 45(4), 939–942 (2020).
[Crossref]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005).
[Crossref]

C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
[Crossref]

C. Zeringue, C. Vergien, and I. Dajani, “Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition,” Opt. Lett. 36(5), 618–620 (2011).
[Crossref]

T. Theeg, C. Ottenhues, H. Sayinc, J. Neumann, and D. Kracht, “Core-pumped single-frequency fiber amplifier with an output power of 158 W,” Opt. Lett. 41(1), 9–12 (2016).
[Crossref]

L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1–4 (2017).
[Crossref]

B. Pulford, T. Ehrenreich, R. Holten, F. Kong, T. W. Hawkins, L. Dong, and I. Dajani, “400-W near diffraction-limited single-frequency all-solid photonic bandgap fiber amplifier,” Opt. Lett. 40(10), 2297–2300 (2015).
[Crossref]

Photonics Res. (1)

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–92 (2015).
[Crossref]

Proc. SPIE (8)

C. Robin, I. Dajani, and F. Chiragh, “Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output,” Proc. SPIE 7914, 79140B (2011).
[Crossref]

M. D. Mermelstein, K. Brar, M. J. Andrejco, A. D. Yablon, M. Fishteyn, C. Headley, and D. J. DiGiovanni, “All-fiber 194 W single-frequency single-mode Yb-doped master-oscillator power-amplifier,” Proc. SPIE 6873, 68730L (2008).
[Crossref]

M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” Proc. SPIE 10083, 100830M (2017).
[Crossref]

J. J. Smith and A. V. Smith, “Influence of signal bandwidth on mode instability thresholds of fiber amplifiers,” Proc. SPIE 9344, 93440L (2015).
[Crossref]

Z. Sanjabi Eznaveh, G. López-Galmiche, E. Antonio-López, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” Proc. SPIE 9344, 93442G (2015).
[Crossref]

S. Naderi, I. Dajani, J. Grosek, T. Madden, and T. Dinh, “Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers,” Proc. SPIE 8964, 89641W (2014).
[Crossref]

H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Wavelength dependence of maximal diffraction-limited output power of fiber lasers,” Proc. SPIE 9344, 93441Y (2015).
[Crossref]

K. Brar, M. S. Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961, 89611R (2014).
[Crossref]

Sci. China: Technol. Sci. (1)

L. Huang, Z. Zhou, C. Shi, R. Tao, P. Ma, X. Wang, and P. Zhou, “Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser,” Sci. China: Technol. Sci. 61(7), 971–981 (2018).
[Crossref]

Other (1)

C. Pierre, G. Guiraud, C. Vincont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America), CJ_9_3 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Experiment setup. (P-A: pre-amplifier, BPF: band pass filter, LD: laser diode, PM: polarization maintained, YDF: Yb-doped fiber).
Fig. 2.
Fig. 2. The core radius along with the fiber length.
Fig. 3.
Fig. 3. Output power versus pump power.
Fig. 4.
Fig. 4. (a) The normalized temporal intensities at 353 W, (b) the corresponding Fourier transform spectra at 353 W, (c) the normalized temporal intensities at 379 W, (d) the corresponding Fourier transform spectra at 379 W.
Fig. 5.
Fig. 5. (a) The beam quality (M2) versus output power (insets: the beam profiles at 379 W, 405 W and 427 W), (b) the polarization extinction ratio (PER) versus output power.
Fig. 6.
Fig. 6. The dependence of the TMI threshold on the splicing angle offset of a fiber.
Fig. 7.
Fig. 7. The output power and backward power versus pump power.
Fig. 8.
Fig. 8. (a) The normalized temporal intensities at 536 W, (b) the corresponding Fourier transform spectra at 536 W, (c) the normalized temporal intensities at 550 W, (d) the corresponding Fourier transform spectra at 550 W.
Fig. 9.
Fig. 9. The beam quality at the power of 550 W.
Fig. 10.
Fig. 10. The optical spectrum of a laser beam at the power of 550 W (inset: the scanning spectrum by the FPI).

Tables (1)

Tables Icon

Table 1. Typical progress on single frequency fiber laser (Non: nonlinearly polarized state, NA: not available, ATF: Acoustically tailored fiber, T-YDF: tapered Yb-doped fiber, LMA: large mode area).

Metrics