Abstract

The monolayer graphene-noble metallic nanostructure hybrid system with excellent optical characteristic, which is deserved pay attentions in the study of surface-enhanced Raman scattering spectroscopy. In this work, a hybrid sandwich structure is designed to transfer single-layer graphene to the surface of discs substrate covered by silver film and assembly of the dense Au nanoparticles (AuNPs). Blu-ray disc has a cycle density of approximately 5.7 times that of DVD-R due to the different storage capacities of these optical discs. In the research, enhancement effects have been explored for two different periodic grating structures. Compared to spectra of Si/G structure, Graphene Raman spectra from Blu-grating/AuNPs/G structure and Blu-grating/G/AuNPs enhancement multiples at the 2D peak position possesses different Raman responses of 1.09 and 2.51 times, respectively. The sandwich hybrid structure of Ag grating/graphene/AuNPs obtains a Raman enhancement factor (EF) of 6.2×108 for Rhodamine 6G and surface-enhanced Raman Scattering(SERS) detection limit of 0.1 nM. These findings can be attributed to the electric field enhancement of the hybrid structure and the chemical enhancement of graphene. This study provides a new approach for SERS detection and offers a new technique for designing SERS sensors with grapheme-plasmon hybrid structures.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  2. J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(4), 472–490 (2015).
    [Crossref]
  3. J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, and M. Sun, “Plasmon-enhanced upconversion photoluminescence: mechanism and application,”,” Rev. Phys. 4, 100026 (2019).
    [Crossref]
  4. L. Tong, H. Xu, and M. Käll, “Nanogaps for SERS applications,” MRS Bull. 39(2), 163–168 (2014).
    [Crossref]
  5. S Restaino and I White, “A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample,” Anal. Chim. Acta 1060, 17–29 (2018).
    [Crossref]
  6. L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman. Spectrosc. 45(7), 533–540 (2014).
    [Crossref]
  7. J. Xu, C. H. Li, H. P. Si, X. F. Zhao, L. Wang, S. Z. Jiang, D. M. Wei, J. Yu, X. W. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
    [Crossref]
  8. Y. Gao, N. Yang, T. You, C. Zhang, and P. Yin, “Superhydrophobic “wash free” 3D nanoneedle array for rapid, recyclable and sensitive SERS sensing in real environment,” Sens. Actuators, B 267, 129–135 (2018).
    [Crossref]
  9. T. Köker, N. Tang, C. Tian, W. Zhang, X. Wang, R. Martel, and F. Pinaud, “Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds,” Nat. Commun. 9(1), 607 (2018).
    [Crossref]
  10. Y. Huang, D. Lin, M. Li, D. Yin, S. Wang, and J. Wang, “Ag@ Au Core–Shell Porous Nanocages with Outstanding SERS Activity for Highly Sensitive SERS Immunoassay,” Sensors 19(7), 1554 (2019).
    [Crossref]
  11. W. Li, X. Zhan, X. Song, S. Si, R. Chen, J. Liu, and X. Xiao, “A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting,” Small 15(31), 1901820 (2019).
    [Crossref]
  12. J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, and M. Sun, “Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application,” Nanoscale. Res. Lett. 14(1), 118 (2019).
    [Crossref]
  13. V. Flauraud, M. Mastrangeli, G. Bernasconi, J. Butet, D. Alexnder, E. Shahrabi, and J. Brugger, “Nanoscale topographical control of capillary assembly of nanoparticles,” Nat. Nanotechnol. 12(1), 73–80 (2017).
    [Crossref]
  14. J. Guo, Y. Zhang, L. Shi, Y. Zhu, M. Mideksa, K. Hou, and J. Lv, “Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis,” J. Am. Chem. Soc. 139(49), 17964–17972 (2017).
    [Crossref]
  15. K Novoselov, A Geim, S Morozov, D Jiang, Y Zhang, S Dubonos, and A Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref]
  16. L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
    [Crossref]
  17. J. Wang, X. Mu, L. Wang, and M. Sun, “Properties and Applications of New Superlattice: Twisted Bilayer Graphene,” Mater. Today Phys. 9, 100099 (2019).
    [Crossref]
  18. J. Wang, F. Ma, and M. Sun, “Graphene, hexagonal boron nitride, and their heterostructures: properties and applications,” RSC Adv. 7(27), 16801–16822 (2017).
    [Crossref]
  19. J. Oostinga, H. Heersche, X. Liu, A. Morpurgo, and L. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nat. Mater. 7(2), 151–157 (2008).
    [Crossref]
  20. X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
    [Crossref]
  21. W. Lin, E. Cao, L. Zhang, X. Xu, Y. Song, W. Liang, and M. Sun, “Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid,” Nanoscale 10(12), 5482–5488 (2018).
    [Crossref]
  22. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref]
  23. Y. Wang, H. Chen, M. Sun, Z. Yao, B. Quan, Z. Liu, and J. Li, “Ultrafast carrier transfer evidencing graphene electromagnetically enhanced ultrasensitive SERS in graphene/Ag-nanoparticles hybrid,” Carbon 122, 98–105 (2017).
    [Crossref]
  24. Y. Jiang, J. Wang, L. Malfatti, D. Carboni, N. Senes, and P. Innocenzi, “Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection,” Appl. Surf. Sci. 450, 451–460 (2018).
    [Crossref]
  25. X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, and M. Sun, “Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor,” Appl. Mater. Today 14, 166–174 (2019).
    [Crossref]
  26. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
    [Crossref]
  27. W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
    [Crossref]
  28. W. Lin, Y. Shi, X. Yang, J. Li, E. Cao, X. Xu, T. Pullerits, W. Liang, and M. Sun, “Physical mechanism on exciton-plasmon coupling revealed by fem to second pump-probe transient absorption spectroscopy,” Mater. Today Phys. 3, 33–40 (2017).
    [Crossref]
  29. A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
    [Crossref]
  30. A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Photonic and Nanostruct 7(4), 170–175 (2009).
    [Crossref]
  31. Y. Jiang, H. Wang, H. Wang, B. Gao, Y. Hao, Y. Jin, Q. Chen, and H. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
    [Crossref]
  32. A Karabchevsky, M Auslender, and I Abdulhalim, “Dual surface plasmon excitation with thin metallic nanoslits,” J. Nanophotonics 5, 051821 (2011).
    [Crossref]
  33. O Krasnykov, A Karabchevsky, A Shalabney, M Auslender, and I Abdulhalim, “Sensor with increased sensitivity based on enhanced optical transmission in the infrared,” Opt. Commun. 284(5), 1435–1438 (2011).
    [Crossref]
  34. J. Li, X. Tian, S. Li, J. Anema, Z. Yang, Y. Ding, and Z. Wang, “Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nat. Protoc. 8(1), 52–65 (2013).
    [Crossref]
  35. D. Liu, C. Li, F. Zhou, T. Zhang, G. Liu, W. Cai, and Y. Li, “Capillary Gradient-Induced Self-Assembly of Periodic Au Spherical Nanoparticle Arrays on an Ultralarge Scale via a Bisolvent System at Air/Water Interface,” Adv. Mater. Interfaces 4(10), 1600976 (2017).
    [Crossref]
  36. D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
    [Crossref]
  37. W. Lin, Y. Cao, P. Wang, and M. Sun, “Unified treatment for plasmon-exciton co-driven reduction and oxidation reactions,” Langmuir 33(43), 12102–12107 (2017).
    [Crossref]
  38. X. Wang, E. Cao, H. Zong, and M. Sun, “Plasmonic electrons enhanced resonance Raman scattering (EERRS) and electrons enhanced fluorescence (EEF) spectra,” Appl. Mater. Today 13, 298–302 (2018).
    [Crossref]
  39. H. Zong, X. Wang, X. Mu, J. Wang, and M. Sun, “Plasmon-Enhanced Fluorescence Resonance Energy Transfer,” Chem. Rec. 19(5), 818–842 (2019).
    [Crossref]
  40. C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators, B 263, 408–416 (2018).
    [Crossref]
  41. X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
    [Crossref]
  42. P. Wang, M. Xia, O. Liang, K. Sun, A. Cipriano, T. Schreder, and Y. Xie, “Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure,” Anal. Chem. 87(20), 10255–10261 (2015).
    [Crossref]
  43. E. Cao, X. Guo, L. Zhang, Y. Shi, W. Lin, X. Liu, and W. Liang, “Electrooptical Synergy on Plasmon-Exciton-Codriven Surface Reduction Reactions,” Adv. Mater. Interfaces 4(24), 1700869 (2017).
    [Crossref]
  44. J Dong, X Zhao, E Cao, Q Han, L Liu, W Zhang, and M Sun, “Flexible and Transparent AuNP/G/AuNP “Sandwich” Substrate for Surface-enhanced Raman Scattering,” Mater. Today Nano100067 (2019).
  45. E Cao, M Sun, Y Song, and W Liang, “Exciton-plasmon hybrids for surface catalysis detected by SERS,” Nanotechnology 29(37), 372001 (2018).
    [Crossref]
  46. A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
    [Crossref]
  47. X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
    [Crossref]
  48. C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
    [Crossref]
  49. Z. Dai, X. Xiao, W. Wu, Y. Zhang, L. Liao, S. Guo, and C. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light: Sci. Appl. 4(10), e342 (2015).
    [Crossref]
  50. S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuators, B 222, 1175–1183 (2016).
    [Crossref]
  51. H. Sun, H. Liu, and Y. Wu, “A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice,” Appl. Surf. Sci. 416, 704–709 (2017).
    [Crossref]

2020 (1)

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

2019 (8)

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, and M. Sun, “Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

H. Zong, X. Wang, X. Mu, J. Wang, and M. Sun, “Plasmon-Enhanced Fluorescence Resonance Energy Transfer,” Chem. Rec. 19(5), 818–842 (2019).
[Crossref]

J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, and M. Sun, “Plasmon-enhanced upconversion photoluminescence: mechanism and application,”,” Rev. Phys. 4, 100026 (2019).
[Crossref]

Y. Huang, D. Lin, M. Li, D. Yin, S. Wang, and J. Wang, “Ag@ Au Core–Shell Porous Nanocages with Outstanding SERS Activity for Highly Sensitive SERS Immunoassay,” Sensors 19(7), 1554 (2019).
[Crossref]

W. Li, X. Zhan, X. Song, S. Si, R. Chen, J. Liu, and X. Xiao, “A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting,” Small 15(31), 1901820 (2019).
[Crossref]

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, and M. Sun, “Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application,” Nanoscale. Res. Lett. 14(1), 118 (2019).
[Crossref]

J. Wang, X. Mu, L. Wang, and M. Sun, “Properties and Applications of New Superlattice: Twisted Bilayer Graphene,” Mater. Today Phys. 9, 100099 (2019).
[Crossref]

X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
[Crossref]

2018 (12)

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

E Cao, M Sun, Y Song, and W Liang, “Exciton-plasmon hybrids for surface catalysis detected by SERS,” Nanotechnology 29(37), 372001 (2018).
[Crossref]

X. Wang, E. Cao, H. Zong, and M. Sun, “Plasmonic electrons enhanced resonance Raman scattering (EERRS) and electrons enhanced fluorescence (EEF) spectra,” Appl. Mater. Today 13, 298–302 (2018).
[Crossref]

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

W. Lin, E. Cao, L. Zhang, X. Xu, Y. Song, W. Liang, and M. Sun, “Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid,” Nanoscale 10(12), 5482–5488 (2018).
[Crossref]

S Restaino and I White, “A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample,” Anal. Chim. Acta 1060, 17–29 (2018).
[Crossref]

J. Xu, C. H. Li, H. P. Si, X. F. Zhao, L. Wang, S. Z. Jiang, D. M. Wei, J. Yu, X. W. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref]

Y. Gao, N. Yang, T. You, C. Zhang, and P. Yin, “Superhydrophobic “wash free” 3D nanoneedle array for rapid, recyclable and sensitive SERS sensing in real environment,” Sens. Actuators, B 267, 129–135 (2018).
[Crossref]

T. Köker, N. Tang, C. Tian, W. Zhang, X. Wang, R. Martel, and F. Pinaud, “Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds,” Nat. Commun. 9(1), 607 (2018).
[Crossref]

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators, B 263, 408–416 (2018).
[Crossref]

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

Y. Jiang, J. Wang, L. Malfatti, D. Carboni, N. Senes, and P. Innocenzi, “Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection,” Appl. Surf. Sci. 450, 451–460 (2018).
[Crossref]

2017 (10)

Y. Wang, H. Chen, M. Sun, Z. Yao, B. Quan, Z. Liu, and J. Li, “Ultrafast carrier transfer evidencing graphene electromagnetically enhanced ultrasensitive SERS in graphene/Ag-nanoparticles hybrid,” Carbon 122, 98–105 (2017).
[Crossref]

W. Lin, Y. Shi, X. Yang, J. Li, E. Cao, X. Xu, T. Pullerits, W. Liang, and M. Sun, “Physical mechanism on exciton-plasmon coupling revealed by fem to second pump-probe transient absorption spectroscopy,” Mater. Today Phys. 3, 33–40 (2017).
[Crossref]

J. Wang, F. Ma, and M. Sun, “Graphene, hexagonal boron nitride, and their heterostructures: properties and applications,” RSC Adv. 7(27), 16801–16822 (2017).
[Crossref]

V. Flauraud, M. Mastrangeli, G. Bernasconi, J. Butet, D. Alexnder, E. Shahrabi, and J. Brugger, “Nanoscale topographical control of capillary assembly of nanoparticles,” Nat. Nanotechnol. 12(1), 73–80 (2017).
[Crossref]

J. Guo, Y. Zhang, L. Shi, Y. Zhu, M. Mideksa, K. Hou, and J. Lv, “Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis,” J. Am. Chem. Soc. 139(49), 17964–17972 (2017).
[Crossref]

E. Cao, X. Guo, L. Zhang, Y. Shi, W. Lin, X. Liu, and W. Liang, “Electrooptical Synergy on Plasmon-Exciton-Codriven Surface Reduction Reactions,” Adv. Mater. Interfaces 4(24), 1700869 (2017).
[Crossref]

D. Liu, C. Li, F. Zhou, T. Zhang, G. Liu, W. Cai, and Y. Li, “Capillary Gradient-Induced Self-Assembly of Periodic Au Spherical Nanoparticle Arrays on an Ultralarge Scale via a Bisolvent System at Air/Water Interface,” Adv. Mater. Interfaces 4(10), 1600976 (2017).
[Crossref]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

W. Lin, Y. Cao, P. Wang, and M. Sun, “Unified treatment for plasmon-exciton co-driven reduction and oxidation reactions,” Langmuir 33(43), 12102–12107 (2017).
[Crossref]

H. Sun, H. Liu, and Y. Wu, “A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice,” Appl. Surf. Sci. 416, 704–709 (2017).
[Crossref]

2016 (1)

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuators, B 222, 1175–1183 (2016).
[Crossref]

2015 (4)

Z. Dai, X. Xiao, W. Wu, Y. Zhang, L. Liao, S. Guo, and C. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light: Sci. Appl. 4(10), e342 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(4), 472–490 (2015).
[Crossref]

P. Wang, M. Xia, O. Liang, K. Sun, A. Cipriano, T. Schreder, and Y. Xie, “Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure,” Anal. Chem. 87(20), 10255–10261 (2015).
[Crossref]

2014 (2)

L. Tong, H. Xu, and M. Käll, “Nanogaps for SERS applications,” MRS Bull. 39(2), 163–168 (2014).
[Crossref]

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman. Spectrosc. 45(7), 533–540 (2014).
[Crossref]

2013 (2)

J. Li, X. Tian, S. Li, J. Anema, Z. Yang, Y. Ding, and Z. Wang, “Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nat. Protoc. 8(1), 52–65 (2013).
[Crossref]

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

2011 (3)

Y. Jiang, H. Wang, H. Wang, B. Gao, Y. Hao, Y. Jin, Q. Chen, and H. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

A Karabchevsky, M Auslender, and I Abdulhalim, “Dual surface plasmon excitation with thin metallic nanoslits,” J. Nanophotonics 5, 051821 (2011).
[Crossref]

O Krasnykov, A Karabchevsky, A Shalabney, M Auslender, and I Abdulhalim, “Sensor with increased sensitivity based on enhanced optical transmission in the infrared,” Opt. Commun. 284(5), 1435–1438 (2011).
[Crossref]

2010 (1)

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]

2009 (2)

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Photonic and Nanostruct 7(4), 170–175 (2009).
[Crossref]

2008 (1)

J. Oostinga, H. Heersche, X. Liu, A. Morpurgo, and L. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nat. Mater. 7(2), 151–157 (2008).
[Crossref]

2007 (1)

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

2004 (1)

K Novoselov, A Geim, S Morozov, D Jiang, Y Zhang, S Dubonos, and A Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

1974 (1)

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Abdulhalim, I

A Karabchevsky, M Auslender, and I Abdulhalim, “Dual surface plasmon excitation with thin metallic nanoslits,” J. Nanophotonics 5, 051821 (2011).
[Crossref]

O Krasnykov, A Karabchevsky, A Shalabney, M Auslender, and I Abdulhalim, “Sensor with increased sensitivity based on enhanced optical transmission in the infrared,” Opt. Commun. 284(5), 1435–1438 (2011).
[Crossref]

Abdulhalim, I.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Photonic and Nanostruct 7(4), 170–175 (2009).
[Crossref]

Alexnder, D.

V. Flauraud, M. Mastrangeli, G. Bernasconi, J. Butet, D. Alexnder, E. Shahrabi, and J. Brugger, “Nanoscale topographical control of capillary assembly of nanoparticles,” Nat. Nanotechnol. 12(1), 73–80 (2017).
[Crossref]

Anema, J.

J. Li, X. Tian, S. Li, J. Anema, Z. Yang, Y. Ding, and Z. Wang, “Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nat. Protoc. 8(1), 52–65 (2013).
[Crossref]

Auslender, M

A Karabchevsky, M Auslender, and I Abdulhalim, “Dual surface plasmon excitation with thin metallic nanoslits,” J. Nanophotonics 5, 051821 (2011).
[Crossref]

O Krasnykov, A Karabchevsky, A Shalabney, M Auslender, and I Abdulhalim, “Sensor with increased sensitivity based on enhanced optical transmission in the infrared,” Opt. Commun. 284(5), 1435–1438 (2011).
[Crossref]

Auslender, M.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Photonic and Nanostruct 7(4), 170–175 (2009).
[Crossref]

Bernasconi, G.

V. Flauraud, M. Mastrangeli, G. Bernasconi, J. Butet, D. Alexnder, E. Shahrabi, and J. Brugger, “Nanoscale topographical control of capillary assembly of nanoparticles,” Nat. Nanotechnol. 12(1), 73–80 (2017).
[Crossref]

Brugger, J.

V. Flauraud, M. Mastrangeli, G. Bernasconi, J. Butet, D. Alexnder, E. Shahrabi, and J. Brugger, “Nanoscale topographical control of capillary assembly of nanoparticles,” Nat. Nanotechnol. 12(1), 73–80 (2017).
[Crossref]

Butet, J.

V. Flauraud, M. Mastrangeli, G. Bernasconi, J. Butet, D. Alexnder, E. Shahrabi, and J. Brugger, “Nanoscale topographical control of capillary assembly of nanoparticles,” Nat. Nanotechnol. 12(1), 73–80 (2017).
[Crossref]

Cai, W.

D. Liu, C. Li, F. Zhou, T. Zhang, G. Liu, W. Cai, and Y. Li, “Capillary Gradient-Induced Self-Assembly of Periodic Au Spherical Nanoparticle Arrays on an Ultralarge Scale via a Bisolvent System at Air/Water Interface,” Adv. Mater. Interfaces 4(10), 1600976 (2017).
[Crossref]

Cao, E

E Cao, M Sun, Y Song, and W Liang, “Exciton-plasmon hybrids for surface catalysis detected by SERS,” Nanotechnology 29(37), 372001 (2018).
[Crossref]

J Dong, X Zhao, E Cao, Q Han, L Liu, W Zhang, and M Sun, “Flexible and Transparent AuNP/G/AuNP “Sandwich” Substrate for Surface-enhanced Raman Scattering,” Mater. Today Nano100067 (2019).

Cao, E.

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, and M. Sun, “Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

X. Wang, E. Cao, H. Zong, and M. Sun, “Plasmonic electrons enhanced resonance Raman scattering (EERRS) and electrons enhanced fluorescence (EEF) spectra,” Appl. Mater. Today 13, 298–302 (2018).
[Crossref]

W. Lin, E. Cao, L. Zhang, X. Xu, Y. Song, W. Liang, and M. Sun, “Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid,” Nanoscale 10(12), 5482–5488 (2018).
[Crossref]

E. Cao, X. Guo, L. Zhang, Y. Shi, W. Lin, X. Liu, and W. Liang, “Electrooptical Synergy on Plasmon-Exciton-Codriven Surface Reduction Reactions,” Adv. Mater. Interfaces 4(24), 1700869 (2017).
[Crossref]

W. Lin, Y. Shi, X. Yang, J. Li, E. Cao, X. Xu, T. Pullerits, W. Liang, and M. Sun, “Physical mechanism on exciton-plasmon coupling revealed by fem to second pump-probe transient absorption spectroscopy,” Mater. Today Phys. 3, 33–40 (2017).
[Crossref]

Cao, Y.

W. Lin, Y. Cao, P. Wang, and M. Sun, “Unified treatment for plasmon-exciton co-driven reduction and oxidation reactions,” Langmuir 33(43), 12102–12107 (2017).
[Crossref]

Carboni, D.

Y. Jiang, J. Wang, L. Malfatti, D. Carboni, N. Senes, and P. Innocenzi, “Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection,” Appl. Surf. Sci. 450, 451–460 (2018).
[Crossref]

Chen, H.

Y. Wang, H. Chen, M. Sun, Z. Yao, B. Quan, Z. Liu, and J. Li, “Ultrafast carrier transfer evidencing graphene electromagnetically enhanced ultrasensitive SERS in graphene/Ag-nanoparticles hybrid,” Carbon 122, 98–105 (2017).
[Crossref]

Chen, J.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

Chen, M.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman. Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Chen, N.

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

Chen, Q.

Y. Jiang, H. Wang, H. Wang, B. Gao, Y. Hao, Y. Jin, Q. Chen, and H. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Chen, R.

W. Li, X. Zhan, X. Song, S. Si, R. Chen, J. Liu, and X. Xiao, “A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting,” Small 15(31), 1901820 (2019).
[Crossref]

Chen, Y.

X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
[Crossref]

Cipriano, A.

P. Wang, M. Xia, O. Liang, K. Sun, A. Cipriano, T. Schreder, and Y. Xie, “Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure,” Anal. Chem. 87(20), 10255–10261 (2015).
[Crossref]

Dai, Z.

Z. Dai, X. Xiao, W. Wu, Y. Zhang, L. Liao, S. Guo, and C. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light: Sci. Appl. 4(10), e342 (2015).
[Crossref]

Deng, Q.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

Ding, P.

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

Ding, Y.

J. Li, X. Tian, S. Li, J. Anema, Z. Yang, Y. Ding, and Z. Wang, “Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nat. Protoc. 8(1), 52–65 (2013).
[Crossref]

Dong, J

J Dong, X Zhao, E Cao, Q Han, L Liu, W Zhang, and M Sun, “Flexible and Transparent AuNP/G/AuNP “Sandwich” Substrate for Surface-enhanced Raman Scattering,” Mater. Today Nano100067 (2019).

Dong, J.

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, and M. Sun, “Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, and M. Sun, “Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application,” Nanoscale. Res. Lett. 14(1), 118 (2019).
[Crossref]

J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, and M. Sun, “Plasmon-enhanced upconversion photoluminescence: mechanism and application,”,” Rev. Phys. 4, 100026 (2019).
[Crossref]

J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(4), 472–490 (2015).
[Crossref]

Dong, L.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

Dong, S.

X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
[Crossref]

Dubonos, S

K Novoselov, A Geim, S Morozov, D Jiang, Y Zhang, S Dubonos, and A Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Falkovsky, L.

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Fang, Y.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]

Firsov, A

K Novoselov, A Geim, S Morozov, D Jiang, Y Zhang, S Dubonos, and A Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Flauraud, V.

V. Flauraud, M. Mastrangeli, G. Bernasconi, J. Butet, D. Alexnder, E. Shahrabi, and J. Brugger, “Nanoscale topographical control of capillary assembly of nanoparticles,” Nat. Nanotechnol. 12(1), 73–80 (2017).
[Crossref]

Fleischmann, M.

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Gao, B.

Y. Jiang, H. Wang, H. Wang, B. Gao, Y. Hao, Y. Jin, Q. Chen, and H. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Gao, W.

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, and M. Sun, “Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, and M. Sun, “Plasmon-enhanced upconversion photoluminescence: mechanism and application,”,” Rev. Phys. 4, 100026 (2019).
[Crossref]

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, and M. Sun, “Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application,” Nanoscale. Res. Lett. 14(1), 118 (2019).
[Crossref]

Gao, Y.

Y. Gao, N. Yang, T. You, C. Zhang, and P. Yin, “Superhydrophobic “wash free” 3D nanoneedle array for rapid, recyclable and sensitive SERS sensing in real environment,” Sens. Actuators, B 267, 129–135 (2018).
[Crossref]

Geim, A

K Novoselov, A Geim, S Morozov, D Jiang, Y Zhang, S Dubonos, and A Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Goldner, A.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Photonic and Nanostruct 7(4), 170–175 (2009).
[Crossref]

Govorov, A. O.

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

Gun’ko, Y. K.

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

Guo, J.

J. Guo, Y. Zhang, L. Shi, Y. Zhu, M. Mideksa, K. Hou, and J. Lv, “Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis,” J. Am. Chem. Soc. 139(49), 17964–17972 (2017).
[Crossref]

Guo, S.

Z. Dai, X. Xiao, W. Wu, Y. Zhang, L. Liao, S. Guo, and C. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light: Sci. Appl. 4(10), e342 (2015).
[Crossref]

Guo, X.

E. Cao, X. Guo, L. Zhang, Y. Shi, W. Lin, X. Liu, and W. Liang, “Electrooptical Synergy on Plasmon-Exciton-Codriven Surface Reduction Reactions,” Adv. Mater. Interfaces 4(24), 1700869 (2017).
[Crossref]

Hadad, B.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Photonic and Nanostruct 7(4), 170–175 (2009).
[Crossref]

Han, Q

J Dong, X Zhao, E Cao, Q Han, L Liu, W Zhang, and M Sun, “Flexible and Transparent AuNP/G/AuNP “Sandwich” Substrate for Surface-enhanced Raman Scattering,” Mater. Today Nano100067 (2019).

Han, Q.

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, and M. Sun, “Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, and M. Sun, “Plasmon-enhanced upconversion photoluminescence: mechanism and application,”,” Rev. Phys. 4, 100026 (2019).
[Crossref]

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, and M. Sun, “Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application,” Nanoscale. Res. Lett. 14(1), 118 (2019).
[Crossref]

Hao, Y.

Y. Jiang, H. Wang, H. Wang, B. Gao, Y. Hao, Y. Jin, Q. Chen, and H. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Hava, S.

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Photonic and Nanostruct 7(4), 170–175 (2009).
[Crossref]

He, Y.

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

Heersche, H.

J. Oostinga, H. Heersche, X. Liu, A. Morpurgo, and L. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nat. Mater. 7(2), 151–157 (2008).
[Crossref]

Hendra, P.

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Hou, K.

J. Guo, Y. Zhang, L. Shi, Y. Zhu, M. Mideksa, K. Hou, and J. Lv, “Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis,” J. Am. Chem. Soc. 139(49), 17964–17972 (2017).
[Crossref]

Huang, Y.

Y. Huang, D. Lin, M. Li, D. Yin, S. Wang, and J. Wang, “Ag@ Au Core–Shell Porous Nanocages with Outstanding SERS Activity for Highly Sensitive SERS Immunoassay,” Sensors 19(7), 1554 (2019).
[Crossref]

Huo, Y.

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators, B 263, 408–416 (2018).
[Crossref]

Huo, Y. Y.

Innocenzi, P.

Y. Jiang, J. Wang, L. Malfatti, D. Carboni, N. Senes, and P. Innocenzi, “Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection,” Appl. Surf. Sci. 450, 451–460 (2018).
[Crossref]

Jiang, C.

X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
[Crossref]

Z. Dai, X. Xiao, W. Wu, Y. Zhang, L. Liao, S. Guo, and C. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light: Sci. Appl. 4(10), e342 (2015).
[Crossref]

Jiang, D

K Novoselov, A Geim, S Morozov, D Jiang, Y Zhang, S Dubonos, and A Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Jiang, S.

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators, B 263, 408–416 (2018).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuators, B 222, 1175–1183 (2016).
[Crossref]

Jiang, S. Z.

Jiang, Y.

Y. Jiang, J. Wang, L. Malfatti, D. Carboni, N. Senes, and P. Innocenzi, “Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection,” Appl. Surf. Sci. 450, 451–460 (2018).
[Crossref]

Y. Jiang, H. Wang, H. Wang, B. Gao, Y. Hao, Y. Jin, Q. Chen, and H. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Jin, Y.

Y. Jiang, H. Wang, H. Wang, B. Gao, Y. Hao, Y. Jin, Q. Chen, and H. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Käll, M.

L. Tong, H. Xu, and M. Käll, “Nanogaps for SERS applications,” MRS Bull. 39(2), 163–168 (2014).
[Crossref]

Kang, M.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

Karabchevsky, A

A Karabchevsky, M Auslender, and I Abdulhalim, “Dual surface plasmon excitation with thin metallic nanoslits,” J. Nanophotonics 5, 051821 (2011).
[Crossref]

O Krasnykov, A Karabchevsky, A Shalabney, M Auslender, and I Abdulhalim, “Sensor with increased sensitivity based on enhanced optical transmission in the infrared,” Opt. Commun. 284(5), 1435–1438 (2011).
[Crossref]

Karabchevsky, A.

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Photonic and Nanostruct 7(4), 170–175 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Köker, T.

T. Köker, N. Tang, C. Tian, W. Zhang, X. Wang, R. Martel, and F. Pinaud, “Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds,” Nat. Commun. 9(1), 607 (2018).
[Crossref]

Kong, J.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]

Krasnykov, O

O Krasnykov, A Karabchevsky, A Shalabney, M Auslender, and I Abdulhalim, “Sensor with increased sensitivity based on enhanced optical transmission in the infrared,” Opt. Commun. 284(5), 1435–1438 (2011).
[Crossref]

Krasnykov, O.

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Photonic and Nanostruct 7(4), 170–175 (2009).
[Crossref]

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Li, C.

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators, B 263, 408–416 (2018).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

D. Liu, C. Li, F. Zhou, T. Zhang, G. Liu, W. Cai, and Y. Li, “Capillary Gradient-Induced Self-Assembly of Periodic Au Spherical Nanoparticle Arrays on an Ultralarge Scale via a Bisolvent System at Air/Water Interface,” Adv. Mater. Interfaces 4(10), 1600976 (2017).
[Crossref]

Li, C. H.

Li, H.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

Li, J.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

W. Lin, Y. Shi, X. Yang, J. Li, E. Cao, X. Xu, T. Pullerits, W. Liang, and M. Sun, “Physical mechanism on exciton-plasmon coupling revealed by fem to second pump-probe transient absorption spectroscopy,” Mater. Today Phys. 3, 33–40 (2017).
[Crossref]

Y. Wang, H. Chen, M. Sun, Z. Yao, B. Quan, Z. Liu, and J. Li, “Ultrafast carrier transfer evidencing graphene electromagnetically enhanced ultrasensitive SERS in graphene/Ag-nanoparticles hybrid,” Carbon 122, 98–105 (2017).
[Crossref]

J. Li, X. Tian, S. Li, J. Anema, Z. Yang, Y. Ding, and Z. Wang, “Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nat. Protoc. 8(1), 52–65 (2013).
[Crossref]

Li, M.

Y. Huang, D. Lin, M. Li, D. Yin, S. Wang, and J. Wang, “Ag@ Au Core–Shell Porous Nanocages with Outstanding SERS Activity for Highly Sensitive SERS Immunoassay,” Sensors 19(7), 1554 (2019).
[Crossref]

Li, S.

J. Li, X. Tian, S. Li, J. Anema, Z. Yang, Y. Ding, and Z. Wang, “Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nat. Protoc. 8(1), 52–65 (2013).
[Crossref]

Li, W.

W. Li, X. Zhan, X. Song, S. Si, R. Chen, J. Liu, and X. Xiao, “A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting,” Small 15(31), 1901820 (2019).
[Crossref]

Li, Y.

D. Liu, C. Li, F. Zhou, T. Zhang, G. Liu, W. Cai, and Y. Li, “Capillary Gradient-Induced Self-Assembly of Periodic Au Spherical Nanoparticle Arrays on an Ultralarge Scale via a Bisolvent System at Air/Water Interface,” Adv. Mater. Interfaces 4(10), 1600976 (2017).
[Crossref]

Li, Z.

Liang, O.

P. Wang, M. Xia, O. Liang, K. Sun, A. Cipriano, T. Schreder, and Y. Xie, “Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure,” Anal. Chem. 87(20), 10255–10261 (2015).
[Crossref]

Liang, W

E Cao, M Sun, Y Song, and W Liang, “Exciton-plasmon hybrids for surface catalysis detected by SERS,” Nanotechnology 29(37), 372001 (2018).
[Crossref]

Liang, W.

W. Lin, E. Cao, L. Zhang, X. Xu, Y. Song, W. Liang, and M. Sun, “Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid,” Nanoscale 10(12), 5482–5488 (2018).
[Crossref]

E. Cao, X. Guo, L. Zhang, Y. Shi, W. Lin, X. Liu, and W. Liang, “Electrooptical Synergy on Plasmon-Exciton-Codriven Surface Reduction Reactions,” Adv. Mater. Interfaces 4(24), 1700869 (2017).
[Crossref]

W. Lin, Y. Shi, X. Yang, J. Li, E. Cao, X. Xu, T. Pullerits, W. Liang, and M. Sun, “Physical mechanism on exciton-plasmon coupling revealed by fem to second pump-probe transient absorption spectroscopy,” Mater. Today Phys. 3, 33–40 (2017).
[Crossref]

Liao, L.

Z. Dai, X. Xiao, W. Wu, Y. Zhang, L. Liao, S. Guo, and C. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light: Sci. Appl. 4(10), e342 (2015).
[Crossref]

Lin, D.

Y. Huang, D. Lin, M. Li, D. Yin, S. Wang, and J. Wang, “Ag@ Au Core–Shell Porous Nanocages with Outstanding SERS Activity for Highly Sensitive SERS Immunoassay,” Sensors 19(7), 1554 (2019).
[Crossref]

Lin, W.

W. Lin, E. Cao, L. Zhang, X. Xu, Y. Song, W. Liang, and M. Sun, “Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid,” Nanoscale 10(12), 5482–5488 (2018).
[Crossref]

W. Lin, Y. Shi, X. Yang, J. Li, E. Cao, X. Xu, T. Pullerits, W. Liang, and M. Sun, “Physical mechanism on exciton-plasmon coupling revealed by fem to second pump-probe transient absorption spectroscopy,” Mater. Today Phys. 3, 33–40 (2017).
[Crossref]

E. Cao, X. Guo, L. Zhang, Y. Shi, W. Lin, X. Liu, and W. Liang, “Electrooptical Synergy on Plasmon-Exciton-Codriven Surface Reduction Reactions,” Adv. Mater. Interfaces 4(24), 1700869 (2017).
[Crossref]

W. Lin, Y. Cao, P. Wang, and M. Sun, “Unified treatment for plasmon-exciton co-driven reduction and oxidation reactions,” Langmuir 33(43), 12102–12107 (2017).
[Crossref]

Ling, X.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]

Liu, A. H.

Liu, D.

D. Liu, C. Li, F. Zhou, T. Zhang, G. Liu, W. Cai, and Y. Li, “Capillary Gradient-Induced Self-Assembly of Periodic Au Spherical Nanoparticle Arrays on an Ultralarge Scale via a Bisolvent System at Air/Water Interface,” Adv. Mater. Interfaces 4(10), 1600976 (2017).
[Crossref]

Liu, G.

D. Liu, C. Li, F. Zhou, T. Zhang, G. Liu, W. Cai, and Y. Li, “Capillary Gradient-Induced Self-Assembly of Periodic Au Spherical Nanoparticle Arrays on an Ultralarge Scale via a Bisolvent System at Air/Water Interface,” Adv. Mater. Interfaces 4(10), 1600976 (2017).
[Crossref]

Liu, H.

H. Sun, H. Liu, and Y. Wu, “A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice,” Appl. Surf. Sci. 416, 704–709 (2017).
[Crossref]

Liu, J.

W. Li, X. Zhan, X. Song, S. Si, R. Chen, J. Liu, and X. Xiao, “A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting,” Small 15(31), 1901820 (2019).
[Crossref]

Liu, L

J Dong, X Zhao, E Cao, Q Han, L Liu, W Zhang, and M Sun, “Flexible and Transparent AuNP/G/AuNP “Sandwich” Substrate for Surface-enhanced Raman Scattering,” Mater. Today Nano100067 (2019).

Liu, X.

E. Cao, X. Guo, L. Zhang, Y. Shi, W. Lin, X. Liu, and W. Liang, “Electrooptical Synergy on Plasmon-Exciton-Codriven Surface Reduction Reactions,” Adv. Mater. Interfaces 4(24), 1700869 (2017).
[Crossref]

J. Oostinga, H. Heersche, X. Liu, A. Morpurgo, and L. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nat. Mater. 7(2), 151–157 (2008).
[Crossref]

Liu, X. Y.

Liu, Z.

X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
[Crossref]

Y. Wang, H. Chen, M. Sun, Z. Yao, B. Quan, Z. Liu, and J. Li, “Ultrafast carrier transfer evidencing graphene electromagnetically enhanced ultrasensitive SERS in graphene/Ag-nanoparticles hybrid,” Carbon 122, 98–105 (2017).
[Crossref]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]

Luo, C.

X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
[Crossref]

Lv, J.

J. Guo, Y. Zhang, L. Shi, Y. Zhu, M. Mideksa, K. Hou, and J. Lv, “Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis,” J. Am. Chem. Soc. 139(49), 17964–17972 (2017).
[Crossref]

Ma, F.

J. Wang, F. Ma, and M. Sun, “Graphene, hexagonal boron nitride, and their heterostructures: properties and applications,” RSC Adv. 7(27), 16801–16822 (2017).
[Crossref]

Ma, Y.

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuators, B 222, 1175–1183 (2016).
[Crossref]

Malfatti, L.

Y. Jiang, J. Wang, L. Malfatti, D. Carboni, N. Senes, and P. Innocenzi, “Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection,” Appl. Surf. Sci. 450, 451–460 (2018).
[Crossref]

Man, B.

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators, B 263, 408–416 (2018).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

Man, B. Y.

Martel, R.

T. Köker, N. Tang, C. Tian, W. Zhang, X. Wang, R. Martel, and F. Pinaud, “Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds,” Nat. Commun. 9(1), 607 (2018).
[Crossref]

Mastrangeli, M.

V. Flauraud, M. Mastrangeli, G. Bernasconi, J. Butet, D. Alexnder, E. Shahrabi, and J. Brugger, “Nanoscale topographical control of capillary assembly of nanoparticles,” Nat. Nanotechnol. 12(1), 73–80 (2017).
[Crossref]

McQuillan, A.

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Meng, X.

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

Mideksa, M.

J. Guo, Y. Zhang, L. Shi, Y. Zhu, M. Mideksa, K. Hou, and J. Lv, “Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis,” J. Am. Chem. Soc. 139(49), 17964–17972 (2017).
[Crossref]

Mo, B.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

Morozov, S

K Novoselov, A Geim, S Morozov, D Jiang, Y Zhang, S Dubonos, and A Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Morpurgo, A.

J. Oostinga, H. Heersche, X. Liu, A. Morpurgo, and L. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nat. Mater. 7(2), 151–157 (2008).
[Crossref]

Mu, X.

J. Wang, X. Mu, L. Wang, and M. Sun, “Properties and Applications of New Superlattice: Twisted Bilayer Graphene,” Mater. Today Phys. 9, 100099 (2019).
[Crossref]

H. Zong, X. Wang, X. Mu, J. Wang, and M. Sun, “Plasmon-Enhanced Fluorescence Resonance Energy Transfer,” Chem. Rec. 19(5), 818–842 (2019).
[Crossref]

Nordlander, P.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

Novoselov, K

K Novoselov, A Geim, S Morozov, D Jiang, Y Zhang, S Dubonos, and A Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Oostinga, J.

J. Oostinga, H. Heersche, X. Liu, A. Morpurgo, and L. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nat. Mater. 7(2), 151–157 (2008).
[Crossref]

Pershoguba, S.

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Pinaud, F.

T. Köker, N. Tang, C. Tian, W. Zhang, X. Wang, R. Martel, and F. Pinaud, “Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds,” Nat. Commun. 9(1), 607 (2018).
[Crossref]

Pullerits, T.

W. Lin, Y. Shi, X. Yang, J. Li, E. Cao, X. Xu, T. Pullerits, W. Liang, and M. Sun, “Physical mechanism on exciton-plasmon coupling revealed by fem to second pump-probe transient absorption spectroscopy,” Mater. Today Phys. 3, 33–40 (2017).
[Crossref]

Qi, J.

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, and M. Sun, “Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application,” Nanoscale. Res. Lett. 14(1), 118 (2019).
[Crossref]

J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, and M. Sun, “Plasmon-enhanced upconversion photoluminescence: mechanism and application,”,” Rev. Phys. 4, 100026 (2019).
[Crossref]

Quan, B.

Y. Wang, H. Chen, M. Sun, Z. Yao, B. Quan, Z. Liu, and J. Li, “Ultrafast carrier transfer evidencing graphene electromagnetically enhanced ultrasensitive SERS in graphene/Ag-nanoparticles hybrid,” Carbon 122, 98–105 (2017).
[Crossref]

Restaino, S

S Restaino and I White, “A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample,” Anal. Chim. Acta 1060, 17–29 (2018).
[Crossref]

Schreder, T.

P. Wang, M. Xia, O. Liang, K. Sun, A. Cipriano, T. Schreder, and Y. Xie, “Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure,” Anal. Chem. 87(20), 10255–10261 (2015).
[Crossref]

Senes, N.

Y. Jiang, J. Wang, L. Malfatti, D. Carboni, N. Senes, and P. Innocenzi, “Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection,” Appl. Surf. Sci. 450, 451–460 (2018).
[Crossref]

Shahrabi, E.

V. Flauraud, M. Mastrangeli, G. Bernasconi, J. Butet, D. Alexnder, E. Shahrabi, and J. Brugger, “Nanoscale topographical control of capillary assembly of nanoparticles,” Nat. Nanotechnol. 12(1), 73–80 (2017).
[Crossref]

Shalabney, A

O Krasnykov, A Karabchevsky, A Shalabney, M Auslender, and I Abdulhalim, “Sensor with increased sensitivity based on enhanced optical transmission in the infrared,” Opt. Commun. 284(5), 1435–1438 (2011).
[Crossref]

Shi, H.

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

Shi, L.

J. Guo, Y. Zhang, L. Shi, Y. Zhu, M. Mideksa, K. Hou, and J. Lv, “Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis,” J. Am. Chem. Soc. 139(49), 17964–17972 (2017).
[Crossref]

Shi, Y.

E. Cao, X. Guo, L. Zhang, Y. Shi, W. Lin, X. Liu, and W. Liang, “Electrooptical Synergy on Plasmon-Exciton-Codriven Surface Reduction Reactions,” Adv. Mater. Interfaces 4(24), 1700869 (2017).
[Crossref]

W. Lin, Y. Shi, X. Yang, J. Li, E. Cao, X. Xu, T. Pullerits, W. Liang, and M. Sun, “Physical mechanism on exciton-plasmon coupling revealed by fem to second pump-probe transient absorption spectroscopy,” Mater. Today Phys. 3, 33–40 (2017).
[Crossref]

Si, H. P.

Si, S.

W. Li, X. Zhan, X. Song, S. Si, R. Chen, J. Liu, and X. Xiao, “A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting,” Small 15(31), 1901820 (2019).
[Crossref]

Song, X.

W. Li, X. Zhan, X. Song, S. Si, R. Chen, J. Liu, and X. Xiao, “A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting,” Small 15(31), 1901820 (2019).
[Crossref]

Song, Y

E Cao, M Sun, Y Song, and W Liang, “Exciton-plasmon hybrids for surface catalysis detected by SERS,” Nanotechnology 29(37), 372001 (2018).
[Crossref]

Song, Y.

W. Lin, E. Cao, L. Zhang, X. Xu, Y. Song, W. Liang, and M. Sun, “Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid,” Nanoscale 10(12), 5482–5488 (2018).
[Crossref]

Sun, B.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

Sun, H.

H. Sun, H. Liu, and Y. Wu, “A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice,” Appl. Surf. Sci. 416, 704–709 (2017).
[Crossref]

Y. Jiang, H. Wang, H. Wang, B. Gao, Y. Hao, Y. Jin, Q. Chen, and H. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Sun, K.

P. Wang, M. Xia, O. Liang, K. Sun, A. Cipriano, T. Schreder, and Y. Xie, “Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure,” Anal. Chem. 87(20), 10255–10261 (2015).
[Crossref]

Sun, M

E Cao, M Sun, Y Song, and W Liang, “Exciton-plasmon hybrids for surface catalysis detected by SERS,” Nanotechnology 29(37), 372001 (2018).
[Crossref]

J Dong, X Zhao, E Cao, Q Han, L Liu, W Zhang, and M Sun, “Flexible and Transparent AuNP/G/AuNP “Sandwich” Substrate for Surface-enhanced Raman Scattering,” Mater. Today Nano100067 (2019).

Sun, M.

H. Zong, X. Wang, X. Mu, J. Wang, and M. Sun, “Plasmon-Enhanced Fluorescence Resonance Energy Transfer,” Chem. Rec. 19(5), 818–842 (2019).
[Crossref]

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, and M. Sun, “Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

J. Wang, X. Mu, L. Wang, and M. Sun, “Properties and Applications of New Superlattice: Twisted Bilayer Graphene,” Mater. Today Phys. 9, 100099 (2019).
[Crossref]

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, and M. Sun, “Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application,” Nanoscale. Res. Lett. 14(1), 118 (2019).
[Crossref]

J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, and M. Sun, “Plasmon-enhanced upconversion photoluminescence: mechanism and application,”,” Rev. Phys. 4, 100026 (2019).
[Crossref]

W. Lin, E. Cao, L. Zhang, X. Xu, Y. Song, W. Liang, and M. Sun, “Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid,” Nanoscale 10(12), 5482–5488 (2018).
[Crossref]

X. Wang, E. Cao, H. Zong, and M. Sun, “Plasmonic electrons enhanced resonance Raman scattering (EERRS) and electrons enhanced fluorescence (EEF) spectra,” Appl. Mater. Today 13, 298–302 (2018).
[Crossref]

W. Lin, Y. Cao, P. Wang, and M. Sun, “Unified treatment for plasmon-exciton co-driven reduction and oxidation reactions,” Langmuir 33(43), 12102–12107 (2017).
[Crossref]

W. Lin, Y. Shi, X. Yang, J. Li, E. Cao, X. Xu, T. Pullerits, W. Liang, and M. Sun, “Physical mechanism on exciton-plasmon coupling revealed by fem to second pump-probe transient absorption spectroscopy,” Mater. Today Phys. 3, 33–40 (2017).
[Crossref]

Y. Wang, H. Chen, M. Sun, Z. Yao, B. Quan, Z. Liu, and J. Li, “Ultrafast carrier transfer evidencing graphene electromagnetically enhanced ultrasensitive SERS in graphene/Ag-nanoparticles hybrid,” Carbon 122, 98–105 (2017).
[Crossref]

J. Wang, F. Ma, and M. Sun, “Graphene, hexagonal boron nitride, and their heterostructures: properties and applications,” RSC Adv. 7(27), 16801–16822 (2017).
[Crossref]

J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(4), 472–490 (2015).
[Crossref]

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman. Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Sun, Z. C.

Tang, N.

T. Köker, N. Tang, C. Tian, W. Zhang, X. Wang, R. Martel, and F. Pinaud, “Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds,” Nat. Commun. 9(1), 607 (2018).
[Crossref]

Tian, C.

T. Köker, N. Tang, C. Tian, W. Zhang, X. Wang, R. Martel, and F. Pinaud, “Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds,” Nat. Commun. 9(1), 607 (2018).
[Crossref]

Tian, X.

J. Li, X. Tian, S. Li, J. Anema, Z. Yang, Y. Ding, and Z. Wang, “Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nat. Protoc. 8(1), 52–65 (2013).
[Crossref]

Tong, L.

L. Tong, H. Xu, and M. Käll, “Nanogaps for SERS applications,” MRS Bull. 39(2), 163–168 (2014).
[Crossref]

Vandersypen, L.

J. Oostinga, H. Heersche, X. Liu, A. Morpurgo, and L. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nat. Mater. 7(2), 151–157 (2008).
[Crossref]

Wang, F.

X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
[Crossref]

Wang, G.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

Wang, H.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

Y. Jiang, H. Wang, H. Wang, B. Gao, Y. Hao, Y. Jin, Q. Chen, and H. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Y. Jiang, H. Wang, H. Wang, B. Gao, Y. Hao, Y. Jin, Q. Chen, and H. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Wang, J.

H. Zong, X. Wang, X. Mu, J. Wang, and M. Sun, “Plasmon-Enhanced Fluorescence Resonance Energy Transfer,” Chem. Rec. 19(5), 818–842 (2019).
[Crossref]

J. Wang, X. Mu, L. Wang, and M. Sun, “Properties and Applications of New Superlattice: Twisted Bilayer Graphene,” Mater. Today Phys. 9, 100099 (2019).
[Crossref]

Y. Huang, D. Lin, M. Li, D. Yin, S. Wang, and J. Wang, “Ag@ Au Core–Shell Porous Nanocages with Outstanding SERS Activity for Highly Sensitive SERS Immunoassay,” Sensors 19(7), 1554 (2019).
[Crossref]

Y. Jiang, J. Wang, L. Malfatti, D. Carboni, N. Senes, and P. Innocenzi, “Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection,” Appl. Surf. Sci. 450, 451–460 (2018).
[Crossref]

J. Wang, F. Ma, and M. Sun, “Graphene, hexagonal boron nitride, and their heterostructures: properties and applications,” RSC Adv. 7(27), 16801–16822 (2017).
[Crossref]

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuators, B 222, 1175–1183 (2016).
[Crossref]

Wang, L.

Wang, P.

W. Lin, Y. Cao, P. Wang, and M. Sun, “Unified treatment for plasmon-exciton co-driven reduction and oxidation reactions,” Langmuir 33(43), 12102–12107 (2017).
[Crossref]

P. Wang, M. Xia, O. Liang, K. Sun, A. Cipriano, T. Schreder, and Y. Xie, “Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure,” Anal. Chem. 87(20), 10255–10261 (2015).
[Crossref]

Wang, S.

Y. Huang, D. Lin, M. Li, D. Yin, S. Wang, and J. Wang, “Ag@ Au Core–Shell Porous Nanocages with Outstanding SERS Activity for Highly Sensitive SERS Immunoassay,” Sensors 19(7), 1554 (2019).
[Crossref]

Wang, X.

H. Zong, X. Wang, X. Mu, J. Wang, and M. Sun, “Plasmon-Enhanced Fluorescence Resonance Energy Transfer,” Chem. Rec. 19(5), 818–842 (2019).
[Crossref]

X. Wang, E. Cao, H. Zong, and M. Sun, “Plasmonic electrons enhanced resonance Raman scattering (EERRS) and electrons enhanced fluorescence (EEF) spectra,” Appl. Mater. Today 13, 298–302 (2018).
[Crossref]

T. Köker, N. Tang, C. Tian, W. Zhang, X. Wang, R. Martel, and F. Pinaud, “Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds,” Nat. Commun. 9(1), 607 (2018).
[Crossref]

Wang, Y.

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, and M. Sun, “Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application,” Nanoscale. Res. Lett. 14(1), 118 (2019).
[Crossref]

J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, and M. Sun, “Plasmon-enhanced upconversion photoluminescence: mechanism and application,”,” Rev. Phys. 4, 100026 (2019).
[Crossref]

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, and M. Sun, “Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

Y. Wang, H. Chen, M. Sun, Z. Yao, B. Quan, Z. Liu, and J. Li, “Ultrafast carrier transfer evidencing graphene electromagnetically enhanced ultrasensitive SERS in graphene/Ag-nanoparticles hybrid,” Carbon 122, 98–105 (2017).
[Crossref]

Wang, Z.

J. Li, X. Tian, S. Li, J. Anema, Z. Yang, Y. Ding, and Z. Wang, “Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nat. Protoc. 8(1), 52–65 (2013).
[Crossref]

Wei, D. M.

Wei, J.

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuators, B 222, 1175–1183 (2016).
[Crossref]

White, I

S Restaino and I White, “A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample,” Anal. Chim. Acta 1060, 17–29 (2018).
[Crossref]

Wu, T.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

Wu, W.

Z. Dai, X. Xiao, W. Wu, Y. Zhang, L. Liao, S. Guo, and C. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light: Sci. Appl. 4(10), e342 (2015).
[Crossref]

Wu, Y.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

H. Sun, H. Liu, and Y. Wu, “A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice,” Appl. Surf. Sci. 416, 704–709 (2017).
[Crossref]

Wu, Z.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

Xia, J.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman. Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Xia, L.

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman. Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Xia, M.

P. Wang, M. Xia, O. Liang, K. Sun, A. Cipriano, T. Schreder, and Y. Xie, “Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure,” Anal. Chem. 87(20), 10255–10261 (2015).
[Crossref]

Xiao, X.

W. Li, X. Zhan, X. Song, S. Si, R. Chen, J. Liu, and X. Xiao, “A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting,” Small 15(31), 1901820 (2019).
[Crossref]

X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
[Crossref]

Z. Dai, X. Xiao, W. Wu, Y. Zhang, L. Liao, S. Guo, and C. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light: Sci. Appl. 4(10), e342 (2015).
[Crossref]

Xie, L.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]

Xie, Y.

P. Wang, M. Xia, O. Liang, K. Sun, A. Cipriano, T. Schreder, and Y. Xie, “Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure,” Anal. Chem. 87(20), 10255–10261 (2015).
[Crossref]

Xiu, X. W.

Xu, H.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

L. Tong, H. Xu, and M. Käll, “Nanogaps for SERS applications,” MRS Bull. 39(2), 163–168 (2014).
[Crossref]

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman. Spectrosc. 45(7), 533–540 (2014).
[Crossref]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]

Xu, J.

Xu, S.

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators, B 263, 408–416 (2018).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuators, B 222, 1175–1183 (2016).
[Crossref]

Xu, S. C.

Xu, X.

W. Lin, E. Cao, L. Zhang, X. Xu, Y. Song, W. Liang, and M. Sun, “Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid,” Nanoscale 10(12), 5482–5488 (2018).
[Crossref]

W. Lin, Y. Shi, X. Yang, J. Li, E. Cao, X. Xu, T. Pullerits, W. Liang, and M. Sun, “Physical mechanism on exciton-plasmon coupling revealed by fem to second pump-probe transient absorption spectroscopy,” Mater. Today Phys. 3, 33–40 (2017).
[Crossref]

Xu, Y. Y.

Yan, X.

J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, and M. Sun, “Plasmon-enhanced upconversion photoluminescence: mechanism and application,”,” Rev. Phys. 4, 100026 (2019).
[Crossref]

Yang, C.

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators, B 263, 408–416 (2018).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

Yang, N.

Y. Gao, N. Yang, T. You, C. Zhang, and P. Yin, “Superhydrophobic “wash free” 3D nanoneedle array for rapid, recyclable and sensitive SERS sensing in real environment,” Sens. Actuators, B 267, 129–135 (2018).
[Crossref]

Yang, S.

X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
[Crossref]

Yang, W.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

Yang, X.

W. Lin, Y. Shi, X. Yang, J. Li, E. Cao, X. Xu, T. Pullerits, W. Liang, and M. Sun, “Physical mechanism on exciton-plasmon coupling revealed by fem to second pump-probe transient absorption spectroscopy,” Mater. Today Phys. 3, 33–40 (2017).
[Crossref]

Yang, Z.

J. Li, X. Tian, S. Li, J. Anema, Z. Yang, Y. Ding, and Z. Wang, “Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nat. Protoc. 8(1), 52–65 (2013).
[Crossref]

Yao, Z.

Y. Wang, H. Chen, M. Sun, Z. Yao, B. Quan, Z. Liu, and J. Li, “Ultrafast carrier transfer evidencing graphene electromagnetically enhanced ultrasensitive SERS in graphene/Ag-nanoparticles hybrid,” Carbon 122, 98–105 (2017).
[Crossref]

Yin, D.

Y. Huang, D. Lin, M. Li, D. Yin, S. Wang, and J. Wang, “Ag@ Au Core–Shell Porous Nanocages with Outstanding SERS Activity for Highly Sensitive SERS Immunoassay,” Sensors 19(7), 1554 (2019).
[Crossref]

Yin, J.

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

Yin, P.

Y. Gao, N. Yang, T. You, C. Zhang, and P. Yin, “Superhydrophobic “wash free” 3D nanoneedle array for rapid, recyclable and sensitive SERS sensing in real environment,” Sens. Actuators, B 267, 129–135 (2018).
[Crossref]

You, T.

Y. Gao, N. Yang, T. You, C. Zhang, and P. Yin, “Superhydrophobic “wash free” 3D nanoneedle array for rapid, recyclable and sensitive SERS sensing in real environment,” Sens. Actuators, B 267, 129–135 (2018).
[Crossref]

Yu, J.

J. Xu, C. H. Li, H. P. Si, X. F. Zhao, L. Wang, S. Z. Jiang, D. M. Wei, J. Yu, X. W. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

Yue, W.

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuators, B 222, 1175–1183 (2016).
[Crossref]

Zhai, X.

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

Zhan, X.

W. Li, X. Zhan, X. Song, S. Si, R. Chen, J. Liu, and X. Xiao, “A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting,” Small 15(31), 1901820 (2019).
[Crossref]

Zhang, C.

J. Xu, C. H. Li, H. P. Si, X. F. Zhao, L. Wang, S. Z. Jiang, D. M. Wei, J. Yu, X. W. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref]

Y. Gao, N. Yang, T. You, C. Zhang, and P. Yin, “Superhydrophobic “wash free” 3D nanoneedle array for rapid, recyclable and sensitive SERS sensing in real environment,” Sens. Actuators, B 267, 129–135 (2018).
[Crossref]

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators, B 263, 408–416 (2018).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Zhang, H.

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]

Zhang, L.

W. Lin, E. Cao, L. Zhang, X. Xu, Y. Song, W. Liang, and M. Sun, “Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid,” Nanoscale 10(12), 5482–5488 (2018).
[Crossref]

E. Cao, X. Guo, L. Zhang, Y. Shi, W. Lin, X. Liu, and W. Liang, “Electrooptical Synergy on Plasmon-Exciton-Codriven Surface Reduction Reactions,” Adv. Mater. Interfaces 4(24), 1700869 (2017).
[Crossref]

Zhang, S.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

Zhang, T.

D. Liu, C. Li, F. Zhou, T. Zhang, G. Liu, W. Cai, and Y. Li, “Capillary Gradient-Induced Self-Assembly of Periodic Au Spherical Nanoparticle Arrays on an Ultralarge Scale via a Bisolvent System at Air/Water Interface,” Adv. Mater. Interfaces 4(10), 1600976 (2017).
[Crossref]

Zhang, W

J Dong, X Zhao, E Cao, Q Han, L Liu, W Zhang, and M Sun, “Flexible and Transparent AuNP/G/AuNP “Sandwich” Substrate for Surface-enhanced Raman Scattering,” Mater. Today Nano100067 (2019).

Zhang, W.

T. Köker, N. Tang, C. Tian, W. Zhang, X. Wang, R. Martel, and F. Pinaud, “Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds,” Nat. Commun. 9(1), 607 (2018).
[Crossref]

Zhang, X.

X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
[Crossref]

X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
[Crossref]

Zhang, Y

K Novoselov, A Geim, S Morozov, D Jiang, Y Zhang, S Dubonos, and A Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Zhang, Y.

J. Guo, Y. Zhang, L. Shi, Y. Zhu, M. Mideksa, K. Hou, and J. Lv, “Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis,” J. Am. Chem. Soc. 139(49), 17964–17972 (2017).
[Crossref]

Z. Dai, X. Xiao, W. Wu, Y. Zhang, L. Liao, S. Guo, and C. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light: Sci. Appl. 4(10), e342 (2015).
[Crossref]

Zhang, Z.

J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(4), 472–490 (2015).
[Crossref]

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman. Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Zhao, X

J Dong, X Zhao, E Cao, Q Han, L Liu, W Zhang, and M Sun, “Flexible and Transparent AuNP/G/AuNP “Sandwich” Substrate for Surface-enhanced Raman Scattering,” Mater. Today Nano100067 (2019).

Zhao, X.

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, and M. Sun, “Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application,” Nanoscale. Res. Lett. 14(1), 118 (2019).
[Crossref]

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, and M. Sun, “Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman. Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Zhao, X. F.

Zheng, D.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

Zheng, H.

J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(4), 472–490 (2015).
[Crossref]

Zhou, F.

D. Liu, C. Li, F. Zhou, T. Zhang, G. Liu, W. Cai, and Y. Li, “Capillary Gradient-Induced Self-Assembly of Periodic Au Spherical Nanoparticle Arrays on an Ultralarge Scale via a Bisolvent System at Air/Water Interface,” Adv. Mater. Interfaces 4(10), 1600976 (2017).
[Crossref]

Zhu, Y.

J. Guo, Y. Zhang, L. Shi, Y. Zhu, M. Mideksa, K. Hou, and J. Lv, “Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis,” J. Am. Chem. Soc. 139(49), 17964–17972 (2017).
[Crossref]

Zong, H.

H. Zong, X. Wang, X. Mu, J. Wang, and M. Sun, “Plasmon-Enhanced Fluorescence Resonance Energy Transfer,” Chem. Rec. 19(5), 818–842 (2019).
[Crossref]

X. Wang, E. Cao, H. Zong, and M. Sun, “Plasmonic electrons enhanced resonance Raman scattering (EERRS) and electrons enhanced fluorescence (EEF) spectra,” Appl. Mater. Today 13, 298–302 (2018).
[Crossref]

Adv. Mater. Interfaces (2)

D. Liu, C. Li, F. Zhou, T. Zhang, G. Liu, W. Cai, and Y. Li, “Capillary Gradient-Induced Self-Assembly of Periodic Au Spherical Nanoparticle Arrays on an Ultralarge Scale via a Bisolvent System at Air/Water Interface,” Adv. Mater. Interfaces 4(10), 1600976 (2017).
[Crossref]

E. Cao, X. Guo, L. Zhang, Y. Shi, W. Lin, X. Liu, and W. Liang, “Electrooptical Synergy on Plasmon-Exciton-Codriven Surface Reduction Reactions,” Adv. Mater. Interfaces 4(24), 1700869 (2017).
[Crossref]

Anal. Chem. (3)

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

P. Wang, M. Xia, O. Liang, K. Sun, A. Cipriano, T. Schreder, and Y. Xie, “Label-free SERS selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure,” Anal. Chem. 87(20), 10255–10261 (2015).
[Crossref]

X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, and Y. He, “A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria,” Anal. Chem. 90(9), 5646–5653 (2018).
[Crossref]

Anal. Chim. Acta (1)

S Restaino and I White, “A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample,” Anal. Chim. Acta 1060, 17–29 (2018).
[Crossref]

Appl. Mater. Today (2)

X. Wang, E. Cao, H. Zong, and M. Sun, “Plasmonic electrons enhanced resonance Raman scattering (EERRS) and electrons enhanced fluorescence (EEF) spectra,” Appl. Mater. Today 13, 298–302 (2018).
[Crossref]

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, and M. Sun, “Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

Appl. Surf. Sci. (3)

W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, “Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays,” Appl. Surf. Sci. 504, 144252 (2020).
[Crossref]

Y. Jiang, J. Wang, L. Malfatti, D. Carboni, N. Senes, and P. Innocenzi, “Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection,” Appl. Surf. Sci. 450, 451–460 (2018).
[Crossref]

H. Sun, H. Liu, and Y. Wu, “A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice,” Appl. Surf. Sci. 416, 704–709 (2017).
[Crossref]

Carbon (1)

Y. Wang, H. Chen, M. Sun, Z. Yao, B. Quan, Z. Liu, and J. Li, “Ultrafast carrier transfer evidencing graphene electromagnetically enhanced ultrasensitive SERS in graphene/Ag-nanoparticles hybrid,” Carbon 122, 98–105 (2017).
[Crossref]

Chem. Phys. Lett. (1)

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Chem. Rec. (1)

H. Zong, X. Wang, X. Mu, J. Wang, and M. Sun, “Plasmon-Enhanced Fluorescence Resonance Energy Transfer,” Chem. Rec. 19(5), 818–842 (2019).
[Crossref]

J. Am. Chem. Soc. (1)

J. Guo, Y. Zhang, L. Shi, Y. Zhu, M. Mideksa, K. Hou, and J. Lv, “Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis,” J. Am. Chem. Soc. 139(49), 17964–17972 (2017).
[Crossref]

J. Nanophotonics (1)

A Karabchevsky, M Auslender, and I Abdulhalim, “Dual surface plasmon excitation with thin metallic nanoslits,” J. Nanophotonics 5, 051821 (2011).
[Crossref]

J. Phys. Chem. C (2)

Y. Jiang, H. Wang, H. Wang, B. Gao, Y. Hao, Y. Jin, Q. Chen, and H. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

J. Raman. Spectrosc. (1)

L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, “Visualized method of chemical enhancement mechanism on SERS and TERS,” J. Raman. Spectrosc. 45(7), 533–540 (2014).
[Crossref]

Langmuir (1)

W. Lin, Y. Cao, P. Wang, and M. Sun, “Unified treatment for plasmon-exciton co-driven reduction and oxidation reactions,” Langmuir 33(43), 12102–12107 (2017).
[Crossref]

Light: Sci. Appl. (1)

Z. Dai, X. Xiao, W. Wu, Y. Zhang, L. Liao, S. Guo, and C. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light: Sci. Appl. 4(10), e342 (2015).
[Crossref]

Mater. Today Phys. (2)

J. Wang, X. Mu, L. Wang, and M. Sun, “Properties and Applications of New Superlattice: Twisted Bilayer Graphene,” Mater. Today Phys. 9, 100099 (2019).
[Crossref]

W. Lin, Y. Shi, X. Yang, J. Li, E. Cao, X. Xu, T. Pullerits, W. Liang, and M. Sun, “Physical mechanism on exciton-plasmon coupling revealed by fem to second pump-probe transient absorption spectroscopy,” Mater. Today Phys. 3, 33–40 (2017).
[Crossref]

MRS Bull. (1)

L. Tong, H. Xu, and M. Käll, “Nanogaps for SERS applications,” MRS Bull. 39(2), 163–168 (2014).
[Crossref]

Nano Lett. (2)

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

Nanophotonics (1)

J. Dong, Z. Zhang, H. Zheng, and M. Sun, “Recent progress on plasmon-enhanced fluorescence,” Nanophotonics 4(4), 472–490 (2015).
[Crossref]

Nanoscale (1)

W. Lin, E. Cao, L. Zhang, X. Xu, Y. Song, W. Liang, and M. Sun, “Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid,” Nanoscale 10(12), 5482–5488 (2018).
[Crossref]

Nanoscale. Res. Lett. (1)

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, and M. Sun, “Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application,” Nanoscale. Res. Lett. 14(1), 118 (2019).
[Crossref]

Nanotechnology (1)

E Cao, M Sun, Y Song, and W Liang, “Exciton-plasmon hybrids for surface catalysis detected by SERS,” Nanotechnology 29(37), 372001 (2018).
[Crossref]

Nat. Commun. (1)

T. Köker, N. Tang, C. Tian, W. Zhang, X. Wang, R. Martel, and F. Pinaud, “Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds,” Nat. Commun. 9(1), 607 (2018).
[Crossref]

Nat. Mater. (1)

J. Oostinga, H. Heersche, X. Liu, A. Morpurgo, and L. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nat. Mater. 7(2), 151–157 (2008).
[Crossref]

Nat. Nanotechnol. (1)

V. Flauraud, M. Mastrangeli, G. Bernasconi, J. Butet, D. Alexnder, E. Shahrabi, and J. Brugger, “Nanoscale topographical control of capillary assembly of nanoparticles,” Nat. Nanotechnol. 12(1), 73–80 (2017).
[Crossref]

Nat. Protoc. (1)

J. Li, X. Tian, S. Li, J. Anema, Z. Yang, Y. Ding, and Z. Wang, “Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nat. Protoc. 8(1), 52–65 (2013).
[Crossref]

Opt. Commun. (1)

O Krasnykov, A Karabchevsky, A Shalabney, M Auslender, and I Abdulhalim, “Sensor with increased sensitivity based on enhanced optical transmission in the infrared,” Opt. Commun. 284(5), 1435–1438 (2011).
[Crossref]

Opt. Express (2)

Photonic and Nanostruct (1)

A. Karabchevsky, O. Krasnykov, I. Abdulhalim, B. Hadad, A. Goldner, M. Auslender, and S. Hava, “Metal grating on a substrate nanostructure for sensor applications,” Photonic and Nanostruct 7(4), 170–175 (2009).
[Crossref]

Phys. Rev. B (1)

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Plasmonics (1)

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
[Crossref]

Rev. Phys. (1)

J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, and M. Sun, “Plasmon-enhanced upconversion photoluminescence: mechanism and application,”,” Rev. Phys. 4, 100026 (2019).
[Crossref]

RSC Adv. (1)

J. Wang, F. Ma, and M. Sun, “Graphene, hexagonal boron nitride, and their heterostructures: properties and applications,” RSC Adv. 7(27), 16801–16822 (2017).
[Crossref]

Science (1)

K Novoselov, A Geim, S Morozov, D Jiang, Y Zhang, S Dubonos, and A Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Sens. Actuators, B (4)

Y. Gao, N. Yang, T. You, C. Zhang, and P. Yin, “Superhydrophobic “wash free” 3D nanoneedle array for rapid, recyclable and sensitive SERS sensing in real environment,” Sens. Actuators, B 267, 129–135 (2018).
[Crossref]

C. Li, C. Zhang, S. Xu, Y. Huo, S. Jiang, C. Yang, and B. Man, “Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots,” Sens. Actuators, B 263, 408–416 (2018).
[Crossref]

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuators, B 222, 1175–1183 (2016).
[Crossref]

C. Zhang, C. Li, J. Yu, S. Jiang, S. Xu, C. Yang, and B. Man, “SERS activated platform with three-dimensional hot spots and tunable nanometer gap,” Sens. Actuators, B 258, 163–171 (2018).
[Crossref]

Sensors (1)

Y. Huang, D. Lin, M. Li, D. Yin, S. Wang, and J. Wang, “Ag@ Au Core–Shell Porous Nanocages with Outstanding SERS Activity for Highly Sensitive SERS Immunoassay,” Sensors 19(7), 1554 (2019).
[Crossref]

Small (2)

W. Li, X. Zhan, X. Song, S. Si, R. Chen, J. Liu, and X. Xiao, “A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting,” Small 15(31), 1901820 (2019).
[Crossref]

X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang, and X. Xiao, “Volume-Enhanced Raman Scattering Detection of Viruses,” Small 15(11), 1805516 (2019).
[Crossref]

Other (1)

J Dong, X Zhao, E Cao, Q Han, L Liu, W Zhang, and M Sun, “Flexible and Transparent AuNP/G/AuNP “Sandwich” Substrate for Surface-enhanced Raman Scattering,” Mater. Today Nano100067 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Flowchart illustrating the fabrication procedure of the Ag Grating/G/AuNPs hybrid structure.
Fig. 2.
Fig. 2. (a) Ag grating inversion from DVD-R disc. (b) Self-assembly of AuNPs to the Ag grating surface. (c) and (d) transfer of graphene to the middle and upper layers of AuNPs and Ag grating.
Fig. 3.
Fig. 3. (a) Ag grating inversion from the Blu-ray disc. (b) Self-assembly of AuNPs to the Ag grating surface. (c) and (d) transfer of graphene to the middle and upper layers of AuNPs and Ag grating.
Fig. 4.
Fig. 4. (a) Hybrid structure of Ag grating/graphene/AuNPs on the Si substrate. (b) Simulated electric field distribution of the rough surface of bare Ag grating. (c) Top view of the rough grating surface of the simulated electric field distribution. (d) Simulated electric field enhancement of the Ag grating/AuNPs structure(Line 1). Electric field simulation distributions of the hybrid Ag grating/graphene/AuNPs structure at the ridges(Line 2) and depressions(Line 3).
Fig. 5.
Fig. 5. (a) Single-period electric field simulation results and top view of DVD-R grating. (b) Single-period electric field simulation results and top view of Blu-ray grating.
Fig. 6.
Fig. 6. (a) Raman spectra of eight different substrates after soaking for 30 min at a concentration of 10−6 M Rh6G. (b) Raman spectra of three different substrates (graphene/Si, Blu-ray grating/AuNPs /graphene, Blu-ray grating/graphene/AuNPs Raman spectroscopy on graphene). (c) Raman spectroscopy of Rh6G concentration gradient with a Blu-ray grating/graphene/AuNPs substrate. (d) Raman signal of Rh6G with a concentration of 10−3 M and used as the control. (e) Relative intensity of the Blu-ray grating/graphene/AuNPs structure at 613 cm−1. (f) Relative intensity of the Blu-ray grating/graphene/AuNPs structure at 1359 cm−1.
Fig. 7.
Fig. 7. (a) Surface of the Blu-ray grating/graphene/AuNPs structure randomly selected from 10 points to collect the SERS spectrum of 10−8 M Rh6G. (b) and (c) SERS intensity statistics at a concentration of 10−8 M Rh6G at 1118 and 1347 cm−1. (d) CV/Rh6G at a concentration of 10−8 M and the SERS spectrum of the two mixed molecules on the composite Blu-ray grating/graphene/AuNPs structure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E F = I S E R S / N S E R S I R S / N R S