Abstract

Nonlinear optical microscopy allows for rapid high-resolution microscopy with image contrast generated from the intrinsic properties of the sample. Established modalities, such as multiphoton excited fluorescence and second/third-harmonic generation, can be combined with other nonlinear techniques, such as coherent Raman spectroscopy, which typically allow chemical imaging of a single resonant vibrational mode of a sample. Here, we utilize a single ultrafast laser source to obtain broadband coherent Raman spectra on a microscope, together with other nonlinear microscopy approaches on the same instrument. We demonstrate that the coherent Raman modality allows broadband measurement (>1000 cm−1), with high spectral resolution (<5 cm−1), with a rapid spectral acquisition rate (3-12 kHz). This enables Raman hyperspectral imaging of kilo-pixel images at >11 frames per second.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref]
  3. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
    [Crossref]
  4. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
    [Crossref]
  5. J. N. Gannaway and C. J. R. Sheppard, “Second-harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10(5), 435–439 (1978).
    [Crossref]
  6. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
    [Crossref]
  7. J. A. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
    [Crossref]
  8. B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
    [Crossref]
  9. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
    [Crossref]
  10. C. H. Camp Jr and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
    [Crossref]
  11. C. Zhang and J.-X. Cheng, “Perspective: Coherent Raman scattering microscopy, the future is bright,” APL Photonics 3(9), 090901 (2018).
    [Crossref]
  12. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [Crossref]
  13. M. Cui, M. Joffre, J. Skodack, and J. P. Ogilvie, “Interferometric Fourier transform coherent anti-Stokes Raman scattering,” Opt. Express 14(18), 8448–8458 (2006).
    [Crossref]
  14. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref]
  15. K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42(2), 318–321 (2017).
    [Crossref]
  16. T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
    [Crossref]
  17. X. Audier, N. Balla, and H. Rigneault, “Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line,” Opt. Lett. 42(2), 294–297 (2017).
    [Crossref]
  18. D. Raanan, X. Audier, S. Shivkumar, M. Asher, M. Menahem, O. Yaffe, N. Forget, H. Rigneault, and D. Oron, “Sub-second hyper-spectral low-frequency vibrational imaging via impulsive Raman excitation,” Opt. Lett. 44(21), 5153–5156 (2019).
    [Crossref]
  19. A. S. Duarte, C. Schnedermann, and P. Kukura, “Wide-field detected Fourier transform CARS microscopy,” Sci. Rep. 6(1), 37516 (2016).
    [Crossref]
  20. K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
    [Crossref]
  21. M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
    [Crossref]
  22. R. Kinegawa, K. Hiramatsu, K. Hashimoto, V. R. Badarla, T. Ideguchi, and K. Goda, “High-speed broadband Fourier-transform coherent anti-Stokes Raman scattering spectral microscopy,” J. Raman Spectrosc. 50(8), 1141–1146 (2019).
    [Crossref]
  23. C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
    [Crossref]
  24. H. Chen, H. Wang, M. N. Slipchenko, Y. K. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J.-X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
    [Crossref]
  25. I. Pope, W. Langbein, P. Watson, and P. Borri, “Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser,” Opt. Express 21(6), 7096–7106 (2013).
    [Crossref]
  26. C. H. Camp Jr, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
    [Crossref]
  27. S. Kumar, T. Kamali, J. M. Levitte, O. Katz, B. Hermann, R. Werkmeister, B. Považay, W. Drexler, A. Unterhuber, and Y. Silberberg, “Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging,” Opt. Express 23(10), 13082–13098 (2015).
    [Crossref]
  28. H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “Invited article: CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
    [Crossref]
  29. H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. O. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20(9), 9551–9557 (2012).
    [Crossref]
  30. M. Lindley, K. Hiramatsu, H. Nomoto, F. Shibata, T. Takeshita, S. Kawano, and K. Goda, “Ultrafast Simultaneous Raman-Fluorescence Spectroscopy,” Anal. Chem. 91(24), 15563–15569 (2019).
    [Crossref]
  31. R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for Raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8–38 (2015).
    [Crossref]
  32. D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
    [Crossref]
  33. C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. R. Kyle, R. B. Ehrlich, and N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501–505 (1995).
    [Crossref]
  34. Z. Meić and H. Güsten, “Vibrational studies of trans-stilbenes—I. Infrared and Raman spectra of trans-stilbene and deuterated trans-stilbenes,” Spectrochim Acta. A. 34(1), 101–111 (1978).
    [Crossref]
  35. T. L. Gustafson, D. M. Roberts, and D. A. Chernoff, “Picosecond transient Raman spectroscopy: The photoisomerization of trans-stilbene,” J. Chem. Phys. 79(4), 1559–1564 (1983).
    [Crossref]
  36. A. Uchugonova, K. König, R. Bueckle, A. Isemann, and G. Tempea, “Targeted transfection of stem cells with sub-20 femtosecond laser pulses,” Opt. Express 16(13), 9357–9364 (2008).
    [Crossref]
  37. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  38. K. Hashimoto, J. Omachi, and T. Ideguchi, “Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses,” Opt. Express 26(11), 14307–14314 (2018).
    [Crossref]
  39. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29(7), 775–777 (2004).
    [Crossref]
  40. K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
    [Crossref]
  41. F. Sinjab, K. Hashimoto, X. Zhao, Y. Nagashima, and T. Ideguchi, “Enhanced spectral resolution for broadband coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 45(6), 1515–1518 (2020).
    [Crossref]
  42. A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
    [Crossref]
  43. K. Hiramatsu, Y. Luo, T. Ideguchi, and K. Goda, “Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection,” Opt. Lett. 42(21), 4335–4338 (2017).
    [Crossref]
  44. D. R. Smith, J. J. Field, D. G. Winters, S. Domingue, F. Rininsland, D. J. Kane, J. W. Wilson, and R. A. Bartels, “Ultrasensitive Doppler Raman spectroscopy using radio frequency phase shift detection,” arXiv preprint arXiv:1912.04348 (2019).
  45. T. Buberl, P. Sulzer, A. Leitenstorfer, F. Krausz, and I. Pupeza, “Broadband interferometric subtraction of optical fields,” Opt. Express 27(3), 2432–2443 (2019).
    [Crossref]

2020 (1)

2019 (5)

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

T. Buberl, P. Sulzer, A. Leitenstorfer, F. Krausz, and I. Pupeza, “Broadband interferometric subtraction of optical fields,” Opt. Express 27(3), 2432–2443 (2019).
[Crossref]

D. Raanan, X. Audier, S. Shivkumar, M. Asher, M. Menahem, O. Yaffe, N. Forget, H. Rigneault, and D. Oron, “Sub-second hyper-spectral low-frequency vibrational imaging via impulsive Raman excitation,” Opt. Lett. 44(21), 5153–5156 (2019).
[Crossref]

R. Kinegawa, K. Hiramatsu, K. Hashimoto, V. R. Badarla, T. Ideguchi, and K. Goda, “High-speed broadband Fourier-transform coherent anti-Stokes Raman scattering spectral microscopy,” J. Raman Spectrosc. 50(8), 1141–1146 (2019).
[Crossref]

M. Lindley, K. Hiramatsu, H. Nomoto, F. Shibata, T. Takeshita, S. Kawano, and K. Goda, “Ultrafast Simultaneous Raman-Fluorescence Spectroscopy,” Anal. Chem. 91(24), 15563–15569 (2019).
[Crossref]

2018 (4)

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “Invited article: CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

C. Zhang and J.-X. Cheng, “Perspective: Coherent Raman scattering microscopy, the future is bright,” APL Photonics 3(9), 090901 (2018).
[Crossref]

T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
[Crossref]

K. Hashimoto, J. Omachi, and T. Ideguchi, “Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses,” Opt. Express 26(11), 14307–14314 (2018).
[Crossref]

2017 (5)

K. Hiramatsu, Y. Luo, T. Ideguchi, and K. Goda, “Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection,” Opt. Lett. 42(21), 4335–4338 (2017).
[Crossref]

X. Audier, N. Balla, and H. Rigneault, “Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line,” Opt. Lett. 42(2), 294–297 (2017).
[Crossref]

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42(2), 318–321 (2017).
[Crossref]

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

2016 (3)

A. S. Duarte, C. Schnedermann, and P. Kukura, “Wide-field detected Fourier transform CARS microscopy,” Sci. Rep. 6(1), 37516 (2016).
[Crossref]

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
[Crossref]

B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref]

2015 (3)

C. H. Camp Jr and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for Raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8–38 (2015).
[Crossref]

S. Kumar, T. Kamali, J. M. Levitte, O. Katz, B. Hermann, R. Werkmeister, B. Považay, W. Drexler, A. Unterhuber, and Y. Silberberg, “Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging,” Opt. Express 23(10), 13082–13098 (2015).
[Crossref]

2014 (1)

C. H. Camp Jr, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

2013 (2)

I. Pope, W. Langbein, P. Watson, and P. Borri, “Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser,” Opt. Express 21(6), 7096–7106 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

2012 (1)

2011 (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

2009 (1)

2008 (2)

C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
[Crossref]

A. Uchugonova, K. König, R. Bueckle, A. Isemann, and G. Tempea, “Targeted transfection of stem cells with sub-20 femtosecond laser pulses,” Opt. Express 16(13), 9357–9364 (2008).
[Crossref]

2006 (1)

2005 (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

2004 (1)

2003 (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref]

2002 (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref]

2001 (1)

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[Crossref]

2000 (1)

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref]

1998 (1)

1997 (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

1995 (1)

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. R. Kyle, R. B. Ehrlich, and N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501–505 (1995).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

1983 (1)

T. L. Gustafson, D. M. Roberts, and D. A. Chernoff, “Picosecond transient Raman spectroscopy: The photoisomerization of trans-stilbene,” J. Chem. Phys. 79(4), 1559–1564 (1983).
[Crossref]

1978 (2)

J. N. Gannaway and C. J. R. Sheppard, “Second-harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10(5), 435–439 (1978).
[Crossref]

Z. Meić and H. Güsten, “Vibrational studies of trans-stilbenes—I. Infrared and Raman spectra of trans-stilbene and deuterated trans-stilbenes,” Spectrochim Acta. A. 34(1), 101–111 (1978).
[Crossref]

Arai, F.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
[Crossref]

Ariese, F.

R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for Raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8–38 (2015).
[Crossref]

Asher, M.

Audier, X.

Badarla, V. R.

R. Kinegawa, K. Hiramatsu, K. Hashimoto, V. R. Badarla, T. Ideguchi, and K. Goda, “High-speed broadband Fourier-transform coherent anti-Stokes Raman scattering spectral microscopy,” J. Raman Spectrosc. 50(8), 1141–1146 (2019).
[Crossref]

Bakker, G.-J.

B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref]

Balla, N.

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Barker, C. E.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. R. Kyle, R. B. Ehrlich, and N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501–505 (1995).
[Crossref]

Bartels, R. A.

D. R. Smith, J. J. Field, D. G. Winters, S. Domingue, F. Rininsland, D. J. Kane, J. W. Wilson, and R. A. Bartels, “Ultrasensitive Doppler Raman spectroscopy using radio frequency phase shift detection,” arXiv preprint arXiv:1912.04348 (2019).

Berland, K. M.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Bohn, B. J.

Borri, P.

Brakenhoff, G. J.

Buberl, T.

Bueckle, R.

Buhman, K. K.

Caird, J. A.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. R. Kyle, R. B. Ehrlich, and N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501–505 (1995).
[Crossref]

Camp Jr, C. H.

C. H. Camp Jr and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

C. H. Camp Jr, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Campbell, J. H.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. R. Kyle, R. B. Ehrlich, and N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501–505 (1995).
[Crossref]

Chen, H.

Cheng, J.-X.

Chernoff, D. A.

T. L. Gustafson, D. M. Roberts, and D. A. Chernoff, “Picosecond transient Raman spectroscopy: The photoisomerization of trans-stilbene,” J. Chem. Phys. 79(4), 1559–1564 (1983).
[Crossref]

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref]

Cicerone, M. T.

C. H. Camp Jr and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

C. H. Camp Jr, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Couderc, V.

Cui, M.

Dantus, M.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Domingue, S.

D. R. Smith, J. J. Field, D. G. Winters, S. Domingue, F. Rininsland, D. J. Kane, J. W. Wilson, and R. A. Bartels, “Ultrasensitive Doppler Raman spectroscopy using radio frequency phase shift detection,” arXiv preprint arXiv:1912.04348 (2019).

Dong, C. Y.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref]

Drexler, W.

Duarte, A. S.

A. S. Duarte, C. Schnedermann, and P. Kukura, “Wide-field detected Fourier transform CARS microscopy,” Sci. Rep. 6(1), 37516 (2016).
[Crossref]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref]

Ehrlich, R. B.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. R. Kyle, R. B. Ehrlich, and N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501–505 (1995).
[Crossref]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Field, J. J.

D. R. Smith, J. J. Field, D. G. Winters, S. Domingue, F. Rininsland, D. J. Kane, J. W. Wilson, and R. A. Bartels, “Ultrasensitive Doppler Raman spectroscopy using radio frequency phase shift detection,” arXiv preprint arXiv:1912.04348 (2019).

Forget, N.

Freudiger, C. W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

Friedl, P.

B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref]

Ganikhanov, F.

C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
[Crossref]

Gannaway, J. N.

J. N. Gannaway and C. J. R. Sheppard, “Second-harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10(5), 435–439 (1978).
[Crossref]

Gautam, R.

R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for Raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8–38 (2015).
[Crossref]

Goda, K.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

R. Kinegawa, K. Hiramatsu, K. Hashimoto, V. R. Badarla, T. Ideguchi, and K. Goda, “High-speed broadband Fourier-transform coherent anti-Stokes Raman scattering spectral microscopy,” J. Raman Spectrosc. 50(8), 1141–1146 (2019).
[Crossref]

M. Lindley, K. Hiramatsu, H. Nomoto, F. Shibata, T. Takeshita, S. Kawano, and K. Goda, “Ultrafast Simultaneous Raman-Fluorescence Spectroscopy,” Anal. Chem. 91(24), 15563–15569 (2019).
[Crossref]

T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
[Crossref]

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

K. Hiramatsu, Y. Luo, T. Ideguchi, and K. Goda, “Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection,” Opt. Lett. 42(21), 4335–4338 (2017).
[Crossref]

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
[Crossref]

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Gustafson, T. L.

T. L. Gustafson, D. M. Roberts, and D. A. Chernoff, “Picosecond transient Raman spectroscopy: The photoisomerization of trans-stilbene,” J. Chem. Phys. 79(4), 1559–1564 (1983).
[Crossref]

Güsten, H.

Z. Meić and H. Güsten, “Vibrational studies of trans-stilbenes—I. Infrared and Raman spectra of trans-stilbene and deuterated trans-stilbenes,” Spectrochim Acta. A. 34(1), 101–111 (1978).
[Crossref]

Hamaguchi, H. O.

Hänsch, T. W.

K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42(2), 318–321 (2017).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Hartshorn, C. M.

C. H. Camp Jr, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Hase, M.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

Hashimoto, K.

F. Sinjab, K. Hashimoto, X. Zhao, Y. Nagashima, and T. Ideguchi, “Enhanced spectral resolution for broadband coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 45(6), 1515–1518 (2020).
[Crossref]

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

R. Kinegawa, K. Hiramatsu, K. Hashimoto, V. R. Badarla, T. Ideguchi, and K. Goda, “High-speed broadband Fourier-transform coherent anti-Stokes Raman scattering spectral microscopy,” J. Raman Spectrosc. 50(8), 1141–1146 (2019).
[Crossref]

K. Hashimoto, J. Omachi, and T. Ideguchi, “Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses,” Opt. Express 26(11), 14307–14314 (2018).
[Crossref]

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
[Crossref]

Hayakawa, T.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
[Crossref]

Heddleston, J. M.

C. H. Camp Jr, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Hermann, B.

Hiramatsu, K.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

M. Lindley, K. Hiramatsu, H. Nomoto, F. Shibata, T. Takeshita, S. Kawano, and K. Goda, “Ultrafast Simultaneous Raman-Fluorescence Spectroscopy,” Anal. Chem. 91(24), 15563–15569 (2019).
[Crossref]

R. Kinegawa, K. Hiramatsu, K. Hashimoto, V. R. Badarla, T. Ideguchi, and K. Goda, “High-speed broadband Fourier-transform coherent anti-Stokes Raman scattering spectral microscopy,” J. Raman Spectrosc. 50(8), 1141–1146 (2019).
[Crossref]

T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
[Crossref]

K. Hiramatsu, Y. Luo, T. Ideguchi, and K. Goda, “Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection,” Opt. Lett. 42(21), 4335–4338 (2017).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Hopt, A.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[Crossref]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Hoshino, Y.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref]

Ideguchi, T.

F. Sinjab, K. Hashimoto, X. Zhao, Y. Nagashima, and T. Ideguchi, “Enhanced spectral resolution for broadband coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 45(6), 1515–1518 (2020).
[Crossref]

R. Kinegawa, K. Hiramatsu, K. Hashimoto, V. R. Badarla, T. Ideguchi, and K. Goda, “High-speed broadband Fourier-transform coherent anti-Stokes Raman scattering spectral microscopy,” J. Raman Spectrosc. 50(8), 1141–1146 (2019).
[Crossref]

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
[Crossref]

K. Hashimoto, J. Omachi, and T. Ideguchi, “Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses,” Opt. Express 26(11), 14307–14314 (2018).
[Crossref]

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

K. Hiramatsu, Y. Luo, T. Ideguchi, and K. Goda, “Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection,” Opt. Lett. 42(21), 4335–4338 (2017).
[Crossref]

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Inoko, A.

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “Invited article: CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

Isemann, A.

Ito, T.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

Joffre, M.

Jung, Y. K.

Kamali, T.

Kane, D. J.

D. R. Smith, J. J. Field, D. G. Winters, S. Domingue, F. Rininsland, D. J. Kane, J. W. Wilson, and R. A. Bartels, “Ultrasensitive Doppler Raman spectroscopy using radio frequency phase shift detection,” arXiv preprint arXiv:1912.04348 (2019).

Kano, H.

Kasai, Y.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
[Crossref]

Katz, O.

Kawano, S.

M. Lindley, K. Hiramatsu, H. Nomoto, F. Shibata, T. Takeshita, S. Kawano, and K. Goda, “Ultrafast Simultaneous Raman-Fluorescence Spectroscopy,” Anal. Chem. 91(24), 15563–15569 (2019).
[Crossref]

Kinegawa, R.

R. Kinegawa, K. Hiramatsu, K. Hashimoto, V. R. Badarla, T. Ideguchi, and K. Goda, “High-speed broadband Fourier-transform coherent anti-Stokes Raman scattering spectral microscopy,” J. Raman Spectrosc. 50(8), 1141–1146 (2019).
[Crossref]

König, K.

Krausz, F.

Kukura, P.

A. S. Duarte, C. Schnedermann, and P. Kukura, “Wide-field detected Fourier transform CARS microscopy,” Sci. Rep. 6(1), 37516 (2016).
[Crossref]

Kumar, S.

Kyle, K. R.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. R. Kyle, R. B. Ehrlich, and N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501–505 (1995).
[Crossref]

Langbein, W.

Lathia, J. D.

C. H. Camp Jr, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Lee, S.

Lee, S. W.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

Lee, Y. J.

C. H. Camp Jr, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Légaré, F.

C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
[Crossref]

Leitenstorfer, A.

Leproux, P.

Levitte, J. M.

Lindley, M.

M. Lindley, K. Hiramatsu, H. Nomoto, F. Shibata, T. Takeshita, S. Kawano, and K. Goda, “Ultrafast Simultaneous Raman-Fluorescence Spectroscopy,” Anal. Chem. 91(24), 15563–15569 (2019).
[Crossref]

Lozovoy, V. V.

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

Luo, Y.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

K. Hiramatsu, Y. Luo, T. Ideguchi, and K. Goda, “Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection,” Opt. Lett. 42(21), 4335–4338 (2017).
[Crossref]

Masters, B. R.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref]

Meic, Z.

Z. Meić and H. Güsten, “Vibrational studies of trans-stilbenes—I. Infrared and Raman spectra of trans-stilbene and deuterated trans-stilbenes,” Spectrochim Acta. A. 34(1), 101–111 (1978).
[Crossref]

Mélen, G.

Menahem, M.

Min, W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

Mohler, K. J.

Müller, M.

Murray, J. R.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. R. Kyle, R. B. Ehrlich, and N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501–505 (1995).
[Crossref]

Nagashima, Y.

Nakamura, T.

T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
[Crossref]

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

Neher, E.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[Crossref]

Nielsen, N. D.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. R. Kyle, R. B. Ehrlich, and N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501–505 (1995).
[Crossref]

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Nomoto, H.

M. Lindley, K. Hiramatsu, H. Nomoto, F. Shibata, T. Takeshita, S. Kawano, and K. Goda, “Ultrafast Simultaneous Raman-Fluorescence Spectroscopy,” Anal. Chem. 91(24), 15563–15569 (2019).
[Crossref]

Notingher, I.

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

Ogilvie, J. P.

Okuno, M.

Olsen, B. R.

C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
[Crossref]

Omachi, J.

Oron, D.

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Park, J.-W.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
[Crossref]

Pastirk, I.

Pfeffer, C. P.

C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
[Crossref]

Picqué, N.

K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42(2), 318–321 (2017).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Podagatlapalli, G. K.

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

Pope, I.

Považay, B.

Pupeza, I.

Raanan, D.

Ramaiah-Badarla, V.

Rich, J. N.

C. H. Camp Jr, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Rigneault, H.

Rininsland, F.

D. R. Smith, J. J. Field, D. G. Winters, S. Domingue, F. Rininsland, D. J. Kane, J. W. Wilson, and R. A. Bartels, “Ultrasensitive Doppler Raman spectroscopy using radio frequency phase shift detection,” arXiv preprint arXiv:1912.04348 (2019).

Roberts, D. M.

T. L. Gustafson, D. M. Roberts, and D. A. Chernoff, “Picosecond transient Raman spectroscopy: The photoisomerization of trans-stilbene,” J. Chem. Phys. 79(4), 1559–1564 (1983).
[Crossref]

Sacks, R. A.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. R. Kyle, R. B. Ehrlich, and N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501–505 (1995).
[Crossref]

Sakaki, Y.

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

Sakuma, S.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
[Crossref]

Schnedermann, C.

A. S. Duarte, C. Schnedermann, and P. Kukura, “Wide-field detected Fourier transform CARS microscopy,” Sci. Rep. 6(1), 37516 (2016).
[Crossref]

Segawa, H.

Sheppard, C. J. R.

J. N. Gannaway and C. J. R. Sheppard, “Second-harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10(5), 435–439 (1978).
[Crossref]

Shi, Y.

Shibata, F.

M. Lindley, K. Hiramatsu, H. Nomoto, F. Shibata, T. Takeshita, S. Kawano, and K. Goda, “Ultrafast Simultaneous Raman-Fluorescence Spectroscopy,” Anal. Chem. 91(24), 15563–15569 (2019).
[Crossref]

Shipp, D. W.

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

Shivkumar, S.

Silberberg, Y.

S. Kumar, T. Kamali, J. M. Levitte, O. Katz, B. Hermann, R. Werkmeister, B. Považay, W. Drexler, A. Unterhuber, and Y. Silberberg, “Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging,” Opt. Express 23(10), 13082–13098 (2015).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Sinjab, F.

F. Sinjab, K. Hashimoto, X. Zhao, Y. Nagashima, and T. Ideguchi, “Enhanced spectral resolution for broadband coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 45(6), 1515–1518 (2020).
[Crossref]

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

Skodack, J.

Slipchenko, M. N.

Smith, D. R.

D. R. Smith, J. J. Field, D. G. Winters, S. Domingue, F. Rininsland, D. J. Kane, J. W. Wilson, and R. A. Bartels, “Ultrasensitive Doppler Raman spectroscopy using radio frequency phase shift detection,” arXiv preprint arXiv:1912.04348 (2019).

So, P. T. C.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref]

Squier, J. A.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Sudo, K.

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “Invited article: CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

Sulzer, P.

Takahashi, M.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
[Crossref]

Takeshita, T.

M. Lindley, K. Hiramatsu, H. Nomoto, F. Shibata, T. Takeshita, S. Kawano, and K. Goda, “Ultrafast Simultaneous Raman-Fluorescence Spectroscopy,” Anal. Chem. 91(24), 15563–15569 (2019).
[Crossref]

Takizawa, S.

Tamamitsu, M.

T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
[Crossref]

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

Tempea, G.

Uchugonova, A.

Umapathy, S.

R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for Raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8–38 (2015).
[Crossref]

Unterhuber, A.

Van Wonterghem, B. M.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. R. Kyle, R. B. Ehrlich, and N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501–505 (1995).
[Crossref]

Vanga, S.

R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for Raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8–38 (2015).
[Crossref]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Walker, A. R. H.

C. H. Camp Jr, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Wang, H.

Watson, P.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Weigelin, B.

B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref]

Werkmeister, R.

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref]

Wilson, J. W.

D. R. Smith, J. J. Field, D. G. Winters, S. Domingue, F. Rininsland, D. J. Kane, J. W. Wilson, and R. A. Bartels, “Ultrasensitive Doppler Raman spectroscopy using radio frequency phase shift detection,” arXiv preprint arXiv:1912.04348 (2019).

Wilson, K. R.

Winters, D. G.

D. R. Smith, J. J. Field, D. G. Winters, S. Domingue, F. Rininsland, D. J. Kane, J. W. Wilson, and R. A. Bartels, “Ultrasensitive Doppler Raman spectroscopy using radio frequency phase shift detection,” arXiv preprint arXiv:1912.04348 (2019).

Xie, X. S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

Yaffe, O.

Yan, M.

Yonamine, Y.

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

Yoneyama, H.

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “Invited article: CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

Zhang, C.

C. Zhang and J.-X. Cheng, “Perspective: Coherent Raman scattering microscopy, the future is bright,” APL Photonics 3(9), 090901 (2018).
[Crossref]

Zhao, X.

Zhu, J.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref]

Adv. Opt. Photonics (1)

D. W. Shipp, F. Sinjab, and I. Notingher, “Raman spectroscopy: techniques and applications in the life sciences,” Adv. Opt. Photonics 9(2), 315–428 (2017).
[Crossref]

Anal. Chem. (1)

M. Lindley, K. Hiramatsu, H. Nomoto, F. Shibata, T. Takeshita, S. Kawano, and K. Goda, “Ultrafast Simultaneous Raman-Fluorescence Spectroscopy,” Anal. Chem. 91(24), 15563–15569 (2019).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref]

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

APL Photonics (2)

C. Zhang and J.-X. Cheng, “Perspective: Coherent Raman scattering microscopy, the future is bright,” APL Photonics 3(9), 090901 (2018).
[Crossref]

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “Invited article: CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Biophys. J. (1)

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[Crossref]

EPJ Tech. Instrum. (1)

R. Gautam, S. Vanga, F. Ariese, and S. Umapathy, “Review of multidimensional data processing approaches for Raman and infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 8–38 (2015).
[Crossref]

J. Cell Sci. (1)

B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” J. Cell Sci. 129(2), 245–255 (2016).
[Crossref]

J. Chem. Phys. (1)

T. L. Gustafson, D. M. Roberts, and D. A. Chernoff, “Picosecond transient Raman spectroscopy: The photoisomerization of trans-stilbene,” J. Chem. Phys. 79(4), 1559–1564 (1983).
[Crossref]

J. Raman Spectrosc. (1)

R. Kinegawa, K. Hiramatsu, K. Hashimoto, V. R. Badarla, T. Ideguchi, and K. Goda, “High-speed broadband Fourier-transform coherent anti-Stokes Raman scattering spectral microscopy,” J. Raman Spectrosc. 50(8), 1141–1146 (2019).
[Crossref]

J. Struct. Biol. (1)

C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008).
[Crossref]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref]

Nat. Photonics (2)

C. H. Camp Jr and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

C. H. Camp Jr, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Nature (2)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Opt. Express (9)

M. Cui, M. Joffre, J. Skodack, and J. P. Ogilvie, “Interferometric Fourier transform coherent anti-Stokes Raman scattering,” Opt. Express 14(18), 8448–8458 (2006).
[Crossref]

A. Uchugonova, K. König, R. Bueckle, A. Isemann, and G. Tempea, “Targeted transfection of stem cells with sub-20 femtosecond laser pulses,” Opt. Express 16(13), 9357–9364 (2008).
[Crossref]

H. Chen, H. Wang, M. N. Slipchenko, Y. K. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J.-X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
[Crossref]

H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. O. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20(9), 9551–9557 (2012).
[Crossref]

I. Pope, W. Langbein, P. Watson, and P. Borri, “Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser,” Opt. Express 21(6), 7096–7106 (2013).
[Crossref]

S. Kumar, T. Kamali, J. M. Levitte, O. Katz, B. Hermann, R. Werkmeister, B. Považay, W. Drexler, A. Unterhuber, and Y. Silberberg, “Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging,” Opt. Express 23(10), 13082–13098 (2015).
[Crossref]

T. Buberl, P. Sulzer, A. Leitenstorfer, F. Krausz, and I. Pupeza, “Broadband interferometric subtraction of optical fields,” Opt. Express 27(3), 2432–2443 (2019).
[Crossref]

J. A. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref]

K. Hashimoto, J. Omachi, and T. Ideguchi, “Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses,” Opt. Express 26(11), 14307–14314 (2018).
[Crossref]

Opt. Lett. (7)

T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. Ramaiah-Badarla, J.-W. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy,” Opt. Lett. 43(16), 4057–4060 (2018).
[Crossref]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29(7), 775–777 (2004).
[Crossref]

D. Raanan, X. Audier, S. Shivkumar, M. Asher, M. Menahem, O. Yaffe, N. Forget, H. Rigneault, and D. Oron, “Sub-second hyper-spectral low-frequency vibrational imaging via impulsive Raman excitation,” Opt. Lett. 44(21), 5153–5156 (2019).
[Crossref]

F. Sinjab, K. Hashimoto, X. Zhao, Y. Nagashima, and T. Ideguchi, “Enhanced spectral resolution for broadband coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 45(6), 1515–1518 (2020).
[Crossref]

X. Audier, N. Balla, and H. Rigneault, “Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line,” Opt. Lett. 42(2), 294–297 (2017).
[Crossref]

K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42(2), 318–321 (2017).
[Crossref]

K. Hiramatsu, Y. Luo, T. Ideguchi, and K. Goda, “Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection,” Opt. Lett. 42(21), 4335–4338 (2017).
[Crossref]

Opt. Quantum Electron. (1)

J. N. Gannaway and C. J. R. Sheppard, “Second-harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10(5), 435–439 (1978).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref]

Proc. SPIE (1)

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. R. Kyle, R. B. Ehrlich, and N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501–505 (1995).
[Crossref]

Sci. Adv. (1)

K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. W. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J.-W. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry,” Sci. Adv. 5(1), eaau0241 (2019).
[Crossref]

Sci. Rep. (2)

A. S. Duarte, C. Schnedermann, and P. Kukura, “Wide-field detected Fourier transform CARS microscopy,” Sci. Rep. 6(1), 37516 (2016).
[Crossref]

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Spectrochim Acta. A. (1)

Z. Meić and H. Güsten, “Vibrational studies of trans-stilbenes—I. Infrared and Raman spectra of trans-stilbene and deuterated trans-stilbenes,” Spectrochim Acta. A. 34(1), 101–111 (1978).
[Crossref]

Vib. Spectrosc. (1)

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163–169 (2017).
[Crossref]

Other (1)

D. R. Smith, J. J. Field, D. G. Winters, S. Domingue, F. Rininsland, D. J. Kane, J. W. Wilson, and R. A. Bartels, “Ultrasensitive Doppler Raman spectroscopy using radio frequency phase shift detection,” arXiv preprint arXiv:1912.04348 (2019).

Supplementary Material (2)

NameDescription
» Visualization 1       Kilopixel broadband CARS hyperspectral imaging of toluene in a glass capillary at >11 fps.
» Visualization 2       Two-photon excited autofluorescence imaging of onion cells using an ultrafast laser source.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Multimodal FT-CARS microscope. (a) Illustrated spectrum for the optical processes which can be measured with the microscope. ${\lambda _{cut}}$ refers to the wavelength cut-off selected for the long- and short-pass wavelength filters used for CARS detection. (b) Instrument schematic. VND: Variable Neutral Density filter, HWP: Half-Wave Plate, FM: Flip Mirror, PBS: Polarizing Beamsplitter, QWP: Quarter-Wave Plate, CM: Curved Mirror, G: Diffraction Grating, CLK: polygon scanner clock signal, POL: Linear Polarizer, PD: Silicon Photodiode, LPF: wavelength Long-Pass Filter, WP: Wedge Pair, DM: Dichroic Mirror, OL: Objective Lens, CL: Collection Lens, BPF: Band-Pass Filter, SPF: wavelength Short-Pass Filter, PMT: Photo-Multiplier Tube, APD: Avalanche Photodiode, ADC1: 14-bit, 125 MS/s digitizer board, ADC2 – National Instruments DAQ board. (c) fs laser spectrum. Auto-correlator measurement of reference arm beam (d) and scanning arm beam (e). (f) Cross-correlation of the reference and scan beams at the sample position using a KDP crystal and the SHG detector.
Fig. 2.
Fig. 2. Multimodal measurement of a KDP crystal fragment. (a) Bright-field image of fragment of KDP crystal. The red dashed box shows the region where a co-localized multimodal measurement in of SHG, THG and FT-CARS images was acquired. Schematic showing the estimated vertical profile of the regions of the KDP crystal marked (i) and (ii) in the bright-field image, with the red dashed line showing the image plane for multimodal measurement. (b) First principal component for the FT-CARS hyperspectral dataset (54% of explained variance in dataset). The green and red areas show the spectral regions used for the band area images in (c) and (d). (e) FT-CARS image generated using the coefficients of PC1. (f) SHG and (g) THG images of the same location as the FT-CARS image. (h) Combined multimodal image from the SHG, THG and FT-CARS PC1 channels. The FT-CARS image was 32×32 pixels with 333.3 µs pixel dwell time (image acquisition time: 0.34 s), and the SHG and THG images were 100×100 pixels acquired in 0.1 s.
Fig. 3.
Fig. 3. Multimodal measurement of a trans-stilbene crystal. (a) Bright-field image of tS crystal. (b) Schematic of sample in vertical direction, with dashed red line showing estimated plane for FT-CARS image acquisition. (c) Volumetric imaging of tS crystal with SHG (green) and THG (blue) channels. Dashed red box corresponds to the bright-field area shown in (a), while purple dashed line in XZ is a guide for the eye, relating to the schematic (b). (d) Mean spectrum of a 100${\times} $100 pixel FT-CARS hyperspectral image dataset acquired near the surface of the crystal with 333.3 µs pixel dwell time (image acquisition time: 3.33 s). (e) Principal component analysis applied to the FT-CARS dataset, showing the vectors and coefficient images for PCs 1-3. (f) Multimodal combined image of FT-CARS PC1 (red) and SHG (green). (g) Another possible multimodal image with FT-CARS PC2 > 0 (red), SHG (green) and FT-CARS PC2 < 0 (blue).
Fig. 4.
Fig. 4. High-speed FT-CARS micro-spectroscopy. (a) 100-averaged toluene FT-CARS spectra acquired at different polygonal mirror scanning rates from 3.0-16.5 kHz. Grey shaded regions indicate a Raman bandwidth spanning 400-1800cm−1. Also shown are the Nyquist frequencies corresponding to the laser repetition rate (${f_{rep}}/2$) and digitizer (${f_{ADC}}/2\; $). (b) Single frame acquisition at ∼3 fps, producing a 32×32-pixel image with pixel dwell time 333.3 µs (3 kHz spectral acquisition rate). Image contrast is generated from the specified band areas or principal component analysis of the 1024 spectra. (c) Continuously acquired frames at >11 fps, with 27 frames of 32×32-pixel images with pixel dwell time 83.3 µs (12 kHz spectral acquisition rate). Image contrast is generated using principal components analysis applied to all 27,648 sequentially acquired FT-CARS spectra. See Visualization 1 for video of all frames.
Fig. 5.
Fig. 5. Two-photon excited auto-fluorescence (2PEaF) imaging of onion epithelial cell layer with <1 mW ultrashort pulse excitation (detection between 550${\pm} $20 nm). (a) 3D 2PEaF measurement of green onion cell monolayer (100${\times} $100${\times} $25 pixels, 0.5 s acquisition per image slice). (b) Mean measurement of green onion cell layer across 62 frames of 1000×1000 pixel 2PEaF images (5 s acquisition per frame). (c) Example 5-averaged frames for the time-course 2PEaF measurement. See Visualization 2 for full video of data in (c).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t d = 1 f P M
f x = 1 2 N p t d
f y = 1 2 N p 2 t d = 1 2 t i m