Abstract

This study evaluates the interrogation techniques of a hybrid fiber optic sensor based on surface plasmon resonance (SPR) and multimode interference (MMI). The sensor is based on a single mode, fiber-no core, fiber-single mode fiber (SMF-NCF-SMF) structure with a deposited gold film layer. Both SPR and MMI effects are excited in a single sensor structure without enlarging the device size. However, at the same time, the interference fringe patterns are also mixed with the SPR transmission spectra, and the traditional SPR interrogation technique becomes unavailable since the resonant wavelength is hard to be located. In this study, the fast Fourier transform and different filtering algorithms are applied, both SPR signal and interference signal with different orders are separated effectively due to their different spatial frequency distributions, and they are processed individually for refractive index (RI) sensing. The experimental results verify that the overall RI sensitivity of the hybrid sensor is significantly enhanced. This study provides an important supplement to the traditional SPR and MMI functions.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Zhang, W. Zhuang, M. Dong, L. Zhu, and F. Meng, “Dual-Parameter Optical Fiber Sensor for Temperature and Pressure Discrimination Featuring Cascaded Tapered-FBG and Ball-EFPI,” IEEE Sens. J. 19(14), 5645–5652 (2019).
    [Crossref]
  2. Y. Liu, D. Yang, Y. Wang, T. Zhang, M. Shao, D. Yu, H. Fu, and Z. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
    [Crossref]
  3. W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
    [Crossref]
  4. Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly Integrated FP/FBG Sensor for Simultaneous Measurement of High Temperature and Strain,” IEEE Photonics Technol. Lett. 26(17), 1715–1717 (2014).
    [Crossref]
  5. Y. Jiang, D. Yang, Y. Yuan, J. Xu, D. Li, and J. Zhao, “Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry–Perot interferometer,” Appl. Opt. 55(23), 6341–6345 (2016).
    [Crossref]
  6. R. Yang, Y.-S. Yu, C.-C. Zhu, Y. Xue, C. Chen, X.-Y. Zhang, B.-L. Zhang, and H.-B. Sun, “PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
    [Crossref]
  7. X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
    [Crossref]
  8. Y. Wang, Q. Huang, W. Zhu, M. Yang, and E. Lewis, “Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film,” Opt. Express 26(2), 1910 (2018).
    [Crossref]
  9. Y. Zhao, Q. Wu, and Y. Zhang, “Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor,” Measurement 148, 106792 (2019).
    [Crossref]
  10. Y. Duo, C. Yuzhi, G. Youfu, T. Fei, L. Yong, L. Xuejin, and H. Xueming, “Low crosstalk hybrid fiber optic sensor based on surface plasmon resonance and MMI,” Opt. Lett. 45(1), 117 (2020).
    [Crossref]
  11. Q. Wu, Y. Zhao, Y. Zhang, and Y. Yang, “High sensitive applied load measurement using optical fiber tapered-loop probe with SPR effect,” Opt. Laser Technol. 114, 95–102 (2019).
    [Crossref]
  12. Y. Saad, M. Selmi, M. H. Gazzah, A. Bajahzar, and H. Belmabrouk, “Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer,” Optik 190, 1–9 (2019).
    [Crossref]
  13. Y. Chen, Y. Yu, X. Li, H. Zhou, X. Hong, and Y. Geng, “Fiber-optic urine specific gravity sensor based on surface plasmon resonance,” Sens. Actuators, B 226, 412–418 (2016).
    [Crossref]
  14. Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
    [Crossref]
  15. Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22(12), 15049 (2014).
    [Crossref]
  16. H. Moayyed, I. T. Leite, L. Coelho, J. L. Santos, and D. Viegas, “Analysis of Phase Interrogated SPR Fiber Optic Sensors With Bimetallic Layers,” IEEE Sens. J. 14(10), 3662–3668 (2014).
    [Crossref]
  17. R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sens. Actuators, B 107(2), 952–956 (2005).
    [Crossref]
  18. E. Rodríguez-Schwendtner, A. González-Cano, N. Díaz-Herrera, M. C. Navarrete, and Ó. Esteban, “Signal processing in SPR fiber sensors: Some remarks and a new method,” Sens. Actuators, B 268, 150–156 (2018).
    [Crossref]
  19. W. Udos, K.-S. Lim, C.-L. Tan, M. N. S. M. Ismail, C.-W. Ooi, R. Zakaria, and H. Ahmad, “Spatial frequency spectrum of SPR-TFBG: A simple spectral analysis for in-situ refractometry,” Optik 219, 164970 (2020).
    [Crossref]
  20. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-Sensitivity Mach–Zehnder Interferometric Temperature Fiber Sensor Based on a Waist-Enlarged Fusion Bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
    [Crossref]
  21. W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation,” Sensors 17(10), 2240 (2017).
    [Crossref]

2020 (3)

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

Y. Duo, C. Yuzhi, G. Youfu, T. Fei, L. Yong, L. Xuejin, and H. Xueming, “Low crosstalk hybrid fiber optic sensor based on surface plasmon resonance and MMI,” Opt. Lett. 45(1), 117 (2020).
[Crossref]

W. Udos, K.-S. Lim, C.-L. Tan, M. N. S. M. Ismail, C.-W. Ooi, R. Zakaria, and H. Ahmad, “Spatial frequency spectrum of SPR-TFBG: A simple spectral analysis for in-situ refractometry,” Optik 219, 164970 (2020).
[Crossref]

2019 (5)

Q. Wu, Y. Zhao, Y. Zhang, and Y. Yang, “High sensitive applied load measurement using optical fiber tapered-loop probe with SPR effect,” Opt. Laser Technol. 114, 95–102 (2019).
[Crossref]

Y. Saad, M. Selmi, M. H. Gazzah, A. Bajahzar, and H. Belmabrouk, “Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer,” Optik 190, 1–9 (2019).
[Crossref]

Y. Zhao, Q. Wu, and Y. Zhang, “Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor,” Measurement 148, 106792 (2019).
[Crossref]

W. Zhang, W. Zhuang, M. Dong, L. Zhu, and F. Meng, “Dual-Parameter Optical Fiber Sensor for Temperature and Pressure Discrimination Featuring Cascaded Tapered-FBG and Ball-EFPI,” IEEE Sens. J. 19(14), 5645–5652 (2019).
[Crossref]

Y. Liu, D. Yang, Y. Wang, T. Zhang, M. Shao, D. Yu, H. Fu, and Z. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

2018 (2)

Y. Wang, Q. Huang, W. Zhu, M. Yang, and E. Lewis, “Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film,” Opt. Express 26(2), 1910 (2018).
[Crossref]

E. Rodríguez-Schwendtner, A. González-Cano, N. Díaz-Herrera, M. C. Navarrete, and Ó. Esteban, “Signal processing in SPR fiber sensors: Some remarks and a new method,” Sens. Actuators, B 268, 150–156 (2018).
[Crossref]

2017 (2)

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation,” Sensors 17(10), 2240 (2017).
[Crossref]

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

2016 (2)

Y. Chen, Y. Yu, X. Li, H. Zhou, X. Hong, and Y. Geng, “Fiber-optic urine specific gravity sensor based on surface plasmon resonance,” Sens. Actuators, B 226, 412–418 (2016).
[Crossref]

Y. Jiang, D. Yang, Y. Yuan, J. Xu, D. Li, and J. Zhao, “Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry–Perot interferometer,” Appl. Opt. 55(23), 6341–6345 (2016).
[Crossref]

2015 (1)

R. Yang, Y.-S. Yu, C.-C. Zhu, Y. Xue, C. Chen, X.-Y. Zhang, B.-L. Zhang, and H.-B. Sun, “PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

2014 (3)

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly Integrated FP/FBG Sensor for Simultaneous Measurement of High Temperature and Strain,” IEEE Photonics Technol. Lett. 26(17), 1715–1717 (2014).
[Crossref]

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22(12), 15049 (2014).
[Crossref]

H. Moayyed, I. T. Leite, L. Coelho, J. L. Santos, and D. Viegas, “Analysis of Phase Interrogated SPR Fiber Optic Sensors With Bimetallic Layers,” IEEE Sens. J. 14(10), 3662–3668 (2014).
[Crossref]

2013 (1)

W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

2011 (1)

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-Sensitivity Mach–Zehnder Interferometric Temperature Fiber Sensor Based on a Waist-Enlarged Fusion Bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

2005 (1)

R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sens. Actuators, B 107(2), 952–956 (2005).
[Crossref]

Ahmad, H.

W. Udos, K.-S. Lim, C.-L. Tan, M. N. S. M. Ismail, C.-W. Ooi, R. Zakaria, and H. Ahmad, “Spatial frequency spectrum of SPR-TFBG: A simple spectral analysis for in-situ refractometry,” Optik 219, 164970 (2020).
[Crossref]

Bajahzar, A.

Y. Saad, M. Selmi, M. H. Gazzah, A. Bajahzar, and H. Belmabrouk, “Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer,” Optik 190, 1–9 (2019).
[Crossref]

Belmabrouk, H.

Y. Saad, M. Selmi, M. H. Gazzah, A. Bajahzar, and H. Belmabrouk, “Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer,” Optik 190, 1–9 (2019).
[Crossref]

Bo, F.

W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

Chen, C.

R. Yang, Y.-S. Yu, C.-C. Zhu, Y. Xue, C. Chen, X.-Y. Zhang, B.-L. Zhang, and H.-B. Sun, “PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

Chen, Y.

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Y. Chen, Y. Yu, X. Li, H. Zhou, X. Hong, and Y. Geng, “Fiber-optic urine specific gravity sensor based on surface plasmon resonance,” Sens. Actuators, B 226, 412–418 (2016).
[Crossref]

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22(12), 15049 (2014).
[Crossref]

Coelho, L.

H. Moayyed, I. T. Leite, L. Coelho, J. L. Santos, and D. Viegas, “Analysis of Phase Interrogated SPR Fiber Optic Sensors With Bimetallic Layers,” IEEE Sens. J. 14(10), 3662–3668 (2014).
[Crossref]

Deng, Y.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-Sensitivity Mach–Zehnder Interferometric Temperature Fiber Sensor Based on a Waist-Enlarged Fusion Bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

Díaz-Herrera, N.

E. Rodríguez-Schwendtner, A. González-Cano, N. Díaz-Herrera, M. C. Navarrete, and Ó. Esteban, “Signal processing in SPR fiber sensors: Some remarks and a new method,” Sens. Actuators, B 268, 150–156 (2018).
[Crossref]

Dong, M.

W. Zhang, W. Zhuang, M. Dong, L. Zhu, and F. Meng, “Dual-Parameter Optical Fiber Sensor for Temperature and Pressure Discrimination Featuring Cascaded Tapered-FBG and Ball-EFPI,” IEEE Sens. J. 19(14), 5645–5652 (2019).
[Crossref]

Duo, Y.

Esteban, Ó.

E. Rodríguez-Schwendtner, A. González-Cano, N. Díaz-Herrera, M. C. Navarrete, and Ó. Esteban, “Signal processing in SPR fiber sensors: Some remarks and a new method,” Sens. Actuators, B 268, 150–156 (2018).
[Crossref]

Fan, P.

Fei, T.

Fu, H.

Y. Liu, D. Yang, Y. Wang, T. Zhang, M. Shao, D. Yu, H. Fu, and Z. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Gao, F.

W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

Gao, X.

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

Gazzah, M. H.

Y. Saad, M. Selmi, M. H. Gazzah, A. Bajahzar, and H. Belmabrouk, “Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer,” Optik 190, 1–9 (2019).
[Crossref]

Geng, Y.

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Y. Chen, Y. Yu, X. Li, H. Zhou, X. Hong, and Y. Geng, “Fiber-optic urine specific gravity sensor based on surface plasmon resonance,” Sens. Actuators, B 226, 412–418 (2016).
[Crossref]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-Sensitivity Mach–Zehnder Interferometric Temperature Fiber Sensor Based on a Waist-Enlarged Fusion Bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

González-Cano, A.

E. Rodríguez-Schwendtner, A. González-Cano, N. Díaz-Herrera, M. C. Navarrete, and Ó. Esteban, “Signal processing in SPR fiber sensors: Some remarks and a new method,” Sens. Actuators, B 268, 150–156 (2018).
[Crossref]

Hao, X.

Hong, X.

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Y. Chen, Y. Yu, X. Li, H. Zhou, X. Hong, and Y. Geng, “Fiber-optic urine specific gravity sensor based on surface plasmon resonance,” Sens. Actuators, B 226, 412–418 (2016).
[Crossref]

Huang, L.

W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

Huang, Q.

Huang, Y.

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly Integrated FP/FBG Sensor for Simultaneous Measurement of High Temperature and Strain,” IEEE Photonics Technol. Lett. 26(17), 1715–1717 (2014).
[Crossref]

Ismail, M. N. S. M.

W. Udos, K.-S. Lim, C.-L. Tan, M. N. S. M. Ismail, C.-W. Ooi, R. Zakaria, and H. Ahmad, “Spatial frequency spectrum of SPR-TFBG: A simple spectral analysis for in-situ refractometry,” Optik 219, 164970 (2020).
[Crossref]

Jia, Z.

Y. Liu, D. Yang, Y. Wang, T. Zhang, M. Shao, D. Yu, H. Fu, and Z. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Jiang, Y.

Kajikawa, K.

R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sens. Actuators, B 107(2), 952–956 (2005).
[Crossref]

Leite, I. T.

H. Moayyed, I. T. Leite, L. Coelho, J. L. Santos, and D. Viegas, “Analysis of Phase Interrogated SPR Fiber Optic Sensors With Bimetallic Layers,” IEEE Sens. J. 14(10), 3662–3668 (2014).
[Crossref]

Lewis, E.

Li, D.

Li, J.

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

Li, X.

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Y. Chen, Y. Yu, X. Li, H. Zhou, X. Hong, and Y. Geng, “Fiber-optic urine specific gravity sensor based on surface plasmon resonance,” Sens. Actuators, B 226, 412–418 (2016).
[Crossref]

Z. Tan, X. Hao, Y. Shao, Y. Chen, X. Li, and P. Fan, “Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor,” Opt. Express 22(12), 15049 (2014).
[Crossref]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-Sensitivity Mach–Zehnder Interferometric Temperature Fiber Sensor Based on a Waist-Enlarged Fusion Bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

Lim, K.-S.

W. Udos, K.-S. Lim, C.-L. Tan, M. N. S. M. Ismail, C.-W. Ooi, R. Zakaria, and H. Ahmad, “Spatial frequency spectrum of SPR-TFBG: A simple spectral analysis for in-situ refractometry,” Optik 219, 164970 (2020).
[Crossref]

Lin, H.

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

Liu, Q.

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly Integrated FP/FBG Sensor for Simultaneous Measurement of High Temperature and Strain,” IEEE Photonics Technol. Lett. 26(17), 1715–1717 (2014).
[Crossref]

Liu, Y.

Y. Liu, D. Yang, Y. Wang, T. Zhang, M. Shao, D. Yu, H. Fu, and Z. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Luo, S. C.

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly Integrated FP/FBG Sensor for Simultaneous Measurement of High Temperature and Strain,” IEEE Photonics Technol. Lett. 26(17), 1715–1717 (2014).
[Crossref]

Meng, F.

W. Zhang, W. Zhuang, M. Dong, L. Zhu, and F. Meng, “Dual-Parameter Optical Fiber Sensor for Temperature and Pressure Discrimination Featuring Cascaded Tapered-FBG and Ball-EFPI,” IEEE Sens. J. 19(14), 5645–5652 (2019).
[Crossref]

Moayyed, H.

H. Moayyed, I. T. Leite, L. Coelho, J. L. Santos, and D. Viegas, “Analysis of Phase Interrogated SPR Fiber Optic Sensors With Bimetallic Layers,” IEEE Sens. J. 14(10), 3662–3668 (2014).
[Crossref]

Naraoka, R.

R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sens. Actuators, B 107(2), 952–956 (2005).
[Crossref]

Navarrete, M. C.

E. Rodríguez-Schwendtner, A. González-Cano, N. Díaz-Herrera, M. C. Navarrete, and Ó. Esteban, “Signal processing in SPR fiber sensors: Some remarks and a new method,” Sens. Actuators, B 268, 150–156 (2018).
[Crossref]

Ning, T.

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

Ooi, C.-W.

W. Udos, K.-S. Lim, C.-L. Tan, M. N. S. M. Ismail, C.-W. Ooi, R. Zakaria, and H. Ahmad, “Spatial frequency spectrum of SPR-TFBG: A simple spectral analysis for in-situ refractometry,” Optik 219, 164970 (2020).
[Crossref]

Pei, L.

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

Ran, Z. L.

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly Integrated FP/FBG Sensor for Simultaneous Measurement of High Temperature and Strain,” IEEE Photonics Technol. Lett. 26(17), 1715–1717 (2014).
[Crossref]

Rao, Y. J.

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly Integrated FP/FBG Sensor for Simultaneous Measurement of High Temperature and Strain,” IEEE Photonics Technol. Lett. 26(17), 1715–1717 (2014).
[Crossref]

Rodríguez-Schwendtner, E.

E. Rodríguez-Schwendtner, A. González-Cano, N. Díaz-Herrera, M. C. Navarrete, and Ó. Esteban, “Signal processing in SPR fiber sensors: Some remarks and a new method,” Sens. Actuators, B 268, 150–156 (2018).
[Crossref]

Rong, F.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation,” Sensors 17(10), 2240 (2017).
[Crossref]

Saad, Y.

Y. Saad, M. Selmi, M. H. Gazzah, A. Bajahzar, and H. Belmabrouk, “Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer,” Optik 190, 1–9 (2019).
[Crossref]

Santos, J. L.

H. Moayyed, I. T. Leite, L. Coelho, J. L. Santos, and D. Viegas, “Analysis of Phase Interrogated SPR Fiber Optic Sensors With Bimetallic Layers,” IEEE Sens. J. 14(10), 3662–3668 (2014).
[Crossref]

Selmi, M.

Y. Saad, M. Selmi, M. H. Gazzah, A. Bajahzar, and H. Belmabrouk, “Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer,” Optik 190, 1–9 (2019).
[Crossref]

Shao, M.

Y. Liu, D. Yang, Y. Wang, T. Zhang, M. Shao, D. Yu, H. Fu, and Z. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Shao, Y.

Shi, J.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation,” Sensors 17(10), 2240 (2017).
[Crossref]

Sun, H.-B.

R. Yang, Y.-S. Yu, C.-C. Zhu, Y. Xue, C. Chen, X.-Y. Zhang, B.-L. Zhang, and H.-B. Sun, “PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

Tan, C.-L.

W. Udos, K.-S. Lim, C.-L. Tan, M. N. S. M. Ismail, C.-W. Ooi, R. Zakaria, and H. Ahmad, “Spatial frequency spectrum of SPR-TFBG: A simple spectral analysis for in-situ refractometry,” Optik 219, 164970 (2020).
[Crossref]

Tan, X.

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-Sensitivity Mach–Zehnder Interferometric Temperature Fiber Sensor Based on a Waist-Enlarged Fusion Bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

Tan, Z.

Udos, W.

W. Udos, K.-S. Lim, C.-L. Tan, M. N. S. M. Ismail, C.-W. Ooi, R. Zakaria, and H. Ahmad, “Spatial frequency spectrum of SPR-TFBG: A simple spectral analysis for in-situ refractometry,” Optik 219, 164970 (2020).
[Crossref]

Viegas, D.

H. Moayyed, I. T. Leite, L. Coelho, J. L. Santos, and D. Viegas, “Analysis of Phase Interrogated SPR Fiber Optic Sensors With Bimetallic Layers,” IEEE Sens. J. 14(10), 3662–3668 (2014).
[Crossref]

Wang, Y.

Y. Liu, D. Yang, Y. Wang, T. Zhang, M. Shao, D. Yu, H. Fu, and Z. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Y. Wang, Q. Huang, W. Zhu, M. Yang, and E. Lewis, “Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film,” Opt. Express 26(2), 1910 (2018).
[Crossref]

Wu, Q.

Y. Zhao, Q. Wu, and Y. Zhang, “Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor,” Measurement 148, 106792 (2019).
[Crossref]

Q. Wu, Y. Zhao, Y. Zhang, and Y. Yang, “High sensitive applied load measurement using optical fiber tapered-loop probe with SPR effect,” Opt. Laser Technol. 114, 95–102 (2019).
[Crossref]

Xie, Q.

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Xu, D.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation,” Sensors 17(10), 2240 (2017).
[Crossref]

Xu, J.

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

Y. Jiang, D. Yang, Y. Yuan, J. Xu, D. Li, and J. Zhao, “Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry–Perot interferometer,” Appl. Opt. 55(23), 6341–6345 (2016).
[Crossref]

W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

Xu, W.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation,” Sensors 17(10), 2240 (2017).
[Crossref]

Xue, Y.

R. Yang, Y.-S. Yu, C.-C. Zhu, Y. Xue, C. Chen, X.-Y. Zhang, B.-L. Zhang, and H.-B. Sun, “PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

Xuejin, L.

Xueming, H.

Yang, D.

Y. Liu, D. Yang, Y. Wang, T. Zhang, M. Shao, D. Yu, H. Fu, and Z. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Y. Jiang, D. Yang, Y. Yuan, J. Xu, D. Li, and J. Zhao, “Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry–Perot interferometer,” Appl. Opt. 55(23), 6341–6345 (2016).
[Crossref]

Yang, H. Q.

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly Integrated FP/FBG Sensor for Simultaneous Measurement of High Temperature and Strain,” IEEE Photonics Technol. Lett. 26(17), 1715–1717 (2014).
[Crossref]

Yang, M.

Yang, R.

R. Yang, Y.-S. Yu, C.-C. Zhu, Y. Xue, C. Chen, X.-Y. Zhang, B.-L. Zhang, and H.-B. Sun, “PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

Yang, X.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation,” Sensors 17(10), 2240 (2017).
[Crossref]

Yang, Y.

Q. Wu, Y. Zhao, Y. Zhang, and Y. Yang, “High sensitive applied load measurement using optical fiber tapered-loop probe with SPR effect,” Opt. Laser Technol. 114, 95–102 (2019).
[Crossref]

Yao, J.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation,” Sensors 17(10), 2240 (2017).
[Crossref]

Yong, L.

You, H.

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

Youfu, G.

Yu, D.

Y. Liu, D. Yang, Y. Wang, T. Zhang, M. Shao, D. Yu, H. Fu, and Z. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Yu, Y.

Y. Chen, Y. Yu, X. Li, H. Zhou, X. Hong, and Y. Geng, “Fiber-optic urine specific gravity sensor based on surface plasmon resonance,” Sens. Actuators, B 226, 412–418 (2016).
[Crossref]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-Sensitivity Mach–Zehnder Interferometric Temperature Fiber Sensor Based on a Waist-Enlarged Fusion Bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

Yu, Y.-S.

R. Yang, Y.-S. Yu, C.-C. Zhu, Y. Xue, C. Chen, X.-Y. Zhang, B.-L. Zhang, and H.-B. Sun, “PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

Yuan, Y.

Yuzhi, C.

Zakaria, R.

W. Udos, K.-S. Lim, C.-L. Tan, M. N. S. M. Ismail, C.-W. Ooi, R. Zakaria, and H. Ahmad, “Spatial frequency spectrum of SPR-TFBG: A simple spectral analysis for in-situ refractometry,” Optik 219, 164970 (2020).
[Crossref]

Zhang, B.-L.

R. Yang, Y.-S. Yu, C.-C. Zhu, Y. Xue, C. Chen, X.-Y. Zhang, B.-L. Zhang, and H.-B. Sun, “PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

Zhang, C.

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

Zhang, G.

W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

Zhang, T.

Y. Liu, D. Yang, Y. Wang, T. Zhang, M. Shao, D. Yu, H. Fu, and Z. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Zhang, W.

W. Zhang, W. Zhuang, M. Dong, L. Zhu, and F. Meng, “Dual-Parameter Optical Fiber Sensor for Temperature and Pressure Discrimination Featuring Cascaded Tapered-FBG and Ball-EFPI,” IEEE Sens. J. 19(14), 5645–5652 (2019).
[Crossref]

W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

Zhang, X.-Y.

R. Yang, Y.-S. Yu, C.-C. Zhu, Y. Xue, C. Chen, X.-Y. Zhang, B.-L. Zhang, and H.-B. Sun, “PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

Zhang, Y.

Q. Wu, Y. Zhao, Y. Zhang, and Y. Yang, “High sensitive applied load measurement using optical fiber tapered-loop probe with SPR effect,” Opt. Laser Technol. 114, 95–102 (2019).
[Crossref]

Y. Zhao, Q. Wu, and Y. Zhang, “Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor,” Measurement 148, 106792 (2019).
[Crossref]

Zhao, J.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation,” Sensors 17(10), 2240 (2017).
[Crossref]

Y. Jiang, D. Yang, Y. Yuan, J. Xu, D. Li, and J. Zhao, “Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry–Perot interferometer,” Appl. Opt. 55(23), 6341–6345 (2016).
[Crossref]

Zhao, Y.

Y. Zhao, Q. Wu, and Y. Zhang, “Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor,” Measurement 148, 106792 (2019).
[Crossref]

Q. Wu, Y. Zhao, Y. Zhang, and Y. Yang, “High sensitive applied load measurement using optical fiber tapered-loop probe with SPR effect,” Opt. Laser Technol. 114, 95–102 (2019).
[Crossref]

Zheng, J.

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

Zhou, H.

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Y. Chen, Y. Yu, X. Li, H. Zhou, X. Hong, and Y. Geng, “Fiber-optic urine specific gravity sensor based on surface plasmon resonance,” Sens. Actuators, B 226, 412–418 (2016).
[Crossref]

Zhu, C.-C.

R. Yang, Y.-S. Yu, C.-C. Zhu, Y. Xue, C. Chen, X.-Y. Zhang, B.-L. Zhang, and H.-B. Sun, “PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

Zhu, L.

W. Zhang, W. Zhuang, M. Dong, L. Zhu, and F. Meng, “Dual-Parameter Optical Fiber Sensor for Temperature and Pressure Discrimination Featuring Cascaded Tapered-FBG and Ball-EFPI,” IEEE Sens. J. 19(14), 5645–5652 (2019).
[Crossref]

Zhu, W.

Zhuang, W.

W. Zhang, W. Zhuang, M. Dong, L. Zhu, and F. Meng, “Dual-Parameter Optical Fiber Sensor for Temperature and Pressure Discrimination Featuring Cascaded Tapered-FBG and Ball-EFPI,” IEEE Sens. J. 19(14), 5645–5652 (2019).
[Crossref]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly Integrated FP/FBG Sensor for Simultaneous Measurement of High Temperature and Strain,” IEEE Photonics Technol. Lett. 26(17), 1715–1717 (2014).
[Crossref]

IEEE Sens. J. (4)

R. Yang, Y.-S. Yu, C.-C. Zhu, Y. Xue, C. Chen, X.-Y. Zhang, B.-L. Zhang, and H.-B. Sun, “PDMS-Coated S-Tapered Fiber for Highly Sensitive Measurements of Transverse Load and Temperature,” IEEE Sens. J. 15(6), 3429–3435 (2015).
[Crossref]

W. Zhang, W. Zhuang, M. Dong, L. Zhu, and F. Meng, “Dual-Parameter Optical Fiber Sensor for Temperature and Pressure Discrimination Featuring Cascaded Tapered-FBG and Ball-EFPI,” IEEE Sens. J. 19(14), 5645–5652 (2019).
[Crossref]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-Sensitivity Mach–Zehnder Interferometric Temperature Fiber Sensor Based on a Waist-Enlarged Fusion Bitaper,” IEEE Sens. J. 11(11), 2891–2894 (2011).
[Crossref]

H. Moayyed, I. T. Leite, L. Coelho, J. L. Santos, and D. Viegas, “Analysis of Phase Interrogated SPR Fiber Optic Sensors With Bimetallic Layers,” IEEE Sens. J. 14(10), 3662–3668 (2014).
[Crossref]

J. Phys. D: Appl. Phys. (1)

Y. Chen, Q. Xie, X. Li, H. Zhou, X. Hong, and Y. Geng, “Experimental realization of D-shaped photonic crystal fiber SPR sensor,” J. Phys. D: Appl. Phys. 50(2), 025101 (2017).
[Crossref]

Measurement (1)

Y. Zhao, Q. Wu, and Y. Zhang, “Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor,” Measurement 148, 106792 (2019).
[Crossref]

Opt. Commun. (3)

Y. Liu, D. Yang, Y. Wang, T. Zhang, M. Shao, D. Yu, H. Fu, and Z. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, “All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber,” Opt. Commun. 292, 46–48 (2013).
[Crossref]

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

Q. Wu, Y. Zhao, Y. Zhang, and Y. Yang, “High sensitive applied load measurement using optical fiber tapered-loop probe with SPR effect,” Opt. Laser Technol. 114, 95–102 (2019).
[Crossref]

Opt. Lett. (1)

Optik (2)

W. Udos, K.-S. Lim, C.-L. Tan, M. N. S. M. Ismail, C.-W. Ooi, R. Zakaria, and H. Ahmad, “Spatial frequency spectrum of SPR-TFBG: A simple spectral analysis for in-situ refractometry,” Optik 219, 164970 (2020).
[Crossref]

Y. Saad, M. Selmi, M. H. Gazzah, A. Bajahzar, and H. Belmabrouk, “Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer,” Optik 190, 1–9 (2019).
[Crossref]

Sens. Actuators, B (3)

Y. Chen, Y. Yu, X. Li, H. Zhou, X. Hong, and Y. Geng, “Fiber-optic urine specific gravity sensor based on surface plasmon resonance,” Sens. Actuators, B 226, 412–418 (2016).
[Crossref]

R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sens. Actuators, B 107(2), 952–956 (2005).
[Crossref]

E. Rodríguez-Schwendtner, A. González-Cano, N. Díaz-Herrera, M. C. Navarrete, and Ó. Esteban, “Signal processing in SPR fiber sensors: Some remarks and a new method,” Sens. Actuators, B 268, 150–156 (2018).
[Crossref]

Sensors (1)

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation,” Sensors 17(10), 2240 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Diagram of the hybrid sensor structure
Fig. 2.
Fig. 2. Scheme of the interrogation principle by using the FFT algorithm
Fig. 3.
Fig. 3. Diagram of the experimental setup
Fig. 4.
Fig. 4. Experimentally acquired transmission spectra of the hybrid sensor.
Fig. 5.
Fig. 5. (a) Spatial frequency distribution of the spectrum after FFT. (b) Spatial frequency distribution of the SPR component after low-pass filtering (RI=1.3342).
Fig. 6.
Fig. 6. (a) SPR spectra after inverse FFT; (b) Relationship between RIs and wavelength shifts for the SPR components.
Fig. 7.
Fig. 7. Interference fringe patterns of LP01-02, LP01-03, LP01-04 after inverse FFT (RI=1.3342).
Fig. 8.
Fig. 8. (a)Spectra evolution of the LP01-LP02 interferences with different RIs. (b) Relationship between RIs and wavelength shifts.
Fig. 9.
Fig. 9. Overall sensitivity enhancement by SPR and MMI
Fig. 10.
Fig. 10. Relationship between RIs and wavelength shifts for different interference orders. (a) dip a. (b) dip b

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ 0 2 / λ 0 2 Δ n e f f L Δ n e f f L ,