Abstract

The optical properties are investigated by spectroscopic characterizations for bilayer InGaAs/GaAs quantum dot (QD) structures consisting of a layer of surface quantum dots (SQDs) separated from a layer of buried quantum dots (BQDs) by different GaAs spacers with thicknesses of 7 nm, 10.5 nm and 70 nm. The coupling from the BQDs to SQDs leads to carrier transfer for the two samples with thin spacers, 7 nm and 10.5 nm, in which QD pairs are obtained while not for the 70 nm spacer sample. The carrier tunneling time is measured to be 0.145 ns and 0.275 ns from BQDs to SQD through the 7 nm and 10.5 nm spacers, respectively. A weak emission band can be observed at the wavelength of ∼ 960 nm, while the excitation intensity dependent PL and PLE spectra show that this is from the wetting layer (WL) of the SQDs. This WL is very important for carrier dynamics in bilayer structures of BQDs and SQDs, including for carrier generation, capture, relaxation, tunneling, and recombination. These results provide useful information for understanding the optical properties of InGaAs SQDs and for using such hybrid structures as building blocks for surface sensing devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63(23), 3203–3205 (1993).
    [Crossref]
  2. R. Mirin, J. Ibbetson, K. Nishi, A. Gossard, and J. Bowers, “1.3 µm photoluminescence from InGaAs quantum dots on GaAs,” Appl. Phys. Lett. 67(25), 3795–3797 (1995).
    [Crossref]
  3. M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
    [Crossref]
  4. E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical Signatures of Coupled Quantum Dots,” Science 311(5761), 636–639 (2006).
    [Crossref]
  5. H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs Quantum-Dot Laser Diode Monolithically Grown on Ge Substrate,” Nat. Photonics 5(7), 416–419 (2011).
    [Crossref]
  6. S. Unsleber, M. Deppisch, C. M. Krammel, M. Vo, C. D. Yerino, P. J. Simmonds, M. L. Lee, P. M. Koenraad, C. Schnerder, and S. Hofling, “Bulk AlInAs on InP(111) as a novel material system for pure single photon emission,” Opt. Express 24(20), 23198–23206 (2016).
    [Crossref]
  7. Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
    [Crossref]
  8. K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
    [Crossref]
  9. Z. R. Lv, Z. K. Zhang, X. G. Yang, and T. Yang, “Improved performance of 1.3-µm InAs/GaAs quantum dot lasers by direct Si doping,” Appl. Phys. Lett. 113(1), 011105 (2018).
    [Crossref]
  10. Z. L. Miao, Y. W. Zhang, S. J. Chua, Y. H. Chy, P. Chen, and S. Tripathy, “Optical properties of InAs/GaAs surface quantum dots,” Appl. Phys. Lett. 86(3), 031914 (2005).
    [Crossref]
  11. A. Y. Nazzal, L. H. Qu, X. G. Peng, and M. Xiao, “Photoactivated CdSe Nanocrystals as Nanosensors for Gases,” Nano Lett. 3(6), 819–822 (2003).
    [Crossref]
  12. H. Saito, K. Nishi, and S. Sugou, “Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 mm emission,” Appl. Phys. Lett. 73(19), 2742–2744 (1998).
    [Crossref]
  13. F. Ferdos, S. M. Wang, Y. Q. Wei, A. Larsson, M. Sadeghi, and Q. X. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81(7), 1195–1197 (2002).
    [Crossref]
  14. H. B. Wu, S. J. Xu, and J. Wang, “Impact of the cap layer on the electronic structures and optical properties of self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 74(20), 205329 (2006).
    [Crossref]
  15. E. F. Duijs, F. Findeis, R. A. Deutschmann, M. Bichler, A. Zrenner, and G. Abstreiter, “Influence of Thiol coupling on photoluminescence of near surface InAs quantum dots,” Phys. Status Solidi B 224(3), 871–875 (2001).
    [Crossref]
  16. R. D. Angelis, L. D’ Amico, M. Casalboni, F. Hatami, W. T. Masselink, and P. Prosposito, “Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage,” Sensors Actuators B 189, 113–117 (2013).
    [Crossref]
  17. M. X. Chen and K. Kobashi, “Probing into hybrid organic-molecule and InAs quantum-dots nanosystem with multistacked dots-in-a-well units,” J. Appl. Phys. 112(6), 064903 (2012).
    [Crossref]
  18. M. J. Milla, J. M. Ulloa, and Á. Guzmán, “Strong Influence of the Humidity on the Electrical Properties of InGaAs Surface Quantum Dots,” ACS Appl. Mater. Interfaces 6(9), 6191–6195 (2014).
    [Crossref]
  19. G. Trevisi, L. Seravalli, and P. Frigeri, “Photoluminescence monitoring of oxide formation and surface state passivation on InAs quantum dots exposed to water vapor,” Nano Res. 9(10), 3018–3026 (2016).
    [Crossref]
  20. B. L. Liang, Z. M. Wang, Y. I. Mazur, S. Seydmohamadi, M. E. Ware, and G. J. Salamo, “Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures,” Opt. Express 15(13), 8157–8162 (2007).
    [Crossref]
  21. B. L. Liang, Zh. M. Wang, Yu. I. Mazur, G. J. Salamo, E. A. Decuir, and M. O. Manasreh, “Correlation between surface and buried InAs quantum dots,” Appl. Phys. Lett. 89(4), 043125 (2006).
    [Crossref]
  22. G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology 27(46), 465701 (2016).
    [Crossref]
  23. I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, “Independent manipulation of density and size of stress-driven self-assembled quantum dots,” Appl. Phys. Lett. 73(13), 1841–1843 (1998).
    [Crossref]
  24. P. Howe, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464-465, 225–228 (2004).
    [Crossref]
  25. J. Z. Wang, Z. Yang, C. L. Yang, and Z. G. Wang, “Photoluminescence of InAs quantum dots grown on GaAs surface,” Appl. Phys. Lett. 77(18), 2837–2839 (2000).
    [Crossref]
  26. Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
    [Crossref]
  27. Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
    [Crossref]
  28. Y. Liu, B. L. Liang, Q. L. Guo, S. F. Wang, G. S. Fu, N. Fu, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer,” Nanoscale Res. Lett. 10(1), 271 (2015).
    [Crossref]
  29. A. Tackeuchi, T. Kuroda, K. Mase, Y. Nakata, and N. Yokoyama, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62(3), 1568–1571 (2000).
    [Crossref]
  30. R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Excitation transfer in self-organized asymmetric quantum dot pairs,” Phys. Rev. B 58(16), R10151 (1998).
    [Crossref]
  31. E. Luna, A. M. Beltrán, A. M. Sánchez, and S. I. Molina, “Quantitative study of the interfacial intermixing and segregation effects across the wetting layer of Ga(As,Sb)-capped InAs quantum dots,” Appl. Phys. Lett. 101(1), 011601 (2012).
    [Crossref]
  32. M. Shahzadeh and M. Sabaeiana, “The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots,” AIP Adv. 4(6), 067113 (2014).
    [Crossref]
  33. L. Seravalli, G. Trevisi, P. Frigeri, S. Franchi, M. Geddo, and G. Guizzetti, “The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures,” Nanotechnology 20(27), 275703 (2009).
    [Crossref]
  34. M. J. Milla, J. M. Ulloa, and A Guzman, “Photoexcited induced sensitivity of InGaAs surface QDs to environment,” Nanotechnology 25(44), 445501 (2014).
    [Crossref]
  35. J. H. Liu, S. Qiao, B. L. Liang, S. F. Wang, and G. S. Fu, “Lateral photovoltaic effect observed in doping-modulated GaAs/ Al0.3Ga0.7As,” Opt. Express 25(4), A166 (2017).
    [Crossref]

2020 (1)

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

2018 (2)

Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
[Crossref]

Z. R. Lv, Z. K. Zhang, X. G. Yang, and T. Yang, “Improved performance of 1.3-µm InAs/GaAs quantum dot lasers by direct Si doping,” Appl. Phys. Lett. 113(1), 011105 (2018).
[Crossref]

2017 (2)

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

J. H. Liu, S. Qiao, B. L. Liang, S. F. Wang, and G. S. Fu, “Lateral photovoltaic effect observed in doping-modulated GaAs/ Al0.3Ga0.7As,” Opt. Express 25(4), A166 (2017).
[Crossref]

2016 (3)

S. Unsleber, M. Deppisch, C. M. Krammel, M. Vo, C. D. Yerino, P. J. Simmonds, M. L. Lee, P. M. Koenraad, C. Schnerder, and S. Hofling, “Bulk AlInAs on InP(111) as a novel material system for pure single photon emission,” Opt. Express 24(20), 23198–23206 (2016).
[Crossref]

G. Trevisi, L. Seravalli, and P. Frigeri, “Photoluminescence monitoring of oxide formation and surface state passivation on InAs quantum dots exposed to water vapor,” Nano Res. 9(10), 3018–3026 (2016).
[Crossref]

G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology 27(46), 465701 (2016).
[Crossref]

2015 (1)

Y. Liu, B. L. Liang, Q. L. Guo, S. F. Wang, G. S. Fu, N. Fu, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer,” Nanoscale Res. Lett. 10(1), 271 (2015).
[Crossref]

2014 (3)

M. Shahzadeh and M. Sabaeiana, “The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots,” AIP Adv. 4(6), 067113 (2014).
[Crossref]

M. J. Milla, J. M. Ulloa, and Á. Guzmán, “Strong Influence of the Humidity on the Electrical Properties of InGaAs Surface Quantum Dots,” ACS Appl. Mater. Interfaces 6(9), 6191–6195 (2014).
[Crossref]

M. J. Milla, J. M. Ulloa, and A Guzman, “Photoexcited induced sensitivity of InGaAs surface QDs to environment,” Nanotechnology 25(44), 445501 (2014).
[Crossref]

2013 (1)

R. D. Angelis, L. D’ Amico, M. Casalboni, F. Hatami, W. T. Masselink, and P. Prosposito, “Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage,” Sensors Actuators B 189, 113–117 (2013).
[Crossref]

2012 (2)

M. X. Chen and K. Kobashi, “Probing into hybrid organic-molecule and InAs quantum-dots nanosystem with multistacked dots-in-a-well units,” J. Appl. Phys. 112(6), 064903 (2012).
[Crossref]

E. Luna, A. M. Beltrán, A. M. Sánchez, and S. I. Molina, “Quantitative study of the interfacial intermixing and segregation effects across the wetting layer of Ga(As,Sb)-capped InAs quantum dots,” Appl. Phys. Lett. 101(1), 011601 (2012).
[Crossref]

2011 (2)

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs Quantum-Dot Laser Diode Monolithically Grown on Ge Substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref]

2009 (1)

L. Seravalli, G. Trevisi, P. Frigeri, S. Franchi, M. Geddo, and G. Guizzetti, “The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures,” Nanotechnology 20(27), 275703 (2009).
[Crossref]

2007 (2)

B. L. Liang, Z. M. Wang, Y. I. Mazur, S. Seydmohamadi, M. E. Ware, and G. J. Salamo, “Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures,” Opt. Express 15(13), 8157–8162 (2007).
[Crossref]

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

2006 (3)

E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical Signatures of Coupled Quantum Dots,” Science 311(5761), 636–639 (2006).
[Crossref]

H. B. Wu, S. J. Xu, and J. Wang, “Impact of the cap layer on the electronic structures and optical properties of self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 74(20), 205329 (2006).
[Crossref]

B. L. Liang, Zh. M. Wang, Yu. I. Mazur, G. J. Salamo, E. A. Decuir, and M. O. Manasreh, “Correlation between surface and buried InAs quantum dots,” Appl. Phys. Lett. 89(4), 043125 (2006).
[Crossref]

2005 (1)

Z. L. Miao, Y. W. Zhang, S. J. Chua, Y. H. Chy, P. Chen, and S. Tripathy, “Optical properties of InAs/GaAs surface quantum dots,” Appl. Phys. Lett. 86(3), 031914 (2005).
[Crossref]

2004 (1)

P. Howe, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464-465, 225–228 (2004).
[Crossref]

2003 (1)

A. Y. Nazzal, L. H. Qu, X. G. Peng, and M. Xiao, “Photoactivated CdSe Nanocrystals as Nanosensors for Gases,” Nano Lett. 3(6), 819–822 (2003).
[Crossref]

2002 (1)

F. Ferdos, S. M. Wang, Y. Q. Wei, A. Larsson, M. Sadeghi, and Q. X. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81(7), 1195–1197 (2002).
[Crossref]

2001 (1)

E. F. Duijs, F. Findeis, R. A. Deutschmann, M. Bichler, A. Zrenner, and G. Abstreiter, “Influence of Thiol coupling on photoluminescence of near surface InAs quantum dots,” Phys. Status Solidi B 224(3), 871–875 (2001).
[Crossref]

2000 (2)

J. Z. Wang, Z. Yang, C. L. Yang, and Z. G. Wang, “Photoluminescence of InAs quantum dots grown on GaAs surface,” Appl. Phys. Lett. 77(18), 2837–2839 (2000).
[Crossref]

A. Tackeuchi, T. Kuroda, K. Mase, Y. Nakata, and N. Yokoyama, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62(3), 1568–1571 (2000).
[Crossref]

1998 (3)

R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Excitation transfer in self-organized asymmetric quantum dot pairs,” Phys. Rev. B 58(16), R10151 (1998).
[Crossref]

I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, “Independent manipulation of density and size of stress-driven self-assembled quantum dots,” Appl. Phys. Lett. 73(13), 1841–1843 (1998).
[Crossref]

H. Saito, K. Nishi, and S. Sugou, “Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 mm emission,” Appl. Phys. Lett. 73(19), 2742–2744 (1998).
[Crossref]

1995 (1)

R. Mirin, J. Ibbetson, K. Nishi, A. Gossard, and J. Bowers, “1.3 µm photoluminescence from InGaAs quantum dots on GaAs,” Appl. Phys. Lett. 67(25), 3795–3797 (1995).
[Crossref]

1993 (1)

D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63(23), 3203–3205 (1993).
[Crossref]

Abbey, B.

P. Howe, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464-465, 225–228 (2004).
[Crossref]

Abstreiter, G.

E. F. Duijs, F. Findeis, R. A. Deutschmann, M. Bichler, A. Zrenner, and G. Abstreiter, “Influence of Thiol coupling on photoluminescence of near surface InAs quantum dots,” Phys. Status Solidi B 224(3), 871–875 (2001).
[Crossref]

Angelis, R. D.

R. D. Angelis, L. D’ Amico, M. Casalboni, F. Hatami, W. T. Masselink, and P. Prosposito, “Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage,” Sensors Actuators B 189, 113–117 (2013).
[Crossref]

Bacher, G.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Beltrán, A. M.

E. Luna, A. M. Beltrán, A. M. Sánchez, and S. I. Molina, “Quantitative study of the interfacial intermixing and segregation effects across the wetting layer of Ga(As,Sb)-capped InAs quantum dots,” Appl. Phys. Lett. 101(1), 011601 (2012).
[Crossref]

Bichler, M.

E. F. Duijs, F. Findeis, R. A. Deutschmann, M. Bichler, A. Zrenner, and G. Abstreiter, “Influence of Thiol coupling on photoluminescence of near surface InAs quantum dots,” Phys. Status Solidi B 224(3), 871–875 (2001).
[Crossref]

Bowers, J.

R. Mirin, J. Ibbetson, K. Nishi, A. Gossard, and J. Bowers, “1.3 µm photoluminescence from InGaAs quantum dots on GaAs,” Appl. Phys. Lett. 67(25), 3795–3797 (1995).
[Crossref]

Bracker, A. S.

E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical Signatures of Coupled Quantum Dots,” Science 311(5761), 636–639 (2006).
[Crossref]

Casalboni, M.

R. D. Angelis, L. D’ Amico, M. Casalboni, F. Hatami, W. T. Masselink, and P. Prosposito, “Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage,” Sensors Actuators B 189, 113–117 (2013).
[Crossref]

Chen, M. X.

M. X. Chen and K. Kobashi, “Probing into hybrid organic-molecule and InAs quantum-dots nanosystem with multistacked dots-in-a-well units,” J. Appl. Phys. 112(6), 064903 (2012).
[Crossref]

Chen, P.

Z. L. Miao, Y. W. Zhang, S. J. Chua, Y. H. Chy, P. Chen, and S. Tripathy, “Optical properties of InAs/GaAs surface quantum dots,” Appl. Phys. Lett. 86(3), 031914 (2005).
[Crossref]

I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, “Independent manipulation of density and size of stress-driven self-assembled quantum dots,” Appl. Phys. Lett. 73(13), 1841–1843 (1998).
[Crossref]

R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Excitation transfer in self-organized asymmetric quantum dot pairs,” Phys. Rev. B 58(16), R10151 (1998).
[Crossref]

Chen, X. Y.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

Chua, S. J.

Z. L. Miao, Y. W. Zhang, S. J. Chua, Y. H. Chy, P. Chen, and S. Tripathy, “Optical properties of InAs/GaAs surface quantum dots,” Appl. Phys. Lett. 86(3), 031914 (2005).
[Crossref]

Chy, Y. H.

Z. L. Miao, Y. W. Zhang, S. J. Chua, Y. H. Chy, P. Chen, and S. Tripathy, “Optical properties of InAs/GaAs surface quantum dots,” Appl. Phys. Lett. 86(3), 031914 (2005).
[Crossref]

D’ Amico, L.

R. D. Angelis, L. D’ Amico, M. Casalboni, F. Hatami, W. T. Masselink, and P. Prosposito, “Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage,” Sensors Actuators B 189, 113–117 (2013).
[Crossref]

Das, A.

G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology 27(46), 465701 (2016).
[Crossref]

Debnath, M. C.

G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology 27(46), 465701 (2016).
[Crossref]

Decuir, E. A.

B. L. Liang, Zh. M. Wang, Yu. I. Mazur, G. J. Salamo, E. A. Decuir, and M. O. Manasreh, “Correlation between surface and buried InAs quantum dots,” Appl. Phys. Lett. 89(4), 043125 (2006).
[Crossref]

Denbaars, S. P.

D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63(23), 3203–3205 (1993).
[Crossref]

Deppisch, M.

Deutschmann, R. A.

E. F. Duijs, F. Findeis, R. A. Deutschmann, M. Bichler, A. Zrenner, and G. Abstreiter, “Influence of Thiol coupling on photoluminescence of near surface InAs quantum dots,” Phys. Status Solidi B 224(3), 871–875 (2001).
[Crossref]

Doty, M. F.

E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical Signatures of Coupled Quantum Dots,” Science 311(5761), 636–639 (2006).
[Crossref]

Du, B.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

Duijs, E. F.

E. F. Duijs, F. Findeis, R. A. Deutschmann, M. Bichler, A. Zrenner, and G. Abstreiter, “Influence of Thiol coupling on photoluminescence of near surface InAs quantum dots,” Phys. Status Solidi B 224(3), 871–875 (2001).
[Crossref]

Fang, J. X.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

Farrell, A.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

Ferdos, F.

F. Ferdos, S. M. Wang, Y. Q. Wei, A. Larsson, M. Sadeghi, and Q. X. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81(7), 1195–1197 (2002).
[Crossref]

Findeis, F.

E. F. Duijs, F. Findeis, R. A. Deutschmann, M. Bichler, A. Zrenner, and G. Abstreiter, “Influence of Thiol coupling on photoluminescence of near surface InAs quantum dots,” Phys. Status Solidi B 224(3), 871–875 (2001).
[Crossref]

Forchel, A.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Franchi, S.

L. Seravalli, G. Trevisi, P. Frigeri, S. Franchi, M. Geddo, and G. Guizzetti, “The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures,” Nanotechnology 20(27), 275703 (2009).
[Crossref]

Frigeri, P.

G. Trevisi, L. Seravalli, and P. Frigeri, “Photoluminescence monitoring of oxide formation and surface state passivation on InAs quantum dots exposed to water vapor,” Nano Res. 9(10), 3018–3026 (2016).
[Crossref]

L. Seravalli, G. Trevisi, P. Frigeri, S. Franchi, M. Geddo, and G. Guizzetti, “The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures,” Nanotechnology 20(27), 275703 (2009).
[Crossref]

Fu, G. S.

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
[Crossref]

J. H. Liu, S. Qiao, B. L. Liang, S. F. Wang, and G. S. Fu, “Lateral photovoltaic effect observed in doping-modulated GaAs/ Al0.3Ga0.7As,” Opt. Express 25(4), A166 (2017).
[Crossref]

Y. Liu, B. L. Liang, Q. L. Guo, S. F. Wang, G. S. Fu, N. Fu, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer,” Nanoscale Res. Lett. 10(1), 271 (2015).
[Crossref]

Fu, N.

Y. Liu, B. L. Liang, Q. L. Guo, S. F. Wang, G. S. Fu, N. Fu, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer,” Nanoscale Res. Lett. 10(1), 271 (2015).
[Crossref]

Gammon, D.

E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical Signatures of Coupled Quantum Dots,” Science 311(5761), 636–639 (2006).
[Crossref]

Geddo, M.

L. Seravalli, G. Trevisi, P. Frigeri, S. Franchi, M. Geddo, and G. Guizzetti, “The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures,” Nanotechnology 20(27), 275703 (2009).
[Crossref]

Gossard, A.

R. Mirin, J. Ibbetson, K. Nishi, A. Gossard, and J. Bowers, “1.3 µm photoluminescence from InGaAs quantum dots on GaAs,” Appl. Phys. Lett. 67(25), 3795–3797 (1995).
[Crossref]

Gu, Y.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

Guizzetti, G.

L. Seravalli, G. Trevisi, P. Frigeri, S. Franchi, M. Geddo, and G. Guizzetti, “The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures,” Nanotechnology 20(27), 275703 (2009).
[Crossref]

Guo, Q. L.

Y. Liu, B. L. Liang, Q. L. Guo, S. F. Wang, G. S. Fu, N. Fu, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer,” Nanoscale Res. Lett. 10(1), 271 (2015).
[Crossref]

Guo, Y. N.

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
[Crossref]

Guzman, A

M. J. Milla, J. M. Ulloa, and A Guzman, “Photoexcited induced sensitivity of InGaAs surface QDs to environment,” Nanotechnology 25(44), 445501 (2014).
[Crossref]

Guzmán, Á.

M. J. Milla, J. M. Ulloa, and Á. Guzmán, “Strong Influence of the Humidity on the Electrical Properties of InGaAs Surface Quantum Dots,” ACS Appl. Mater. Interfaces 6(9), 6191–6195 (2014).
[Crossref]

Hatami, F.

R. D. Angelis, L. D’ Amico, M. Casalboni, F. Hatami, W. T. Masselink, and P. Prosposito, “Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage,” Sensors Actuators B 189, 113–117 (2013).
[Crossref]

Heitz, R.

I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, “Independent manipulation of density and size of stress-driven self-assembled quantum dots,” Appl. Phys. Lett. 73(13), 1841–1843 (1998).
[Crossref]

R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Excitation transfer in self-organized asymmetric quantum dot pairs,” Phys. Rev. B 58(16), R10151 (1998).
[Crossref]

Hofling, S.

Hogg, R.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs Quantum-Dot Laser Diode Monolithically Grown on Ge Substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Hommel, D.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Howe, P.

P. Howe, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464-465, 225–228 (2004).
[Crossref]

Huffaker, D. L.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology 27(46), 465701 (2016).
[Crossref]

Ibbetson, J.

R. Mirin, J. Ibbetson, K. Nishi, A. Gossard, and J. Bowers, “1.3 µm photoluminescence from InGaAs quantum dots on GaAs,” Appl. Phys. Lett. 67(25), 3795–3797 (1995).
[Crossref]

Ji, W. Y.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

Jiang, Q.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs Quantum-Dot Laser Diode Monolithically Grown on Ge Substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Jones, T. S.

P. Howe, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464-465, 225–228 (2004).
[Crossref]

Juang, B. C.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology 27(46), 465701 (2016).
[Crossref]

Kobashi, K.

M. X. Chen and K. Kobashi, “Probing into hybrid organic-molecule and InAs quantum-dots nanosystem with multistacked dots-in-a-well units,” J. Appl. Phys. 112(6), 064903 (2012).
[Crossref]

Koenraad, P. M.

Korenev, V. L.

E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical Signatures of Coupled Quantum Dots,” Science 311(5761), 636–639 (2006).
[Crossref]

Krammel, C. M.

Krishnamurthy, M.

D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63(23), 3203–3205 (1993).
[Crossref]

Kuroda, T.

A. Tackeuchi, T. Kuroda, K. Mase, Y. Nakata, and N. Yokoyama, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62(3), 1568–1571 (2000).
[Crossref]

Larsson, A.

F. Ferdos, S. M. Wang, Y. Q. Wei, A. Larsson, M. Sadeghi, and Q. X. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81(7), 1195–1197 (2002).
[Crossref]

Le Ru, E. C.

P. Howe, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464-465, 225–228 (2004).
[Crossref]

Lee, M. L.

Leonard, D.

D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63(23), 3203–3205 (1993).
[Crossref]

Liang, B. L.

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
[Crossref]

J. H. Liu, S. Qiao, B. L. Liang, S. F. Wang, and G. S. Fu, “Lateral photovoltaic effect observed in doping-modulated GaAs/ Al0.3Ga0.7As,” Opt. Express 25(4), A166 (2017).
[Crossref]

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology 27(46), 465701 (2016).
[Crossref]

Y. Liu, B. L. Liang, Q. L. Guo, S. F. Wang, G. S. Fu, N. Fu, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer,” Nanoscale Res. Lett. 10(1), 271 (2015).
[Crossref]

B. L. Liang, Z. M. Wang, Y. I. Mazur, S. Seydmohamadi, M. E. Ware, and G. J. Salamo, “Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures,” Opt. Express 15(13), 8157–8162 (2007).
[Crossref]

B. L. Liang, Zh. M. Wang, Yu. I. Mazur, G. J. Salamo, E. A. Decuir, and M. O. Manasreh, “Correlation between surface and buried InAs quantum dots,” Appl. Phys. Lett. 89(4), 043125 (2006).
[Crossref]

Little, J. W.

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref]

Liu, H. Y.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs Quantum-Dot Laser Diode Monolithically Grown on Ge Substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Liu, J. H.

Liu, J. T.

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

Liu, Y.

Y. Liu, B. L. Liang, Q. L. Guo, S. F. Wang, G. S. Fu, N. Fu, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer,” Nanoscale Res. Lett. 10(1), 271 (2015).
[Crossref]

Luna, E.

E. Luna, A. M. Beltrán, A. M. Sánchez, and S. I. Molina, “Quantitative study of the interfacial intermixing and segregation effects across the wetting layer of Ga(As,Sb)-capped InAs quantum dots,” Appl. Phys. Lett. 101(1), 011601 (2012).
[Crossref]

Lv, Z. R.

Z. R. Lv, Z. K. Zhang, X. G. Yang, and T. Yang, “Improved performance of 1.3-µm InAs/GaAs quantum dot lasers by direct Si doping,” Appl. Phys. Lett. 113(1), 011105 (2018).
[Crossref]

Ma, Y. J.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

Madhukar, A.

I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, “Independent manipulation of density and size of stress-driven self-assembled quantum dots,” Appl. Phys. Lett. 73(13), 1841–1843 (1998).
[Crossref]

R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Excitation transfer in self-organized asymmetric quantum dot pairs,” Phys. Rev. B 58(16), R10151 (1998).
[Crossref]

Manasreh, M. O.

B. L. Liang, Zh. M. Wang, Yu. I. Mazur, G. J. Salamo, E. A. Decuir, and M. O. Manasreh, “Correlation between surface and buried InAs quantum dots,” Appl. Phys. Lett. 89(4), 043125 (2006).
[Crossref]

Mase, K.

A. Tackeuchi, T. Kuroda, K. Mase, Y. Nakata, and N. Yokoyama, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62(3), 1568–1571 (2000).
[Crossref]

Masselink, W. T.

R. D. Angelis, L. D’ Amico, M. Casalboni, F. Hatami, W. T. Masselink, and P. Prosposito, “Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage,” Sensors Actuators B 189, 113–117 (2013).
[Crossref]

Mazur, Y. I.

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
[Crossref]

G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology 27(46), 465701 (2016).
[Crossref]

Y. Liu, B. L. Liang, Q. L. Guo, S. F. Wang, G. S. Fu, N. Fu, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer,” Nanoscale Res. Lett. 10(1), 271 (2015).
[Crossref]

B. L. Liang, Z. M. Wang, Y. I. Mazur, S. Seydmohamadi, M. E. Ware, and G. J. Salamo, “Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures,” Opt. Express 15(13), 8157–8162 (2007).
[Crossref]

Mazur, Yu. I.

B. L. Liang, Zh. M. Wang, Yu. I. Mazur, G. J. Salamo, E. A. Decuir, and M. O. Manasreh, “Correlation between surface and buried InAs quantum dots,” Appl. Phys. Lett. 89(4), 043125 (2006).
[Crossref]

Miao, Z. L.

Z. L. Miao, Y. W. Zhang, S. J. Chua, Y. H. Chy, P. Chen, and S. Tripathy, “Optical properties of InAs/GaAs surface quantum dots,” Appl. Phys. Lett. 86(3), 031914 (2005).
[Crossref]

Milla, M. J.

M. J. Milla, J. M. Ulloa, and Á. Guzmán, “Strong Influence of the Humidity on the Electrical Properties of InGaAs Surface Quantum Dots,” ACS Appl. Mater. Interfaces 6(9), 6191–6195 (2014).
[Crossref]

M. J. Milla, J. M. Ulloa, and A Guzman, “Photoexcited induced sensitivity of InGaAs surface QDs to environment,” Nanotechnology 25(44), 445501 (2014).
[Crossref]

Mirin, R.

R. Mirin, J. Ibbetson, K. Nishi, A. Gossard, and J. Bowers, “1.3 µm photoluminescence from InGaAs quantum dots on GaAs,” Appl. Phys. Lett. 67(25), 3795–3797 (1995).
[Crossref]

Mitin, V.

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref]

Molina, S. I.

E. Luna, A. M. Beltrán, A. M. Sánchez, and S. I. Molina, “Quantitative study of the interfacial intermixing and segregation effects across the wetting layer of Ga(As,Sb)-capped InAs quantum dots,” Appl. Phys. Lett. 101(1), 011601 (2012).
[Crossref]

Mukhametzhanov, I.

I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, “Independent manipulation of density and size of stress-driven self-assembled quantum dots,” Appl. Phys. Lett. 73(13), 1841–1843 (1998).
[Crossref]

R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Excitation transfer in self-organized asymmetric quantum dot pairs,” Phys. Rev. B 58(16), R10151 (1998).
[Crossref]

Murray, R.

P. Howe, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464-465, 225–228 (2004).
[Crossref]

Nakata, Y.

A. Tackeuchi, T. Kuroda, K. Mase, Y. Nakata, and N. Yokoyama, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62(3), 1568–1571 (2000).
[Crossref]

Nazzal, A. Y.

A. Y. Nazzal, L. H. Qu, X. G. Peng, and M. Xiao, “Photoactivated CdSe Nanocrystals as Nanosensors for Gases,” Nano Lett. 3(6), 819–822 (2003).
[Crossref]

Nishi, K.

H. Saito, K. Nishi, and S. Sugou, “Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 mm emission,” Appl. Phys. Lett. 73(19), 2742–2744 (1998).
[Crossref]

R. Mirin, J. Ibbetson, K. Nishi, A. Gossard, and J. Bowers, “1.3 µm photoluminescence from InGaAs quantum dots on GaAs,” Appl. Phys. Lett. 67(25), 3795–3797 (1995).
[Crossref]

Passow, T.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Peng, X. G.

A. Y. Nazzal, L. H. Qu, X. G. Peng, and M. Xiao, “Photoactivated CdSe Nanocrystals as Nanosensors for Gases,” Nano Lett. 3(6), 819–822 (2003).
[Crossref]

Petroff, P. M.

D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63(23), 3203–3205 (1993).
[Crossref]

Ponomarev, I. V.

E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical Signatures of Coupled Quantum Dots,” Science 311(5761), 636–639 (2006).
[Crossref]

Pozzi, F.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs Quantum-Dot Laser Diode Monolithically Grown on Ge Substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Prosposito, P.

R. D. Angelis, L. D’ Amico, M. Casalboni, F. Hatami, W. T. Masselink, and P. Prosposito, “Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage,” Sensors Actuators B 189, 113–117 (2013).
[Crossref]

Qiao, S.

Qu, L. H.

A. Y. Nazzal, L. H. Qu, X. G. Peng, and M. Xiao, “Photoactivated CdSe Nanocrystals as Nanosensors for Gases,” Nano Lett. 3(6), 819–822 (2003).
[Crossref]

Reaves, C. M.

D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63(23), 3203–3205 (1993).
[Crossref]

Reinecke, T. L.

E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical Signatures of Coupled Quantum Dots,” Science 311(5761), 636–639 (2006).
[Crossref]

Reinhardt, K.

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref]

Ren, D. K.

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

Sabaeiana, M.

M. Shahzadeh and M. Sabaeiana, “The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots,” AIP Adv. 4(6), 067113 (2014).
[Crossref]

Sablon, K. A.

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref]

Sadeghi, M.

F. Ferdos, S. M. Wang, Y. Q. Wei, A. Larsson, M. Sadeghi, and Q. X. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81(7), 1195–1197 (2002).
[Crossref]

Saito, H.

H. Saito, K. Nishi, and S. Sugou, “Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 mm emission,” Appl. Phys. Lett. 73(19), 2742–2744 (1998).
[Crossref]

Salamo, G. J.

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
[Crossref]

G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology 27(46), 465701 (2016).
[Crossref]

Y. Liu, B. L. Liang, Q. L. Guo, S. F. Wang, G. S. Fu, N. Fu, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer,” Nanoscale Res. Lett. 10(1), 271 (2015).
[Crossref]

B. L. Liang, Z. M. Wang, Y. I. Mazur, S. Seydmohamadi, M. E. Ware, and G. J. Salamo, “Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures,” Opt. Express 15(13), 8157–8162 (2007).
[Crossref]

B. L. Liang, Zh. M. Wang, Yu. I. Mazur, G. J. Salamo, E. A. Decuir, and M. O. Manasreh, “Correlation between surface and buried InAs quantum dots,” Appl. Phys. Lett. 89(4), 043125 (2006).
[Crossref]

Sánchez, A. M.

E. Luna, A. M. Beltrán, A. M. Sánchez, and S. I. Molina, “Quantitative study of the interfacial intermixing and segregation effects across the wetting layer of Ga(As,Sb)-capped InAs quantum dots,” Appl. Phys. Lett. 101(1), 011601 (2012).
[Crossref]

Scheibner, M.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical Signatures of Coupled Quantum Dots,” Science 311(5761), 636–639 (2006).
[Crossref]

Schmidt, T.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Schnerder, C.

Seeds, A.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs Quantum-Dot Laser Diode Monolithically Grown on Ge Substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Seravalli, L.

G. Trevisi, L. Seravalli, and P. Frigeri, “Photoluminescence monitoring of oxide formation and surface state passivation on InAs quantum dots exposed to water vapor,” Nano Res. 9(10), 3018–3026 (2016).
[Crossref]

L. Seravalli, G. Trevisi, P. Frigeri, S. Franchi, M. Geddo, and G. Guizzetti, “The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures,” Nanotechnology 20(27), 275703 (2009).
[Crossref]

Sergeev, A.

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref]

Seydmohamadi, S.

Shahzadeh, M.

M. Shahzadeh and M. Sabaeiana, “The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots,” AIP Adv. 4(6), 067113 (2014).
[Crossref]

Shi, Y. H.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

Simmonds, P. J.

Stinaff, E. A.

E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical Signatures of Coupled Quantum Dots,” Science 311(5761), 636–639 (2006).
[Crossref]

Sugou, S.

H. Saito, K. Nishi, and S. Sugou, “Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 mm emission,” Appl. Phys. Lett. 73(19), 2742–2744 (1998).
[Crossref]

Tackeuchi, A.

A. Tackeuchi, T. Kuroda, K. Mase, Y. Nakata, and N. Yokoyama, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62(3), 1568–1571 (2000).
[Crossref]

Tang, H. J.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

Trevisi, G.

G. Trevisi, L. Seravalli, and P. Frigeri, “Photoluminescence monitoring of oxide formation and surface state passivation on InAs quantum dots exposed to water vapor,” Nano Res. 9(10), 3018–3026 (2016).
[Crossref]

L. Seravalli, G. Trevisi, P. Frigeri, S. Franchi, M. Geddo, and G. Guizzetti, “The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures,” Nanotechnology 20(27), 275703 (2009).
[Crossref]

Tripathy, S.

Z. L. Miao, Y. W. Zhang, S. J. Chua, Y. H. Chy, P. Chen, and S. Tripathy, “Optical properties of InAs/GaAs surface quantum dots,” Appl. Phys. Lett. 86(3), 031914 (2005).
[Crossref]

Tutu, F.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs Quantum-Dot Laser Diode Monolithically Grown on Ge Substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Ulloa, J. M.

M. J. Milla, J. M. Ulloa, and Á. Guzmán, “Strong Influence of the Humidity on the Electrical Properties of InGaAs Surface Quantum Dots,” ACS Appl. Mater. Interfaces 6(9), 6191–6195 (2014).
[Crossref]

M. J. Milla, J. M. Ulloa, and A Guzman, “Photoexcited induced sensitivity of InGaAs surface QDs to environment,” Nanotechnology 25(44), 445501 (2014).
[Crossref]

Unsleber, S.

Vagidov, N.

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref]

Vo, M.

Wang, G. D.

G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology 27(46), 465701 (2016).
[Crossref]

Wang, J.

H. B. Wu, S. J. Xu, and J. Wang, “Impact of the cap layer on the electronic structures and optical properties of self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 74(20), 205329 (2006).
[Crossref]

Wang, J. Z.

J. Z. Wang, Z. Yang, C. L. Yang, and Z. G. Wang, “Photoluminescence of InAs quantum dots grown on GaAs surface,” Appl. Phys. Lett. 77(18), 2837–2839 (2000).
[Crossref]

Wang, P.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

Wang, S. F.

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
[Crossref]

J. H. Liu, S. Qiao, B. L. Liang, S. F. Wang, and G. S. Fu, “Lateral photovoltaic effect observed in doping-modulated GaAs/ Al0.3Ga0.7As,” Opt. Express 25(4), A166 (2017).
[Crossref]

Y. Liu, B. L. Liang, Q. L. Guo, S. F. Wang, G. S. Fu, N. Fu, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer,” Nanoscale Res. Lett. 10(1), 271 (2015).
[Crossref]

Wang, S. M.

F. Ferdos, S. M. Wang, Y. Q. Wei, A. Larsson, M. Sadeghi, and Q. X. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81(7), 1195–1197 (2002).
[Crossref]

Wang, T.

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs Quantum-Dot Laser Diode Monolithically Grown on Ge Substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Wang, Y.

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
[Crossref]

Wang, Z. G.

J. Z. Wang, Z. Yang, C. L. Yang, and Z. G. Wang, “Photoluminescence of InAs quantum dots grown on GaAs surface,” Appl. Phys. Lett. 77(18), 2837–2839 (2000).
[Crossref]

Wang, Z. M.

Y. Liu, B. L. Liang, Q. L. Guo, S. F. Wang, G. S. Fu, N. Fu, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer,” Nanoscale Res. Lett. 10(1), 271 (2015).
[Crossref]

B. L. Liang, Z. M. Wang, Y. I. Mazur, S. Seydmohamadi, M. E. Ware, and G. J. Salamo, “Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures,” Opt. Express 15(13), 8157–8162 (2007).
[Crossref]

Wang, Zh. M.

B. L. Liang, Zh. M. Wang, Yu. I. Mazur, G. J. Salamo, E. A. Decuir, and M. O. Manasreh, “Correlation between surface and buried InAs quantum dots,” Appl. Phys. Lett. 89(4), 043125 (2006).
[Crossref]

Ware, M. E.

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
[Crossref]

G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology 27(46), 465701 (2016).
[Crossref]

B. L. Liang, Z. M. Wang, Y. I. Mazur, S. Seydmohamadi, M. E. Ware, and G. J. Salamo, “Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures,” Opt. Express 15(13), 8157–8162 (2007).
[Crossref]

E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical Signatures of Coupled Quantum Dots,” Science 311(5761), 636–639 (2006).
[Crossref]

Wei, Y. Q.

F. Ferdos, S. M. Wang, Y. Q. Wei, A. Larsson, M. Sadeghi, and Q. X. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81(7), 1195–1197 (2002).
[Crossref]

Worschech, L.

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Wu, H. B.

H. B. Wu, S. J. Xu, and J. Wang, “Impact of the cap layer on the electronic structures and optical properties of self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 74(20), 205329 (2006).
[Crossref]

Xi, S. P.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

Xiao, M.

A. Y. Nazzal, L. H. Qu, X. G. Peng, and M. Xiao, “Photoactivated CdSe Nanocrystals as Nanosensors for Gases,” Nano Lett. 3(6), 819–822 (2003).
[Crossref]

Xu, S. J.

H. B. Wu, S. J. Xu, and J. Wang, “Impact of the cap layer on the electronic structures and optical properties of self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 74(20), 205329 (2006).
[Crossref]

Yang, C. L.

J. Z. Wang, Z. Yang, C. L. Yang, and Z. G. Wang, “Photoluminescence of InAs quantum dots grown on GaAs surface,” Appl. Phys. Lett. 77(18), 2837–2839 (2000).
[Crossref]

Yang, T.

Z. R. Lv, Z. K. Zhang, X. G. Yang, and T. Yang, “Improved performance of 1.3-µm InAs/GaAs quantum dot lasers by direct Si doping,” Appl. Phys. Lett. 113(1), 011105 (2018).
[Crossref]

Yang, X. G.

Z. R. Lv, Z. K. Zhang, X. G. Yang, and T. Yang, “Improved performance of 1.3-µm InAs/GaAs quantum dot lasers by direct Si doping,” Appl. Phys. Lett. 113(1), 011105 (2018).
[Crossref]

Yang, Z.

J. Z. Wang, Z. Yang, C. L. Yang, and Z. G. Wang, “Photoluminescence of InAs quantum dots grown on GaAs surface,” Appl. Phys. Lett. 77(18), 2837–2839 (2000).
[Crossref]

Yerino, C. D.

Yokoyama, N.

A. Tackeuchi, T. Kuroda, K. Mase, Y. Nakata, and N. Yokoyama, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62(3), 1568–1571 (2000).
[Crossref]

Yuan, Q.

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
[Crossref]

Zeng, J.

I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, “Independent manipulation of density and size of stress-driven self-assembled quantum dots,” Appl. Phys. Lett. 73(13), 1841–1843 (1998).
[Crossref]

Zhang, Y. G.

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

Zhang, Y. W.

Z. L. Miao, Y. W. Zhang, S. J. Chua, Y. H. Chy, P. Chen, and S. Tripathy, “Optical properties of InAs/GaAs surface quantum dots,” Appl. Phys. Lett. 86(3), 031914 (2005).
[Crossref]

Zhang, Z. K.

Z. R. Lv, Z. K. Zhang, X. G. Yang, and T. Yang, “Improved performance of 1.3-µm InAs/GaAs quantum dot lasers by direct Si doping,” Appl. Phys. Lett. 113(1), 011105 (2018).
[Crossref]

Zhao, Q. X.

F. Ferdos, S. M. Wang, Y. Q. Wei, A. Larsson, M. Sadeghi, and Q. X. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81(7), 1195–1197 (2002).
[Crossref]

Zhou, C.

Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
[Crossref]

Zrenner, A.

E. F. Duijs, F. Findeis, R. A. Deutschmann, M. Bichler, A. Zrenner, and G. Abstreiter, “Influence of Thiol coupling on photoluminescence of near surface InAs quantum dots,” Phys. Status Solidi B 224(3), 871–875 (2001).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. J. Milla, J. M. Ulloa, and Á. Guzmán, “Strong Influence of the Humidity on the Electrical Properties of InGaAs Surface Quantum Dots,” ACS Appl. Mater. Interfaces 6(9), 6191–6195 (2014).
[Crossref]

Adv. Opt. Mater. (1)

Y. J. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, W. Y. Ji, B. Du, S. P. Xi, H. J. Tang, and J. X. Fang, “Enhanced Carrier Multiplication in InAs Quantum Dots for Bulk Avalanche Photodetector Applications,” Adv. Opt. Mater. 5(9), 1601023 (2017).
[Crossref]

AIP Adv. (1)

M. Shahzadeh and M. Sabaeiana, “The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots,” AIP Adv. 4(6), 067113 (2014).
[Crossref]

Appl. Phys. Lett. (10)

J. Z. Wang, Z. Yang, C. L. Yang, and Z. G. Wang, “Photoluminescence of InAs quantum dots grown on GaAs surface,” Appl. Phys. Lett. 77(18), 2837–2839 (2000).
[Crossref]

E. Luna, A. M. Beltrán, A. M. Sánchez, and S. I. Molina, “Quantitative study of the interfacial intermixing and segregation effects across the wetting layer of Ga(As,Sb)-capped InAs quantum dots,” Appl. Phys. Lett. 101(1), 011601 (2012).
[Crossref]

B. L. Liang, Zh. M. Wang, Yu. I. Mazur, G. J. Salamo, E. A. Decuir, and M. O. Manasreh, “Correlation between surface and buried InAs quantum dots,” Appl. Phys. Lett. 89(4), 043125 (2006).
[Crossref]

I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, “Independent manipulation of density and size of stress-driven self-assembled quantum dots,” Appl. Phys. Lett. 73(13), 1841–1843 (1998).
[Crossref]

Z. R. Lv, Z. K. Zhang, X. G. Yang, and T. Yang, “Improved performance of 1.3-µm InAs/GaAs quantum dot lasers by direct Si doping,” Appl. Phys. Lett. 113(1), 011105 (2018).
[Crossref]

Z. L. Miao, Y. W. Zhang, S. J. Chua, Y. H. Chy, P. Chen, and S. Tripathy, “Optical properties of InAs/GaAs surface quantum dots,” Appl. Phys. Lett. 86(3), 031914 (2005).
[Crossref]

D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63(23), 3203–3205 (1993).
[Crossref]

R. Mirin, J. Ibbetson, K. Nishi, A. Gossard, and J. Bowers, “1.3 µm photoluminescence from InGaAs quantum dots on GaAs,” Appl. Phys. Lett. 67(25), 3795–3797 (1995).
[Crossref]

H. Saito, K. Nishi, and S. Sugou, “Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 mm emission,” Appl. Phys. Lett. 73(19), 2742–2744 (1998).
[Crossref]

F. Ferdos, S. M. Wang, Y. Q. Wei, A. Larsson, M. Sadeghi, and Q. X. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81(7), 1195–1197 (2002).
[Crossref]

J. Appl. Phys. (1)

M. X. Chen and K. Kobashi, “Probing into hybrid organic-molecule and InAs quantum-dots nanosystem with multistacked dots-in-a-well units,” J. Appl. Phys. 112(6), 064903 (2012).
[Crossref]

J. Lumin. (1)

Q. Yuan, J. T. Liu, B. L. Liang, D. K. Ren, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots,” J. Lumin. 218, 116870 (2020).
[Crossref]

Nano Lett. (2)

A. Y. Nazzal, L. H. Qu, X. G. Peng, and M. Xiao, “Photoactivated CdSe Nanocrystals as Nanosensors for Gases,” Nano Lett. 3(6), 819–822 (2003).
[Crossref]

K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong enhancement of solar cell efficiency due to quantum dots with built-in charge,” Nano Lett. 11(6), 2311–2317 (2011).
[Crossref]

Nano Res. (1)

G. Trevisi, L. Seravalli, and P. Frigeri, “Photoluminescence monitoring of oxide formation and surface state passivation on InAs quantum dots exposed to water vapor,” Nano Res. 9(10), 3018–3026 (2016).
[Crossref]

Nanoscale Res. Lett. (2)

Y. Liu, B. L. Liang, Q. L. Guo, S. F. Wang, G. S. Fu, N. Fu, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Electronic Coupling in Nanoscale InAs/GaAs Quantum Dot Pairs Separated by a Thin Ga(Al)As Spacer,” Nanoscale Res. Lett. 10(1), 271 (2015).
[Crossref]

Q. Yuan, B. L. Liang, C. Zhou, Y. Wang, Y. N. Guo, S. F. Wang, G. S. Fu, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots,” Nanoscale Res. Lett. 13(1), 387 (2018).
[Crossref]

Nanotechnology (3)

L. Seravalli, G. Trevisi, P. Frigeri, S. Franchi, M. Geddo, and G. Guizzetti, “The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures,” Nanotechnology 20(27), 275703 (2009).
[Crossref]

M. J. Milla, J. M. Ulloa, and A Guzman, “Photoexcited induced sensitivity of InGaAs surface QDs to environment,” Nanotechnology 25(44), 445501 (2014).
[Crossref]

G. D. Wang, B. L. Liang, B. C. Juang, A. Das, M. C. Debnath, D. L. Huffaker, Y. I. Mazur, M. E. Ware, and G. J. Salamo, “Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots,” Nanotechnology 27(46), 465701 (2016).
[Crossref]

Nat. Photonics (1)

H. Y. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-Wavelength InAs/GaAs Quantum-Dot Laser Diode Monolithically Grown on Ge Substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Nat. Phys. (1)

M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, “Superradiance of quantum dots,” Nat. Phys. 3(2), 106–110 (2007).
[Crossref]

Opt. Express (3)

Phys. Rev. B (3)

H. B. Wu, S. J. Xu, and J. Wang, “Impact of the cap layer on the electronic structures and optical properties of self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 74(20), 205329 (2006).
[Crossref]

A. Tackeuchi, T. Kuroda, K. Mase, Y. Nakata, and N. Yokoyama, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62(3), 1568–1571 (2000).
[Crossref]

R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Excitation transfer in self-organized asymmetric quantum dot pairs,” Phys. Rev. B 58(16), R10151 (1998).
[Crossref]

Phys. Status Solidi B (1)

E. F. Duijs, F. Findeis, R. A. Deutschmann, M. Bichler, A. Zrenner, and G. Abstreiter, “Influence of Thiol coupling on photoluminescence of near surface InAs quantum dots,” Phys. Status Solidi B 224(3), 871–875 (2001).
[Crossref]

Science (1)

E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, “Optical Signatures of Coupled Quantum Dots,” Science 311(5761), 636–639 (2006).
[Crossref]

Sensors Actuators B (1)

R. D. Angelis, L. D’ Amico, M. Casalboni, F. Hatami, W. T. Masselink, and P. Prosposito, “Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage,” Sensors Actuators B 189, 113–117 (2013).
[Crossref]

Thin Solid Films (1)

P. Howe, B. Abbey, E. C. Le Ru, R. Murray, and T. S. Jones, “Strain-interactions between InAs/GaAs quantum dot layers,” Thin Solid Films 464-465, 225–228 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The schematic diagram of the bilayer QD structures.
Fig. 2.
Fig. 2. AFM and TEM characterizations. The 1 µm ×1 µm AFM image for (a) sample A of 7 nm spacer, (b) sample B of 10.5 nm spacer, and (c) sample C of 70 nm spacer, respectively; (d), (e) and (f) are the column chart of QDs height distribution extracted from the AFM images of the three samples; (g), (h) and (i) are the cross-section TEM images to show the structures with BQDs and SQDs, the inset gives one example of the QD pair for sample A and sample B, respectively.
Fig. 3.
Fig. 3. The PL spectra measured at 10 K with a laser excitation intensity of 3 W/cm2 for (a) sample A, (b) sample B, (c) sample C, and (d) BQD reference sample D and SQD reference sample E.
Fig. 4.
Fig. 4. PL spectra measured at 10 K with excitation intensity from I0=30 mW/cm2 to 105I0 for (a) sample A, (b) sample B, and (c) SQD reference sample E. The PL spectra measured with a laser excitation intensity of 30 W/cm2 with respect to temperature from 10 K to 295 K for (d) sample A, (e) sample B, and (f) sample C.
Fig. 5.
Fig. 5. The PLE spectra were measured at 10 K for (a) sample A, (b) sample B, (c) sample C, and (d) BQD reference sample D as well as SQD reference sample E, while setting the detection at the SQD or BQD PL peak wavelength, in together with the PL spectra obtained with a laser excitation intensity of 3 mW; The TRPL spectra were measured at 10 K for (e) sample A, (f) sample B, (g) sample C, and for (h) SQDs for four samples; (i) and (j) give the schematic diagram to show the carrier dynamics, including carrier’s generation, relaxation, and tunneling.