Abstract

The possibility of electrically tuning the scattering of light from surfaces by dynamically varying their properties is desirable for controllable transparency devices and diffusion filters. As a difference from state-of-the-art approaches where scattering is changed isotropically, this paper presents the first smart-material-based technology enabling electrical modulations in a single or multiple directions, which can be selected dynamically. The effect is achieved from thin soft membranes with transparent PEDOT:PSS coatings, which are electrically deformed along a single or multiple axes, using dielectric elastomer actuation. Anisotropic scattering is induced by electrically tuning the formation of directional surface wrinkles. As a proof of concept, a bi-directional device is obtained by overlapping two 90°-shifted mono-directional layers that can be controlled independently. According to the activation of the layers, light can be scattered along either direction, as well as both of them. Prototypes made of an acrylic elastomer were demonstrated with mono- and bi-directional operations. Devices with a window-to-total area ratio of 1:4 also showed a maximum electrical reduction of optical transmittance from 75% to 4%. This functionality and possible extensions to more than two controllable directions suggest applicability as electrically controllable anisotropic light diffusers for dynamic light shaping, as well as tunable transparency surfaces.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Williamson and M. Venables, “Special report: 50th Paris air show,” Eng. Technol. 8(7), 18–19 (2013).
    [Crossref]
  2. R. J. Mortimer, D. R. Rosseinsky, and P. M. S. Monk, Electrochromic Materials and Devices (John Wiley & Sons, 2015).
  3. T. Ohzono, K. Suzuki, T. Yamaguchi, and N. Fukuda, “Tunable optical diffuser based on deformable wrinkles,” Adv. Opt. Mater. 1(5), 374–380 (2013).
    [Crossref]
  4. C. G. Granqvist, “Electrochromic devices,” J. Eur. Ceram. Soc. 25(12), 2907–2912 (2005).
    [Crossref]
  5. G. A. Niklasson and C. G. Granqvist, “Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these,” J. Mater. Chem. 17(2), 127–156 (2007).
    [Crossref]
  6. C. G. Granqvist, “Electrochromics for smart windows: oxide-based thin films and devices,” Thin Solid Films 564, 1–38 (2014).
    [Crossref]
  7. F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
    [Crossref]
  8. D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. De Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
    [Crossref]
  9. M. Kim, K. J. Park, S. Seok, J. M. Ok, H. T. Jung, J. Choe, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
    [Crossref]
  10. H. Hosseinzadeh Khaligh, K. Liew, Y. Han, N. M. Abukhdeir, and I. A. Goldthorpe, “Silver nanowire transparent electrodes for liquid crystal-based smart windows,” Sol. Energy Mater. Sol. Cells 132, 337–341 (2015).
    [Crossref]
  11. H.-Y. Ong, M. Shrestha, and G.-K. Lau, “Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance,” Appl. Phys. Lett. 107(13), 132902 (2015).
    [Crossref]
  12. K.-W. Jun, J.-N. Kim, J.-Y. Jung, and I.-K. Oh, “Wrinkled graphene–AgNWs hybrid electrodes for smart window,” Micromachines 8(2), 43 (2017).
    [Crossref]
  13. M. Shrestha, A. Asundi, and G.-K. Lau, “Smart window based on electric unfolding of microwrinkled TiO2 nanometric films,” ACS Photonics 5(8), 3255–3262 (2018).
    [Crossref]
  14. L. Chen, M. Ghilardi, J. J. C. Busfield, and F. Carpi, “Electrically tuning soft membranes to both a higher and a lower transparency,” Sci. Rep. 9(1), 20125 (2019).
    [Crossref]
  15. D. van den Ende, J.-D. Kamminga, A. Boersma, T. Andritsch, and P. G. Steeneken, “Voltage-controlled surface wrinkling of elastomeric coatings,” Adv. Mater. 25(25), 3438–3442 (2013).
    [Crossref]
  16. S. Shian and D. R. Clarke, “Electrically tunable window device,” Opt. Lett. 41(6), 1289–1292 (2016).
    [Crossref]
  17. I.-T. Lin, T. Wang, F. Zhang, and S. K. Smoukov, “Fault-tolerant electro-responsive surfaces for dynamic micropattern molds and tunable optics,” Sci. Rep. 7(1), 12481 (2017).
    [Crossref]
  18. S. Shian, P. Kjeer, and D. R. Clarke, “Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering,” J. Appl. Phys. 123(11), 113105 (2018).
    [Crossref]
  19. C. H. Yang, S. Zhou, S. Shian, D. R. Clarke, and Z. Suo, “Organic liquid-crystal devices based on ionic conductors,” Mater. Horiz. 4(6), 1102–1109 (2017).
    [Crossref]
  20. F. Carpi, Electromechanically Active Polymers: A Concise Reference (Springer International Publishing, 2016).
  21. S. Rosset and H. R. Shea, “Flexible and stretchable electrodes for dielectric elastomer actuators,” Appl. Phys. A 110(2), 281–307 (2013).
    [Crossref]
  22. R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
    [Crossref]
  23. R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators, A 64(1), 77–85 (1998).
    [Crossref]
  24. P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun. 31(1), 10–36 (2010).
    [Crossref]
  25. F. Carpi, S. Bauer, and D. De Rossi, “Stretching dielectric elastomer performance,” Science 330(6012), 1759–1761 (2010).
    [Crossref]
  26. F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, and P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier, 2008).
  27. S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo, “Mechanisms of large actuation strain in dielectric elastomers,” J. Polym. Sci., Part B: Polym. Phys. 49(7), 504–515 (2011).
    [Crossref]
  28. L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
    [Crossref]
  29. M. Aschwanden and A. Stemmer, “Polymeric, electrically tunable diffraction grating based on artificial muscles,” Opt. Lett. 31(17), 2610 (2006).
    [Crossref]
  30. M. Kollosche, S. Döring, G. Kofod, and J. Stumpe, “A novel approach to tunable diffractive transmission gratings based on dielectric elastomer actuators,” Proc. SPIE 7642, 76422Y (2010).
    [Crossref]
  31. M. B. Krishnan, S. Rosset, S. Bhattacharya, and H. R. Shea, “Fabrication of transmissive dielectric elastomer actuator driven tunable optical gratings with improved tunability,” Opt. Eng. 55(4), 047104 (2016).
    [Crossref]
  32. S. Akbari, S. Rosset, and H. R. Shea, “Improved electromechanical behavior in castable dielectric elastomer actuators,” Appl. Phys. Lett. 102(7), 071906 (2013).
    [Crossref]
  33. D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander, and Z. Bao, “Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates,” Chem. Mater. 24(2), 373–382 (2012).
    [Crossref]
  34. J. Liu, N. R. Davis, D. S. Liu, and P. T. Hammond, “Highly transparent mixed electron and proton conducting polymer membranes,” J. Mater. Chem. 22(31), 15534–15539 (2012).
    [Crossref]
  35. M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
    [Crossref]
  36. E. A. Campo, “Physical Properties of Polymeric Materials,” in Selection of Polymeric Materials (Elsevier, 2008), pp. 175–203.

2019 (1)

L. Chen, M. Ghilardi, J. J. C. Busfield, and F. Carpi, “Electrically tuning soft membranes to both a higher and a lower transparency,” Sci. Rep. 9(1), 20125 (2019).
[Crossref]

2018 (2)

M. Shrestha, A. Asundi, and G.-K. Lau, “Smart window based on electric unfolding of microwrinkled TiO2 nanometric films,” ACS Photonics 5(8), 3255–3262 (2018).
[Crossref]

S. Shian, P. Kjeer, and D. R. Clarke, “Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering,” J. Appl. Phys. 123(11), 113105 (2018).
[Crossref]

2017 (3)

C. H. Yang, S. Zhou, S. Shian, D. R. Clarke, and Z. Suo, “Organic liquid-crystal devices based on ionic conductors,” Mater. Horiz. 4(6), 1102–1109 (2017).
[Crossref]

K.-W. Jun, J.-N. Kim, J.-Y. Jung, and I.-K. Oh, “Wrinkled graphene–AgNWs hybrid electrodes for smart window,” Micromachines 8(2), 43 (2017).
[Crossref]

I.-T. Lin, T. Wang, F. Zhang, and S. K. Smoukov, “Fault-tolerant electro-responsive surfaces for dynamic micropattern molds and tunable optics,” Sci. Rep. 7(1), 12481 (2017).
[Crossref]

2016 (2)

S. Shian and D. R. Clarke, “Electrically tunable window device,” Opt. Lett. 41(6), 1289–1292 (2016).
[Crossref]

M. B. Krishnan, S. Rosset, S. Bhattacharya, and H. R. Shea, “Fabrication of transmissive dielectric elastomer actuator driven tunable optical gratings with improved tunability,” Opt. Eng. 55(4), 047104 (2016).
[Crossref]

2015 (4)

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

M. Kim, K. J. Park, S. Seok, J. M. Ok, H. T. Jung, J. Choe, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref]

H. Hosseinzadeh Khaligh, K. Liew, Y. Han, N. M. Abukhdeir, and I. A. Goldthorpe, “Silver nanowire transparent electrodes for liquid crystal-based smart windows,” Sol. Energy Mater. Sol. Cells 132, 337–341 (2015).
[Crossref]

H.-Y. Ong, M. Shrestha, and G.-K. Lau, “Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance,” Appl. Phys. Lett. 107(13), 132902 (2015).
[Crossref]

2014 (1)

C. G. Granqvist, “Electrochromics for smart windows: oxide-based thin films and devices,” Thin Solid Films 564, 1–38 (2014).
[Crossref]

2013 (5)

M. Williamson and M. Venables, “Special report: 50th Paris air show,” Eng. Technol. 8(7), 18–19 (2013).
[Crossref]

T. Ohzono, K. Suzuki, T. Yamaguchi, and N. Fukuda, “Tunable optical diffuser based on deformable wrinkles,” Adv. Opt. Mater. 1(5), 374–380 (2013).
[Crossref]

D. van den Ende, J.-D. Kamminga, A. Boersma, T. Andritsch, and P. G. Steeneken, “Voltage-controlled surface wrinkling of elastomeric coatings,” Adv. Mater. 25(25), 3438–3442 (2013).
[Crossref]

S. Rosset and H. R. Shea, “Flexible and stretchable electrodes for dielectric elastomer actuators,” Appl. Phys. A 110(2), 281–307 (2013).
[Crossref]

S. Akbari, S. Rosset, and H. R. Shea, “Improved electromechanical behavior in castable dielectric elastomer actuators,” Appl. Phys. Lett. 102(7), 071906 (2013).
[Crossref]

2012 (3)

D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander, and Z. Bao, “Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates,” Chem. Mater. 24(2), 373–382 (2012).
[Crossref]

J. Liu, N. R. Davis, D. S. Liu, and P. T. Hammond, “Highly transparent mixed electron and proton conducting polymer membranes,” J. Mater. Chem. 22(31), 15534–15539 (2012).
[Crossref]

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

2011 (1)

S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo, “Mechanisms of large actuation strain in dielectric elastomers,” J. Polym. Sci., Part B: Polym. Phys. 49(7), 504–515 (2011).
[Crossref]

2010 (3)

M. Kollosche, S. Döring, G. Kofod, and J. Stumpe, “A novel approach to tunable diffractive transmission gratings based on dielectric elastomer actuators,” Proc. SPIE 7642, 76422Y (2010).
[Crossref]

P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun. 31(1), 10–36 (2010).
[Crossref]

F. Carpi, S. Bauer, and D. De Rossi, “Stretching dielectric elastomer performance,” Science 330(6012), 1759–1761 (2010).
[Crossref]

2009 (1)

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. De Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

2007 (1)

G. A. Niklasson and C. G. Granqvist, “Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these,” J. Mater. Chem. 17(2), 127–156 (2007).
[Crossref]

2006 (1)

2005 (2)

C. G. Granqvist, “Electrochromic devices,” J. Eur. Ceram. Soc. 25(12), 2907–2912 (2005).
[Crossref]

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

2000 (1)

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
[Crossref]

1998 (1)

R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators, A 64(1), 77–85 (1998).
[Crossref]

Abukhdeir, N. M.

H. Hosseinzadeh Khaligh, K. Liew, Y. Han, N. M. Abukhdeir, and I. A. Goldthorpe, “Silver nanowire transparent electrodes for liquid crystal-based smart windows,” Sol. Energy Mater. Sol. Cells 132, 337–341 (2015).
[Crossref]

Akbari, S.

S. Akbari, S. Rosset, and H. R. Shea, “Improved electromechanical behavior in castable dielectric elastomer actuators,” Appl. Phys. Lett. 102(7), 071906 (2013).
[Crossref]

Andritsch, T.

D. van den Ende, J.-D. Kamminga, A. Boersma, T. Andritsch, and P. G. Steeneken, “Voltage-controlled surface wrinkling of elastomeric coatings,” Adv. Mater. 25(25), 3438–3442 (2013).
[Crossref]

Aschwanden, M.

Asundi, A.

M. Shrestha, A. Asundi, and G.-K. Lau, “Smart window based on electric unfolding of microwrinkled TiO2 nanometric films,” ACS Photonics 5(8), 3255–3262 (2018).
[Crossref]

Bao, Z.

D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander, and Z. Bao, “Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates,” Chem. Mater. 24(2), 373–382 (2012).
[Crossref]

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Bauer, S.

F. Carpi, S. Bauer, and D. De Rossi, “Stretching dielectric elastomer performance,” Science 330(6012), 1759–1761 (2010).
[Crossref]

Bhattacharya, S.

M. B. Krishnan, S. Rosset, S. Bhattacharya, and H. R. Shea, “Fabrication of transmissive dielectric elastomer actuator driven tunable optical gratings with improved tunability,” Opt. Eng. 55(4), 047104 (2016).
[Crossref]

Boersma, A.

D. van den Ende, J.-D. Kamminga, A. Boersma, T. Andritsch, and P. G. Steeneken, “Voltage-controlled surface wrinkling of elastomeric coatings,” Adv. Mater. 25(25), 3438–3442 (2013).
[Crossref]

Bolander, J. A.

D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander, and Z. Bao, “Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates,” Chem. Mater. 24(2), 373–382 (2012).
[Crossref]

Brochu, P.

P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun. 31(1), 10–36 (2010).
[Crossref]

Busfield, J. J. C.

L. Chen, M. Ghilardi, J. J. C. Busfield, and F. Carpi, “Electrically tuning soft membranes to both a higher and a lower transparency,” Sci. Rep. 9(1), 20125 (2019).
[Crossref]

Campo, E. A.

E. A. Campo, “Physical Properties of Polymeric Materials,” in Selection of Polymeric Materials (Elsevier, 2008), pp. 175–203.

Carpi, F.

L. Chen, M. Ghilardi, J. J. C. Busfield, and F. Carpi, “Electrically tuning soft membranes to both a higher and a lower transparency,” Sci. Rep. 9(1), 20125 (2019).
[Crossref]

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

F. Carpi, S. Bauer, and D. De Rossi, “Stretching dielectric elastomer performance,” Science 330(6012), 1759–1761 (2010).
[Crossref]

F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, and P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier, 2008).

F. Carpi, Electromechanically Active Polymers: A Concise Reference (Springer International Publishing, 2016).

Chen, L.

L. Chen, M. Ghilardi, J. J. C. Busfield, and F. Carpi, “Electrically tuning soft membranes to both a higher and a lower transparency,” Sci. Rep. 9(1), 20125 (2019).
[Crossref]

Chidichimo, G.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. De Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

Choe, J.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H. T. Jung, J. Choe, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref]

Clarke, D. R.

S. Shian, P. Kjeer, and D. R. Clarke, “Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering,” J. Appl. Phys. 123(11), 113105 (2018).
[Crossref]

C. H. Yang, S. Zhou, S. Shian, D. R. Clarke, and Z. Suo, “Organic liquid-crystal devices based on ionic conductors,” Mater. Horiz. 4(6), 1102–1109 (2017).
[Crossref]

S. Shian and D. R. Clarke, “Electrically tunable window device,” Opt. Lett. 41(6), 1289–1292 (2016).
[Crossref]

Cupelli, D.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. De Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

Davis, N. R.

J. Liu, N. R. Davis, D. S. Liu, and P. T. Hammond, “Highly transparent mixed electron and proton conducting polymer membranes,” J. Mater. Chem. 22(31), 15534–15539 (2012).
[Crossref]

De Benedittis, M.

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

De Filpo, G.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. De Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

De Rossi, D.

F. Carpi, S. Bauer, and D. De Rossi, “Stretching dielectric elastomer performance,” Science 330(6012), 1759–1761 (2010).
[Crossref]

F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, and P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier, 2008).

Döring, S.

M. Kollosche, S. Döring, G. Kofod, and J. Stumpe, “A novel approach to tunable diffractive transmission gratings based on dielectric elastomer actuators,” Proc. SPIE 7642, 76422Y (2010).
[Crossref]

Fazio, A.

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

Formoso, P.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. De Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

Fukuda, N.

T. Ohzono, K. Suzuki, T. Yamaguchi, and N. Fukuda, “Tunable optical diffuser based on deformable wrinkles,” Adv. Opt. Mater. 1(5), 374–380 (2013).
[Crossref]

Gabriele, B.

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

Ghilardi, M.

L. Chen, M. Ghilardi, J. J. C. Busfield, and F. Carpi, “Electrically tuning soft membranes to both a higher and a lower transparency,” Sci. Rep. 9(1), 20125 (2019).
[Crossref]

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Goldthorpe, I. A.

H. Hosseinzadeh Khaligh, K. Liew, Y. Han, N. M. Abukhdeir, and I. A. Goldthorpe, “Silver nanowire transparent electrodes for liquid crystal-based smart windows,” Sol. Energy Mater. Sol. Cells 132, 337–341 (2015).
[Crossref]

Granqvist, C. G.

C. G. Granqvist, “Electrochromics for smart windows: oxide-based thin films and devices,” Thin Solid Films 564, 1–38 (2014).
[Crossref]

G. A. Niklasson and C. G. Granqvist, “Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these,” J. Mater. Chem. 17(2), 127–156 (2007).
[Crossref]

C. G. Granqvist, “Electrochromic devices,” J. Eur. Ceram. Soc. 25(12), 2907–2912 (2005).
[Crossref]

Hammond, P. T.

J. Liu, N. R. Davis, D. S. Liu, and P. T. Hammond, “Highly transparent mixed electron and proton conducting polymer membranes,” J. Mater. Chem. 22(31), 15534–15539 (2012).
[Crossref]

Han, Y.

H. Hosseinzadeh Khaligh, K. Liew, Y. Han, N. M. Abukhdeir, and I. A. Goldthorpe, “Silver nanowire transparent electrodes for liquid crystal-based smart windows,” Sol. Energy Mater. Sol. Cells 132, 337–341 (2015).
[Crossref]

Hong, W.

S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo, “Mechanisms of large actuation strain in dielectric elastomers,” J. Polym. Sci., Part B: Polym. Phys. 49(7), 504–515 (2011).
[Crossref]

Hosseinzadeh Khaligh, H.

H. Hosseinzadeh Khaligh, K. Liew, Y. Han, N. M. Abukhdeir, and I. A. Goldthorpe, “Silver nanowire transparent electrodes for liquid crystal-based smart windows,” Sol. Energy Mater. Sol. Cells 132, 337–341 (2015).
[Crossref]

Joseph, J.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
[Crossref]

Joseph, J. P.

R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators, A 64(1), 77–85 (1998).
[Crossref]

Jun, K.-W.

K.-W. Jun, J.-N. Kim, J.-Y. Jung, and I.-K. Oh, “Wrinkled graphene–AgNWs hybrid electrodes for smart window,” Micromachines 8(2), 43 (2017).
[Crossref]

Jung, H. T.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H. T. Jung, J. Choe, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref]

Jung, J.-Y.

K.-W. Jun, J.-N. Kim, J.-Y. Jung, and I.-K. Oh, “Wrinkled graphene–AgNWs hybrid electrodes for smart window,” Micromachines 8(2), 43 (2017).
[Crossref]

Kamminga, J.-D.

D. van den Ende, J.-D. Kamminga, A. Boersma, T. Andritsch, and P. G. Steeneken, “Voltage-controlled surface wrinkling of elastomeric coatings,” Adv. Mater. 25(25), 3438–3442 (2013).
[Crossref]

Kim, D. H.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H. T. Jung, J. Choe, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref]

Kim, J.-N.

K.-W. Jun, J.-N. Kim, J.-Y. Jung, and I.-K. Oh, “Wrinkled graphene–AgNWs hybrid electrodes for smart window,” Micromachines 8(2), 43 (2017).
[Crossref]

Kim, M.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H. T. Jung, J. Choe, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref]

Kjeer, P.

S. Shian, P. Kjeer, and D. R. Clarke, “Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering,” J. Appl. Phys. 123(11), 113105 (2018).
[Crossref]

Kofod, G.

M. Kollosche, S. Döring, G. Kofod, and J. Stumpe, “A novel approach to tunable diffractive transmission gratings based on dielectric elastomer actuators,” Proc. SPIE 7642, 76422Y (2010).
[Crossref]

Koh, S. J. A.

S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo, “Mechanisms of large actuation strain in dielectric elastomers,” J. Polym. Sci., Part B: Polym. Phys. 49(7), 504–515 (2011).
[Crossref]

Kollosche, M.

M. Kollosche, S. Döring, G. Kofod, and J. Stumpe, “A novel approach to tunable diffractive transmission gratings based on dielectric elastomer actuators,” Proc. SPIE 7642, 76422Y (2010).
[Crossref]

Kornbluh, R.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
[Crossref]

F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, and P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier, 2008).

Kornbluh, R. D.

R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators, A 64(1), 77–85 (1998).
[Crossref]

Krishnan, M. B.

M. B. Krishnan, S. Rosset, S. Bhattacharya, and H. R. Shea, “Fabrication of transmissive dielectric elastomer actuator driven tunable optical gratings with improved tunability,” Opt. Eng. 55(4), 047104 (2016).
[Crossref]

Lau, G.-K.

M. Shrestha, A. Asundi, and G.-K. Lau, “Smart window based on electric unfolding of microwrinkled TiO2 nanometric films,” ACS Photonics 5(8), 3255–3262 (2018).
[Crossref]

H.-Y. Ong, M. Shrestha, and G.-K. Lau, “Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance,” Appl. Phys. Lett. 107(13), 132902 (2015).
[Crossref]

Lee, J. A.

D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander, and Z. Bao, “Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates,” Chem. Mater. 24(2), 373–382 (2012).
[Crossref]

Li, T.

S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo, “Mechanisms of large actuation strain in dielectric elastomers,” J. Polym. Sci., Part B: Polym. Phys. 49(7), 504–515 (2011).
[Crossref]

Liew, K.

H. Hosseinzadeh Khaligh, K. Liew, Y. Han, N. M. Abukhdeir, and I. A. Goldthorpe, “Silver nanowire transparent electrodes for liquid crystal-based smart windows,” Sol. Energy Mater. Sol. Cells 132, 337–341 (2015).
[Crossref]

Lin, I.-T.

I.-T. Lin, T. Wang, F. Zhang, and S. K. Smoukov, “Fault-tolerant electro-responsive surfaces for dynamic micropattern molds and tunable optics,” Sci. Rep. 7(1), 12481 (2017).
[Crossref]

Lipomi, D. J.

D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander, and Z. Bao, “Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates,” Chem. Mater. 24(2), 373–382 (2012).
[Crossref]

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Liu, D. S.

J. Liu, N. R. Davis, D. S. Liu, and P. T. Hammond, “Highly transparent mixed electron and proton conducting polymer membranes,” J. Mater. Chem. 22(31), 15534–15539 (2012).
[Crossref]

Liu, J.

J. Liu, N. R. Davis, D. S. Liu, and P. T. Hammond, “Highly transparent mixed electron and proton conducting polymer membranes,” J. Mater. Chem. 22(31), 15534–15539 (2012).
[Crossref]

Maffli, L.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Manfredi, S.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. De Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

Monk, P. M. S.

R. J. Mortimer, D. R. Rosseinsky, and P. M. S. Monk, Electrochromic Materials and Devices (John Wiley & Sons, 2015).

Mortimer, R. J.

R. J. Mortimer, D. R. Rosseinsky, and P. M. S. Monk, Electrochromic Materials and Devices (John Wiley & Sons, 2015).

Nicoletta, F. P.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. De Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

Niklasson, G. A.

G. A. Niklasson and C. G. Granqvist, “Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these,” J. Mater. Chem. 17(2), 127–156 (2007).
[Crossref]

Oh, I.-K.

K.-W. Jun, J.-N. Kim, J.-Y. Jung, and I.-K. Oh, “Wrinkled graphene–AgNWs hybrid electrodes for smart window,” Micromachines 8(2), 43 (2017).
[Crossref]

Ohzono, T.

T. Ohzono, K. Suzuki, T. Yamaguchi, and N. Fukuda, “Tunable optical diffuser based on deformable wrinkles,” Adv. Opt. Mater. 1(5), 374–380 (2013).
[Crossref]

Ok, J. M.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H. T. Jung, J. Choe, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref]

Ong, H.-Y.

H.-Y. Ong, M. Shrestha, and G.-K. Lau, “Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance,” Appl. Phys. Lett. 107(13), 132902 (2015).
[Crossref]

Park, K. J.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H. T. Jung, J. Choe, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref]

Pei, Q.

P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun. 31(1), 10–36 (2010).
[Crossref]

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
[Crossref]

Pelrine, R.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
[Crossref]

F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, and P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier, 2008).

Pelrine, R. E.

R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators, A 64(1), 77–85 (1998).
[Crossref]

Rosseinsky, D. R.

R. J. Mortimer, D. R. Rosseinsky, and P. M. S. Monk, Electrochromic Materials and Devices (John Wiley & Sons, 2015).

Rosset, S.

M. B. Krishnan, S. Rosset, S. Bhattacharya, and H. R. Shea, “Fabrication of transmissive dielectric elastomer actuator driven tunable optical gratings with improved tunability,” Opt. Eng. 55(4), 047104 (2016).
[Crossref]

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

S. Akbari, S. Rosset, and H. R. Shea, “Improved electromechanical behavior in castable dielectric elastomer actuators,” Appl. Phys. Lett. 102(7), 071906 (2013).
[Crossref]

S. Rosset and H. R. Shea, “Flexible and stretchable electrodes for dielectric elastomer actuators,” Appl. Phys. A 110(2), 281–307 (2013).
[Crossref]

Salerno, G.

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

Seok, S.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H. T. Jung, J. Choe, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref]

Shea, H.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Shea, H. R.

M. B. Krishnan, S. Rosset, S. Bhattacharya, and H. R. Shea, “Fabrication of transmissive dielectric elastomer actuator driven tunable optical gratings with improved tunability,” Opt. Eng. 55(4), 047104 (2016).
[Crossref]

S. Akbari, S. Rosset, and H. R. Shea, “Improved electromechanical behavior in castable dielectric elastomer actuators,” Appl. Phys. Lett. 102(7), 071906 (2013).
[Crossref]

S. Rosset and H. R. Shea, “Flexible and stretchable electrodes for dielectric elastomer actuators,” Appl. Phys. A 110(2), 281–307 (2013).
[Crossref]

Shian, S.

S. Shian, P. Kjeer, and D. R. Clarke, “Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering,” J. Appl. Phys. 123(11), 113105 (2018).
[Crossref]

C. H. Yang, S. Zhou, S. Shian, D. R. Clarke, and Z. Suo, “Organic liquid-crystal devices based on ionic conductors,” Mater. Horiz. 4(6), 1102–1109 (2017).
[Crossref]

S. Shian and D. R. Clarke, “Electrically tunable window device,” Opt. Lett. 41(6), 1289–1292 (2016).
[Crossref]

Shrestha, M.

M. Shrestha, A. Asundi, and G.-K. Lau, “Smart window based on electric unfolding of microwrinkled TiO2 nanometric films,” ACS Photonics 5(8), 3255–3262 (2018).
[Crossref]

H.-Y. Ong, M. Shrestha, and G.-K. Lau, “Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance,” Appl. Phys. Lett. 107(13), 132902 (2015).
[Crossref]

Smoukov, S. K.

I.-T. Lin, T. Wang, F. Zhang, and S. K. Smoukov, “Fault-tolerant electro-responsive surfaces for dynamic micropattern molds and tunable optics,” Sci. Rep. 7(1), 12481 (2017).
[Crossref]

Sommer-Larsen, P.

F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, and P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier, 2008).

Steeneken, P. G.

D. van den Ende, J.-D. Kamminga, A. Boersma, T. Andritsch, and P. G. Steeneken, “Voltage-controlled surface wrinkling of elastomeric coatings,” Adv. Mater. 25(25), 3438–3442 (2013).
[Crossref]

Stemmer, A.

Stumpe, J.

M. Kollosche, S. Döring, G. Kofod, and J. Stumpe, “A novel approach to tunable diffractive transmission gratings based on dielectric elastomer actuators,” Proc. SPIE 7642, 76422Y (2010).
[Crossref]

Suo, Z.

C. H. Yang, S. Zhou, S. Shian, D. R. Clarke, and Z. Suo, “Organic liquid-crystal devices based on ionic conductors,” Mater. Horiz. 4(6), 1102–1109 (2017).
[Crossref]

S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo, “Mechanisms of large actuation strain in dielectric elastomers,” J. Polym. Sci., Part B: Polym. Phys. 49(7), 504–515 (2011).
[Crossref]

Suzuki, K.

T. Ohzono, K. Suzuki, T. Yamaguchi, and N. Fukuda, “Tunable optical diffuser based on deformable wrinkles,” Adv. Opt. Mater. 1(5), 374–380 (2013).
[Crossref]

Tee, B. C.-K.

D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander, and Z. Bao, “Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates,” Chem. Mater. 24(2), 373–382 (2012).
[Crossref]

van den Ende, D.

D. van den Ende, J.-D. Kamminga, A. Boersma, T. Andritsch, and P. G. Steeneken, “Voltage-controlled surface wrinkling of elastomeric coatings,” Adv. Mater. 25(25), 3438–3442 (2013).
[Crossref]

Venables, M.

M. Williamson and M. Venables, “Special report: 50th Paris air show,” Eng. Technol. 8(7), 18–19 (2013).
[Crossref]

Vivacqua, M.

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. De Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

Vosgueritchian, M.

D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander, and Z. Bao, “Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates,” Chem. Mater. 24(2), 373–382 (2012).
[Crossref]

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Wang, T.

I.-T. Lin, T. Wang, F. Zhang, and S. K. Smoukov, “Fault-tolerant electro-responsive surfaces for dynamic micropattern molds and tunable optics,” Sci. Rep. 7(1), 12481 (2017).
[Crossref]

Williamson, M.

M. Williamson and M. Venables, “Special report: 50th Paris air show,” Eng. Technol. 8(7), 18–19 (2013).
[Crossref]

Yamaguchi, T.

T. Ohzono, K. Suzuki, T. Yamaguchi, and N. Fukuda, “Tunable optical diffuser based on deformable wrinkles,” Adv. Opt. Mater. 1(5), 374–380 (2013).
[Crossref]

Yang, C. H.

C. H. Yang, S. Zhou, S. Shian, D. R. Clarke, and Z. Suo, “Organic liquid-crystal devices based on ionic conductors,” Mater. Horiz. 4(6), 1102–1109 (2017).
[Crossref]

Zhang, F.

I.-T. Lin, T. Wang, F. Zhang, and S. K. Smoukov, “Fault-tolerant electro-responsive surfaces for dynamic micropattern molds and tunable optics,” Sci. Rep. 7(1), 12481 (2017).
[Crossref]

Zhao, X.

S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo, “Mechanisms of large actuation strain in dielectric elastomers,” J. Polym. Sci., Part B: Polym. Phys. 49(7), 504–515 (2011).
[Crossref]

Zhou, J.

S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo, “Mechanisms of large actuation strain in dielectric elastomers,” J. Polym. Sci., Part B: Polym. Phys. 49(7), 504–515 (2011).
[Crossref]

Zhou, S.

C. H. Yang, S. Zhou, S. Shian, D. R. Clarke, and Z. Suo, “Organic liquid-crystal devices based on ionic conductors,” Mater. Horiz. 4(6), 1102–1109 (2017).
[Crossref]

Zhu, J.

S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo, “Mechanisms of large actuation strain in dielectric elastomers,” J. Polym. Sci., Part B: Polym. Phys. 49(7), 504–515 (2011).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. Kim, K. J. Park, S. Seok, J. M. Ok, H. T. Jung, J. Choe, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref]

ACS Photonics (1)

M. Shrestha, A. Asundi, and G.-K. Lau, “Smart window based on electric unfolding of microwrinkled TiO2 nanometric films,” ACS Photonics 5(8), 3255–3262 (2018).
[Crossref]

Adv. Funct. Mater. (3)

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast all-polymer electrically tunable silicone lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Adv. Mater. (1)

D. van den Ende, J.-D. Kamminga, A. Boersma, T. Andritsch, and P. G. Steeneken, “Voltage-controlled surface wrinkling of elastomeric coatings,” Adv. Mater. 25(25), 3438–3442 (2013).
[Crossref]

Adv. Opt. Mater. (1)

T. Ohzono, K. Suzuki, T. Yamaguchi, and N. Fukuda, “Tunable optical diffuser based on deformable wrinkles,” Adv. Opt. Mater. 1(5), 374–380 (2013).
[Crossref]

Appl. Phys. A (1)

S. Rosset and H. R. Shea, “Flexible and stretchable electrodes for dielectric elastomer actuators,” Appl. Phys. A 110(2), 281–307 (2013).
[Crossref]

Appl. Phys. Lett. (2)

S. Akbari, S. Rosset, and H. R. Shea, “Improved electromechanical behavior in castable dielectric elastomer actuators,” Appl. Phys. Lett. 102(7), 071906 (2013).
[Crossref]

H.-Y. Ong, M. Shrestha, and G.-K. Lau, “Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance,” Appl. Phys. Lett. 107(13), 132902 (2015).
[Crossref]

Chem. Mater. (1)

D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander, and Z. Bao, “Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates,” Chem. Mater. 24(2), 373–382 (2012).
[Crossref]

Eng. Technol. (1)

M. Williamson and M. Venables, “Special report: 50th Paris air show,” Eng. Technol. 8(7), 18–19 (2013).
[Crossref]

J. Appl. Phys. (1)

S. Shian, P. Kjeer, and D. R. Clarke, “Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering,” J. Appl. Phys. 123(11), 113105 (2018).
[Crossref]

J. Eur. Ceram. Soc. (1)

C. G. Granqvist, “Electrochromic devices,” J. Eur. Ceram. Soc. 25(12), 2907–2912 (2005).
[Crossref]

J. Mater. Chem. (2)

G. A. Niklasson and C. G. Granqvist, “Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these,” J. Mater. Chem. 17(2), 127–156 (2007).
[Crossref]

J. Liu, N. R. Davis, D. S. Liu, and P. T. Hammond, “Highly transparent mixed electron and proton conducting polymer membranes,” J. Mater. Chem. 22(31), 15534–15539 (2012).
[Crossref]

J. Polym. Sci., Part B: Polym. Phys. (1)

S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo, “Mechanisms of large actuation strain in dielectric elastomers,” J. Polym. Sci., Part B: Polym. Phys. 49(7), 504–515 (2011).
[Crossref]

Macromol. Rapid Commun. (1)

P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun. 31(1), 10–36 (2010).
[Crossref]

Mater. Horiz. (1)

C. H. Yang, S. Zhou, S. Shian, D. R. Clarke, and Z. Suo, “Organic liquid-crystal devices based on ionic conductors,” Mater. Horiz. 4(6), 1102–1109 (2017).
[Crossref]

Micromachines (1)

K.-W. Jun, J.-N. Kim, J.-Y. Jung, and I.-K. Oh, “Wrinkled graphene–AgNWs hybrid electrodes for smart window,” Micromachines 8(2), 43 (2017).
[Crossref]

Opt. Eng. (1)

M. B. Krishnan, S. Rosset, S. Bhattacharya, and H. R. Shea, “Fabrication of transmissive dielectric elastomer actuator driven tunable optical gratings with improved tunability,” Opt. Eng. 55(4), 047104 (2016).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

M. Kollosche, S. Döring, G. Kofod, and J. Stumpe, “A novel approach to tunable diffractive transmission gratings based on dielectric elastomer actuators,” Proc. SPIE 7642, 76422Y (2010).
[Crossref]

Sci. Rep. (2)

I.-T. Lin, T. Wang, F. Zhang, and S. K. Smoukov, “Fault-tolerant electro-responsive surfaces for dynamic micropattern molds and tunable optics,” Sci. Rep. 7(1), 12481 (2017).
[Crossref]

L. Chen, M. Ghilardi, J. J. C. Busfield, and F. Carpi, “Electrically tuning soft membranes to both a higher and a lower transparency,” Sci. Rep. 9(1), 20125 (2019).
[Crossref]

Science (2)

F. Carpi, S. Bauer, and D. De Rossi, “Stretching dielectric elastomer performance,” Science 330(6012), 1759–1761 (2010).
[Crossref]

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
[Crossref]

Sens. Actuators, A (1)

R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation,” Sens. Actuators, A 64(1), 77–85 (1998).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

H. Hosseinzadeh Khaligh, K. Liew, Y. Han, N. M. Abukhdeir, and I. A. Goldthorpe, “Silver nanowire transparent electrodes for liquid crystal-based smart windows,” Sol. Energy Mater. Sol. Cells 132, 337–341 (2015).
[Crossref]

D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. De Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Sol. Energy Mater. Sol. Cells 93(11), 2008–2012 (2009).
[Crossref]

Thin Solid Films (1)

C. G. Granqvist, “Electrochromics for smart windows: oxide-based thin films and devices,” Thin Solid Films 564, 1–38 (2014).
[Crossref]

Other (4)

R. J. Mortimer, D. R. Rosseinsky, and P. M. S. Monk, Electrochromic Materials and Devices (John Wiley & Sons, 2015).

F. Carpi, Electromechanically Active Polymers: A Concise Reference (Springer International Publishing, 2016).

F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, and P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier, 2008).

E. A. Campo, “Physical Properties of Polymeric Materials,” in Selection of Polymeric Materials (Elsevier, 2008), pp. 175–203.

Supplementary Material (1)

NameDescription
» Visualization 1       Directional blurring of a grid, as visualized through the controllable scattering device

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Proposed DEA-based device to achieve an electrically tunable mono-directional light scattering from a soft thin membrane. (a) Fabrication steps, consisting of: i) uniaxial pre-stretching (blue arrows) of the membrane; ii) application of a rigid holding frame; iii) deposition, on both sides, of a transparent material with strain-dependent scattering properties; iv) creation, on both sides, of two lateral coatings with a non-transparent stretchable conductor. (b) Top and cross-sectional views illustrating the working principle: at electrical rest, the central window made up of the coated membrane is optically transparent, whilst an electrical activation of the two lateral regions compresses it along one direction (red arrows); this creates uni-directional wrinkles (schematically indicated as parallel lines on the surface), which scatter light mostly along the direction of contraction. Moreover, the membrane shows a lower transparency. Note: the (non-uniform) change of thickness of the membrane due to its actuation is not shown for simplicity.
Fig. 2.
Fig. 2. Proposed DEA-based device to achieve an electrically tunable bi-directional light scattering from a soft thin membrane: (a) assembly of the device, by overlapping two mono-directional layers shifted by 90°; (b) mono- and bi-directional operation modes of the device, obtained by electrically wrinkling one or both the layers, respectively. The uni-directional wrinkling of a layer is schematically indicated as parallel lines on its surface. The red arrows indicate the direction of the maximum electrically-induced deformation of the rectangular DEAs.
Fig. 3.
Fig. 3. Schematic representation of the UV-Vis spectrometer set-up used to characterize the transmittance: (a) Near-field total transmittance measurement, with both specular transmitted and diffused transmitted light detected; for this test, the transmission port was covered with the sample, whilst the reflectance port was covered with a white standard plate. (b) Near-field diffuse transmittance measurement, with only diffused transmitted light detected; for this test, the transmission port was covered with the sample, whilst the reflectance port was left open. (c) Far-field transmittance measurement, with only specular transmitted light detected; for this test, the transmission port was left open, whilst the reflectance post was covered with a white standard plate.
Fig. 4.
Fig. 4. Electro-mechano-optical transduction performance of the mono-directional light scattering device and comparisons between samples with and without PEDOT:PSS coating: (a) Photos showing the achieved reduction of transparency in response to increasing nominal electric fields; the visualized text was located 3 cm behind the window; (b) Effect of the applied electric field on the central window’s axial strain (variation of the distance between the inner edges of the lateral electrodes) along the direction of maximum contraction; (c) Electrically-induced variations of the transmittances (near-field total, near-field diffuse and far-field) at 550 nm; (d) Dependence on the applied nominal electric field of the Haze number at different wavelengths. Each data point represents the average value from three sample devices. Error bars corresponding to the standard deviation are included, although most of them are too small to be seen.
Fig. 5.
Fig. 5. Microscopic investigations on the reversible wrinkling of the PEDOT:PSS coating of the elastomer membrane uniaxially pre-stretched along the direction X (blue arrows), as a result of different contraction strains imposed along the direction Y (red arrows). The uni-directional wrinkling of the coating is schematically indicated as parallel lines on its surface (first column). AFM plots (second and third columns) and SEM images (fourth column) of the surface are shown at an axial strain of (a) 0%, (b) −2.5%, (c) −5%, (d) −7.5%, (e) −10% and then back to (f) 0%.
Fig. 6.
Fig. 6. AFM investigation on a membrane without PEDOT:PSS coating, as a control test. The membrane was uniaxially pre-stretched along the direction X (blue arrows) and the contraction strain was imposed along the direction Y (red arrows). AFM plots (second and third columns) of the surface are shown at an axial strain of (a) 0% and (b) −10%.
Fig. 7.
Fig. 7. Electro-optical transduction performance of the bi-directional light scattering device upon activations of the rear layer at increasing electric fields, which progressively compressed the window along the figure’s horizontal direction. The images show the device located 3 cm above a grid (whose vertical lines progressively ‘vanished’), a light spot (which was re-shaped from a circle to a horizontal line) and a flower (which was blurred horizontally). The graphs present the electrically-induced variations of the transmittances (near-field total, near-field diffuse and far-field) at 550 nm and the dependence on the applied nominal electric field of the Haze number at different wavelengths. Each data point represents the average value from three sample devices. Error bars corresponding to the standard deviation are included, although most of them are too small to be seen.
Fig. 8.
Fig. 8. Electro-optical transduction performance of the bi-directional light scattering device upon activations of the front layer at increasing electric fields, which progressively compressed the window along the figure’s vertical direction. The images show the device located 3 cm above a grid (whose horizontal lines progressively ‘vanished’), a light spot (which was re-shaped from a circle to a vertical line) and a flower (which was blurred vertically). The graphs present the electrically-induced variations of the transmittances (near-field total, near-field diffuse and far-field) at 550 nm and the dependence on the applied nominal electric field of the Haze number at different wavelengths. Each data point represents the average value from three sample devices. Error bars corresponding to the standard deviation are included, although most of them are too small to be seen.
Fig. 9.
Fig. 9. Electro-optical transduction performance of the bi-directional light scattering device upon activations of the both the rear and front layers at increasing electric fields, which progressively compressed the window along the figure’s horizontal and vertical directions. The images show the device located 3 cm above a grid (whose lines progressively ‘vanished’), a light spot (which was re-shaped from a circle to a cross) and a flower (which was completely hidden). The graphs present the electrically-induced variations of the transmittances (near-field total, near-field diffuse and far-field) at 550 nm and the dependence on the applied nominal electric field of the Haze number at different wavelengths. Each data point represents the average value from three sample devices. Error bars corresponding to the standard deviation are included, although most of them are too small to be seen.
Fig. 10.
Fig. 10. Possible alternative configuration for a DEA-based bi-directional light scattering device, made of a single elastomer membrane hosting two couples of lateral DEA segments, arranged along two orthogonal directions at the sides of the central window. (a) Fabrication steps from i) a square piece of membrane, which is ii) biaxially pre-stretched (blue arrows), iii) fixed to a rigid holding frame, iv) coated, on both sides, with a transparent material having strain-dependent scattering properties, to create the central tunable window, and v) coated, on both sides, with a non-transparent stretchable conductor, to create lateral DEA segments. (b) Bi-directional operation of the device.