Abstract

We show that an array of non-Hermitian particles can enable advanced manipulations of the scattering pattern, beyond what is possible with passive structures. Active linear elements are shown to provide zero forward scattering without sacrificing the total scattered power, and by adding more particles, it is possible to control the zero-scattering direction at will. We apply our theory to realistic implementations of scatterer arrays, using loaded dipole antennas in which we tune the load impedance and investigate the stability of these arrays based on a realistic dispersion model for the gain elements. Finally, we discuss the possibility of controlling multiple frequencies to enable broadband control of the scattering pattern.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
    [Crossref]
  2. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
    [Crossref]
  3. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  4. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. V. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
    [Crossref]
  5. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref]
  6. B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
    [Crossref]
  7. S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
    [Crossref]
  8. C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15(8), 4846–4852 (2015).
    [Crossref]
  9. A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105(26), 263906 (2010).
    [Crossref]
  10. J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
    [Crossref]
  11. R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 36(10), 1443–1454 (1988).
    [Crossref]
  12. J. Ward, “Towards invisible glass,” Vacuum 22(9), 369–375 (1972).
    [Crossref]
  13. P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
    [Crossref]
  14. F. Monticone and A. Alù, “Do Cloaked Objects Really Scatter Less?” Phys. Rev. X 3(4), 041005 (2013).
    [Crossref]
  15. H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86(1), 013804 (2012).
    [Crossref]
  16. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
    [Crossref]
  17. M. Selvanayagam and G. V. Eleftheriades, “Experimental demonstration of active electromagnetic cloaking,” Phys. Rev. X 3, 041011 (2013).
    [Crossref]
  18. A. Alù and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophotonics 4(1), 041590 (2010).
    [Crossref]
  19. J. Vehmas, Y. Ra’di, A. O. Karilainen, and S. A. Tretyakov, “Eliminating electromagnetic scattering from small particles,” IEEE Trans. Antennas Propag. 61(7), 3747–3756 (2013).
    [Crossref]
  20. M. Safari, M. Albooyeh, C. R. Simovski, and S. A. Tretyakov, “Shadow-free multimers as extreme-performance meta-atoms,” Phys. Rev. B 97(8), 085412 (2018).
    [Crossref]
  21. G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and H. Ott, “Controlling the dynamics of an open many-body quantum system with localized dissipation,” Phys. Rev. Lett. 110(3), 035302 (2013).
    [Crossref]
  22. P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1(4), 297–304 (2018).
    [Crossref]
  23. C. M. Bender and S. Böttcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
    [Crossref]
  24. S. Longhi, “PT-symmetry laser absorber,” Phys. Rev. A 82(3), 031801 (2010).
    [Crossref]
  25. H. Hodaei, M. -Ali Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
    [Crossref]
  26. K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
    [Crossref]
  27. A. Manjavacas, “Anisotropic optical response of nanostructures with balanced gain and loss,” ACS Photonics 3(7), 1301–1307 (2016).
    [Crossref]
  28. M. A. Miri, M. A. Eftekhar, M. Facao, A. F. Abouraddy, A. Bakry, M. A. N. Razvi, A. Alshahrie, A. Alù, and D. N. Christodoulides, “Scattering properties of PT-symmetric objects,” J. Opt. 18(7), 075104 (2016).
    [Crossref]
  29. X. Chen, W. Yue, R. Tao, P. Yao, and W. Liu, “Scattering phenomenon of PT-symmetric dielectric-nanosphere structure,” Phys. Rev. A 94(5), 053829 (2016).
    [Crossref]
  30. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-Symmetry Periodic Structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
    [Crossref]
  31. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
    [Crossref]
  32. R. Fleury, D. L. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6(1), 5905 (2015).
    [Crossref]
  33. D. L. Sounas, R. Fleury, and A. Alù, “Unidirectional cloaking based on metasurfaces with balanced loss and gain,” Phys. Rev. Appl. 4(1), 014005 (2015).
    [Crossref]
  34. A. Kord, D. L. Sounas, and A. Alù, “Active microwave cloaking using parity-time-symmetric satellites,” Phys. Rev. Appl. 10(5), 054040 (2018).
    [Crossref]
  35. S. Sanders and A. Manjavacas, “Nanoantennas with balanced gain and loss,” Nanophotonics 9(2), 473–480 (2020).
    [Crossref]
  36. T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
    [Crossref]
  37. P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
    [Crossref]
  38. L. Ge, L. Liu, S. Dai, J. Chai, Q. Song, H. Xiang, and D. Han, “Unidirectional scattering induced by the toroidal dipolar excitation in the system of plasmonic nanoparticles,” Opt. Express 25(10), 10853–10862 (2017).
    [Crossref]
  39. B. G. Cámara, J. F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles,” J. Phys. Chem. C 119(33), 19558–19564 (2015).
    [Crossref]
  40. A. V. Krasavin, P. Segovia, R. Dubrovka, N. Olivier, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Generalization of the optical theorem: experimental proof for radially polarized beams,” Light: Sci. Appl. 7(1), 36 (2018).
    [Crossref]
  41. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  42. S. Tretyakov, “Maximizing Absorption and Scattering by Dipole Particles,” Plasmonics 9(4), 935–944 (2014).
    [Crossref]
  43. A. A. Kuntman, E. Kuntman, J. S-Parramon, and O. Arteaga, “Light scattering by coupled oriented dipoles: Decomposition of the scattering matrix,” Phys. Rev. B 98(4), 045410 (2018).
    [Crossref]
  44. J. Kin, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
    [Crossref]
  45. D. L. Sounas and A. Alù, “Extinction symmetry for reciprocal objects and its implications on cloaking and scattering manipulation,” Opt. Lett. 39(13), 4053 (2014).
    [Crossref]
  46. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
    [Crossref]
  47. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
    [Crossref]
  48. A. Alù and S. Maslovski, “Power relations and a consistent analytical model for receiving wire antennas,” IEEE Trans. Antennas Propag. 58(5), 1436–1448 (2010).
    [Crossref]

2020 (1)

S. Sanders and A. Manjavacas, “Nanoantennas with balanced gain and loss,” Nanophotonics 9(2), 473–480 (2020).
[Crossref]

2018 (5)

M. Safari, M. Albooyeh, C. R. Simovski, and S. A. Tretyakov, “Shadow-free multimers as extreme-performance meta-atoms,” Phys. Rev. B 97(8), 085412 (2018).
[Crossref]

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1(4), 297–304 (2018).
[Crossref]

A. V. Krasavin, P. Segovia, R. Dubrovka, N. Olivier, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Generalization of the optical theorem: experimental proof for radially polarized beams,” Light: Sci. Appl. 7(1), 36 (2018).
[Crossref]

A. A. Kuntman, E. Kuntman, J. S-Parramon, and O. Arteaga, “Light scattering by coupled oriented dipoles: Decomposition of the scattering matrix,” Phys. Rev. B 98(4), 045410 (2018).
[Crossref]

A. Kord, D. L. Sounas, and A. Alù, “Active microwave cloaking using parity-time-symmetric satellites,” Phys. Rev. Appl. 10(5), 054040 (2018).
[Crossref]

2017 (1)

2016 (5)

A. Manjavacas, “Anisotropic optical response of nanostructures with balanced gain and loss,” ACS Photonics 3(7), 1301–1307 (2016).
[Crossref]

M. A. Miri, M. A. Eftekhar, M. Facao, A. F. Abouraddy, A. Bakry, M. A. N. Razvi, A. Alshahrie, A. Alù, and D. N. Christodoulides, “Scattering properties of PT-symmetric objects,” J. Opt. 18(7), 075104 (2016).
[Crossref]

X. Chen, W. Yue, R. Tao, P. Yao, and W. Liu, “Scattering phenomenon of PT-symmetric dielectric-nanosphere structure,” Phys. Rev. A 94(5), 053829 (2016).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

2015 (4)

R. Fleury, D. L. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6(1), 5905 (2015).
[Crossref]

D. L. Sounas, R. Fleury, and A. Alù, “Unidirectional cloaking based on metasurfaces with balanced loss and gain,” Phys. Rev. Appl. 4(1), 014005 (2015).
[Crossref]

C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15(8), 4846–4852 (2015).
[Crossref]

B. G. Cámara, J. F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles,” J. Phys. Chem. C 119(33), 19558–19564 (2015).
[Crossref]

2014 (4)

S. Tretyakov, “Maximizing Absorption and Scattering by Dipole Particles,” Plasmonics 9(4), 935–944 (2014).
[Crossref]

D. L. Sounas and A. Alù, “Extinction symmetry for reciprocal objects and its implications on cloaking and scattering manipulation,” Opt. Lett. 39(13), 4053 (2014).
[Crossref]

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref]

H. Hodaei, M. -Ali Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[Crossref]

2013 (9)

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and H. Ott, “Controlling the dynamics of an open many-body quantum system with localized dissipation,” Phys. Rev. Lett. 110(3), 035302 (2013).
[Crossref]

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
[Crossref]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

F. Monticone and A. Alù, “Do Cloaked Objects Really Scatter Less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

M. Selvanayagam and G. V. Eleftheriades, “Experimental demonstration of active electromagnetic cloaking,” Phys. Rev. X 3, 041011 (2013).
[Crossref]

J. Vehmas, Y. Ra’di, A. O. Karilainen, and S. A. Tretyakov, “Eliminating electromagnetic scattering from small particles,” IEEE Trans. Antennas Propag. 61(7), 3747–3756 (2013).
[Crossref]

J. Kin, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

2012 (2)

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86(1), 013804 (2012).
[Crossref]

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[Crossref]

2011 (3)

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-Symmetry Periodic Structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref]

2010 (5)

S. Longhi, “PT-symmetry laser absorber,” Phys. Rev. A 82(3), 031801 (2010).
[Crossref]

A. Alù and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophotonics 4(1), 041590 (2010).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. V. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105(26), 263906 (2010).
[Crossref]

A. Alù and S. Maslovski, “Power relations and a consistent analytical model for receiving wire antennas,” IEEE Trans. Antennas Propag. 58(5), 1436–1448 (2010).
[Crossref]

2009 (2)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
[Crossref]

2008 (2)

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
[Crossref]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

2005 (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
[Crossref]

1998 (1)

C. M. Bender and S. Böttcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
[Crossref]

1988 (1)

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 36(10), 1443–1454 (1988).
[Crossref]

1972 (1)

J. Ward, “Towards invisible glass,” Vacuum 22(9), 369–375 (1972).
[Crossref]

Abouraddy, A. F.

M. A. Miri, M. A. Eftekhar, M. Facao, A. F. Abouraddy, A. Bakry, M. A. N. Razvi, A. Alshahrie, A. Alù, and D. N. Christodoulides, “Scattering properties of PT-symmetric objects,” J. Opt. 18(7), 075104 (2016).
[Crossref]

Albella, P.

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

Albooyeh, M.

M. Safari, M. Albooyeh, C. R. Simovski, and S. A. Tretyakov, “Shadow-free multimers as extreme-performance meta-atoms,” Phys. Rev. B 97(8), 085412 (2018).
[Crossref]

Algorri, J. F.

B. G. Cámara, J. F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles,” J. Phys. Chem. C 119(33), 19558–19564 (2015).
[Crossref]

-Ali Miri, M.

H. Hodaei, M. -Ali Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[Crossref]

Alitalo, P.

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
[Crossref]

Almeida, V. R.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Alshahrie, A.

M. A. Miri, M. A. Eftekhar, M. Facao, A. F. Abouraddy, A. Bakry, M. A. N. Razvi, A. Alshahrie, A. Alù, and D. N. Christodoulides, “Scattering properties of PT-symmetric objects,” J. Opt. 18(7), 075104 (2016).
[Crossref]

Alù, A.

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1(4), 297–304 (2018).
[Crossref]

A. Kord, D. L. Sounas, and A. Alù, “Active microwave cloaking using parity-time-symmetric satellites,” Phys. Rev. Appl. 10(5), 054040 (2018).
[Crossref]

M. A. Miri, M. A. Eftekhar, M. Facao, A. F. Abouraddy, A. Bakry, M. A. N. Razvi, A. Alshahrie, A. Alù, and D. N. Christodoulides, “Scattering properties of PT-symmetric objects,” J. Opt. 18(7), 075104 (2016).
[Crossref]

R. Fleury, D. L. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6(1), 5905 (2015).
[Crossref]

D. L. Sounas, R. Fleury, and A. Alù, “Unidirectional cloaking based on metasurfaces with balanced loss and gain,” Phys. Rev. Appl. 4(1), 014005 (2015).
[Crossref]

D. L. Sounas and A. Alù, “Extinction symmetry for reciprocal objects and its implications on cloaking and scattering manipulation,” Opt. Lett. 39(13), 4053 (2014).
[Crossref]

F. Monticone and A. Alù, “Do Cloaked Objects Really Scatter Less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[Crossref]

A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105(26), 263906 (2010).
[Crossref]

A. Alù and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophotonics 4(1), 041590 (2010).
[Crossref]

A. Alù and S. Maslovski, “Power relations and a consistent analytical model for receiving wire antennas,” IEEE Trans. Antennas Propag. 58(5), 1436–1448 (2010).
[Crossref]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
[Crossref]

Arango, F. B.

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref]

Arteaga, O.

A. A. Kuntman, E. Kuntman, J. S-Parramon, and O. Arteaga, “Light scattering by coupled oriented dipoles: Decomposition of the scattering matrix,” Phys. Rev. B 98(4), 045410 (2018).
[Crossref]

Bakry, A.

M. A. Miri, M. A. Eftekhar, M. Facao, A. F. Abouraddy, A. Bakry, M. A. N. Razvi, A. Alshahrie, A. Alù, and D. N. Christodoulides, “Scattering properties of PT-symmetric objects,” J. Opt. 18(7), 075104 (2016).
[Crossref]

Barbastathis, G.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref]

Barontini, G.

G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and H. Ott, “Controlling the dynamics of an open many-body quantum system with localized dissipation,” Phys. Rev. Lett. 110(3), 035302 (2013).
[Crossref]

Bender, C. M.

C. M. Bender and S. Böttcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
[Crossref]

Boltasseva, A.

J. Kin, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

Böttcher, S.

C. M. Bender and S. Böttcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
[Crossref]

Cámara, B. G.

B. G. Cámara, J. F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles,” J. Phys. Chem. C 119(33), 19558–19564 (2015).
[Crossref]

Cao, H.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-Symmetry Periodic Structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref]

Chai, J.

Chen, P. Y.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[Crossref]

Chen, P.-Y.

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1(4), 297–304 (2018).
[Crossref]

Chen, X.

X. Chen, W. Yue, R. Tao, P. Yao, and W. Liu, “Scattering phenomenon of PT-symmetric dielectric-nanosphere structure,” Phys. Rev. A 94(5), 053829 (2016).
[Crossref]

Chen, Y. F.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Cheng, M. M.-C.

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1(4), 297–304 (2018).
[Crossref]

Christodoulides, D. N.

M. A. Miri, M. A. Eftekhar, M. Facao, A. F. Abouraddy, A. Bakry, M. A. N. Razvi, A. Alshahrie, A. Alù, and D. N. Christodoulides, “Scattering properties of PT-symmetric objects,” J. Opt. 18(7), 075104 (2016).
[Crossref]

H. Hodaei, M. -Ali Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[Crossref]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-Symmetry Periodic Structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref]

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
[Crossref]

Cuadrado, A.

B. G. Cámara, J. F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles,” J. Phys. Chem. C 119(33), 19558–19564 (2015).
[Crossref]

Cui, Q.

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1(4), 297–304 (2018).
[Crossref]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. V. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Dai, S.

Dubrovka, R.

A. V. Krasavin, P. Segovia, R. Dubrovka, N. Olivier, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Generalization of the optical theorem: experimental proof for radially polarized beams,” Light: Sci. Appl. 7(1), 36 (2018).
[Crossref]

Eftekhar, M. A.

M. A. Miri, M. A. Eftekhar, M. Facao, A. F. Abouraddy, A. Bakry, M. A. N. Razvi, A. Alshahrie, A. Alù, and D. N. Christodoulides, “Scattering properties of PT-symmetric objects,” J. Opt. 18(7), 075104 (2016).
[Crossref]

Eichelkraut, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-Symmetry Periodic Structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref]

Eleftheriades, G. V.

M. Selvanayagam and G. V. Eleftheriades, “Experimental demonstration of active electromagnetic cloaking,” Phys. Rev. X 3, 041011 (2013).
[Crossref]

El-Ganainy, R.

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1(4), 297–304 (2018).
[Crossref]

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
[Crossref]

Emani, N. K.

J. Kin, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophotonics 4(1), 041590 (2010).
[Crossref]

A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105(26), 263906 (2010).
[Crossref]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Facao, M.

M. A. Miri, M. A. Eftekhar, M. Facao, A. F. Abouraddy, A. Bakry, M. A. N. Razvi, A. Alshahrie, A. Alù, and D. N. Christodoulides, “Scattering properties of PT-symmetric objects,” J. Opt. 18(7), 075104 (2016).
[Crossref]

Fante, R. L.

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 36(10), 1443–1454 (1988).
[Crossref]

Fegadolli, W. S.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Feng, L.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Fleury, R.

R. Fleury, D. L. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6(1), 5905 (2015).
[Crossref]

D. L. Sounas, R. Fleury, and A. Alù, “Unidirectional cloaking based on metasurfaces with balanced loss and gain,” Phys. Rev. Appl. 4(1), 014005 (2015).
[Crossref]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

García-Cámara, B.

Ge, L.

Ginzburg, P.

A. V. Krasavin, P. Segovia, R. Dubrovka, N. Olivier, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Generalization of the optical theorem: experimental proof for radially polarized beams,” Light: Sci. Appl. 7(1), 36 (2018).
[Crossref]

Gómez Rivas, J.

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref]

Gómez-Medina, R.

Guarrera, V.

G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and H. Ott, “Controlling the dynamics of an open many-body quantum system with localized dissipation,” Phys. Rev. Lett. 110(3), 035302 (2013).
[Crossref]

Guler, U.

J. Kin, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

Hajizadegan, M.

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1(4), 297–304 (2018).
[Crossref]

Han, D.

Hashemi, H.

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86(1), 013804 (2012).
[Crossref]

Heinrich, M.

H. Hodaei, M. -Ali Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[Crossref]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Hodaei, H.

H. Hodaei, M. -Ali Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[Crossref]

Hulst, N. F. V.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. V. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Joannopoulos, J. D.

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86(1), 013804 (2012).
[Crossref]

Johnson, S. G.

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86(1), 013804 (2012).
[Crossref]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Karilainen, A. O.

J. Vehmas, Y. Ra’di, A. O. Karilainen, and S. A. Tretyakov, “Eliminating electromagnetic scattering from small particles,” IEEE Trans. Antennas Propag. 61(7), 3747–3756 (2013).
[Crossref]

Kerkhoff, A.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

Khajavikhan, M.

H. Hodaei, M. -Ali Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[Crossref]

Kin, J.

J. Kin, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

Koenderink, A. F.

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref]

Kord, A.

A. Kord, D. L. Sounas, and A. Alù, “Active microwave cloaking using parity-time-symmetric satellites,” Phys. Rev. Appl. 10(5), 054040 (2018).
[Crossref]

Kottos, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-Symmetry Periodic Structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref]

Krasavin, A. V.

A. V. Krasavin, P. Segovia, R. Dubrovka, N. Olivier, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Generalization of the optical theorem: experimental proof for radially polarized beams,” Light: Sci. Appl. 7(1), 36 (2018).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. V. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Kuntman, A. A.

A. A. Kuntman, E. Kuntman, J. S-Parramon, and O. Arteaga, “Light scattering by coupled oriented dipoles: Decomposition of the scattering matrix,” Phys. Rev. B 98(4), 045410 (2018).
[Crossref]

Kuntman, E.

A. A. Kuntman, E. Kuntman, J. S-Parramon, and O. Arteaga, “Light scattering by coupled oriented dipoles: Decomposition of the scattering matrix,” Phys. Rev. B 98(4), 045410 (2018).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Labouvie, R.

G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and H. Ott, “Controlling the dynamics of an open many-body quantum system with localized dissipation,” Phys. Rev. Lett. 110(3), 035302 (2013).
[Crossref]

Lenzmann, F.

C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15(8), 4846–4852 (2015).
[Crossref]

Lin, Z.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-Symmetry Periodic Structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref]

Liu, L.

Liu, W.

X. Chen, W. Yue, R. Tao, P. Yao, and W. Liu, “Scattering phenomenon of PT-symmetric dielectric-nanosphere structure,” Phys. Rev. A 94(5), 053829 (2016).
[Crossref]

Liu, X.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref]

Longhi, S.

S. Longhi, “PT-symmetry laser absorber,” Phys. Rev. A 82(3), 031801 (2010).
[Crossref]

Lu, M. H.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Lukyanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Luo, Y.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref]

Maier, S. A.

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

Makris, K. G.

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
[Crossref]

Manjavacas, A.

S. Sanders and A. Manjavacas, “Nanoantennas with balanced gain and loss,” Nanophotonics 9(2), 473–480 (2020).
[Crossref]

A. Manjavacas, “Anisotropic optical response of nanostructures with balanced gain and loss,” ACS Photonics 3(7), 1301–1307 (2016).
[Crossref]

Maslovski, S.

A. Alù and S. Maslovski, “Power relations and a consistent analytical model for receiving wire antennas,” IEEE Trans. Antennas Propag. 58(5), 1436–1448 (2010).
[Crossref]

McCauley, A. P.

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86(1), 013804 (2012).
[Crossref]

McCormack, M. T.

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 36(10), 1443–1454 (1988).
[Crossref]

Melin, K.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

Miri, M. A.

M. A. Miri, M. A. Eftekhar, M. Facao, A. F. Abouraddy, A. Bakry, M. A. N. Razvi, A. Alshahrie, A. Alù, and D. N. Christodoulides, “Scattering properties of PT-symmetric objects,” J. Opt. 18(7), 075104 (2016).
[Crossref]

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Monticone, F.

F. Monticone and A. Alù, “Do Cloaked Objects Really Scatter Less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

Naik, G. V.

J. Kin, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Oliveira, J. E.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Olivier, N.

A. V. Krasavin, P. Segovia, R. Dubrovka, N. Olivier, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Generalization of the optical theorem: experimental proof for radially polarized beams,” Light: Sci. Appl. 7(1), 36 (2018).
[Crossref]

Ott, H.

G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and H. Ott, “Controlling the dynamics of an open many-body quantum system with localized dissipation,” Phys. Rev. Lett. 110(3), 035302 (2013).
[Crossref]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Polman, A.

C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15(8), 4846–4852 (2015).
[Crossref]

Qiu, C.-W.

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86(1), 013804 (2012).
[Crossref]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. V. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Ra’di, Y.

J. Vehmas, Y. Ra’di, A. O. Karilainen, and S. A. Tretyakov, “Eliminating electromagnetic scattering from small particles,” IEEE Trans. Antennas Propag. 61(7), 3747–3756 (2013).
[Crossref]

Rainwater, D.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

Ramezani, H.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-Symmetry Periodic Structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref]

Razvi, M. A. N.

M. A. Miri, M. A. Eftekhar, M. Facao, A. F. Abouraddy, A. Bakry, M. A. N. Razvi, A. Alshahrie, A. Alù, and D. N. Christodoulides, “Scattering properties of PT-symmetric objects,” J. Opt. 18(7), 075104 (2016).
[Crossref]

Rodriguez, S. R. K.

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref]

Sáenz, J. J.

Safari, M.

M. Safari, M. Albooyeh, C. R. Simovski, and S. A. Tretyakov, “Shadow-free multimers as extreme-performance meta-atoms,” Phys. Rev. B 97(8), 085412 (2018).
[Crossref]

Sakhdari, M.

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1(4), 297–304 (2018).
[Crossref]

Sánchez-Pena, J. M.

B. G. Cámara, J. F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles,” J. Phys. Chem. C 119(33), 19558–19564 (2015).
[Crossref]

Sanders, S.

S. Sanders and A. Manjavacas, “Nanoantennas with balanced gain and loss,” Nanophotonics 9(2), 473–480 (2020).
[Crossref]

Scherer, A.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Segovia, P.

A. V. Krasavin, P. Segovia, R. Dubrovka, N. Olivier, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Generalization of the optical theorem: experimental proof for radially polarized beams,” Light: Sci. Appl. 7(1), 36 (2018).
[Crossref]

Selvanayagam, M.

M. Selvanayagam and G. V. Eleftheriades, “Experimental demonstration of active electromagnetic cloaking,” Phys. Rev. X 3, 041011 (2013).
[Crossref]

Sepúlveda, B.

Serna, R.

B. G. Cámara, J. F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles,” J. Phys. Chem. C 119(33), 19558–19564 (2015).
[Crossref]

Shibanuma, T.

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

Simovski, C. R.

M. Safari, M. Albooyeh, C. R. Simovski, and S. A. Tretyakov, “Shadow-free multimers as extreme-performance meta-atoms,” Phys. Rev. B 97(8), 085412 (2018).
[Crossref]

Song, Q.

Soric, J.

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[Crossref]

Soric, J. C.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

Sounas, D. L.

A. Kord, D. L. Sounas, and A. Alù, “Active microwave cloaking using parity-time-symmetric satellites,” Phys. Rev. Appl. 10(5), 054040 (2018).
[Crossref]

D. L. Sounas, R. Fleury, and A. Alù, “Unidirectional cloaking based on metasurfaces with balanced loss and gain,” Phys. Rev. Appl. 4(1), 014005 (2015).
[Crossref]

R. Fleury, D. L. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6(1), 5905 (2015).
[Crossref]

D. L. Sounas and A. Alù, “Extinction symmetry for reciprocal objects and its implications on cloaking and scattering manipulation,” Opt. Lett. 39(13), 4053 (2014).
[Crossref]

S-Parramon, J.

A. A. Kuntman, E. Kuntman, J. S-Parramon, and O. Arteaga, “Light scattering by coupled oriented dipoles: Decomposition of the scattering matrix,” Phys. Rev. B 98(4), 045410 (2018).
[Crossref]

Steinbusch, T. P.

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref]

Stubenrauch, F.

G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and H. Ott, “Controlling the dynamics of an open many-body quantum system with localized dissipation,” Phys. Rev. Lett. 110(3), 035302 (2013).
[Crossref]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. V. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Tao, R.

X. Chen, W. Yue, R. Tao, P. Yao, and W. Liu, “Scattering phenomenon of PT-symmetric dielectric-nanosphere structure,” Phys. Rev. A 94(5), 053829 (2016).
[Crossref]

Tretyakov, S.

S. Tretyakov, “Maximizing Absorption and Scattering by Dipole Particles,” Plasmonics 9(4), 935–944 (2014).
[Crossref]

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
[Crossref]

Tretyakov, S. A.

M. Safari, M. Albooyeh, C. R. Simovski, and S. A. Tretyakov, “Shadow-free multimers as extreme-performance meta-atoms,” Phys. Rev. B 97(8), 085412 (2018).
[Crossref]

J. Vehmas, Y. Ra’di, A. O. Karilainen, and S. A. Tretyakov, “Eliminating electromagnetic scattering from small particles,” IEEE Trans. Antennas Propag. 61(7), 3747–3756 (2013).
[Crossref]

Urruchi, V.

B. G. Cámara, J. F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles,” J. Phys. Chem. C 119(33), 19558–19564 (2015).
[Crossref]

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Van Lare, C.

C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15(8), 4846–4852 (2015).
[Crossref]

Vehmas, J.

J. Vehmas, Y. Ra’di, A. O. Karilainen, and S. A. Tretyakov, “Eliminating electromagnetic scattering from small particles,” IEEE Trans. Antennas Propag. 61(7), 3747–3756 (2013).
[Crossref]

Vergaz, R.

B. G. Cámara, J. F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles,” J. Phys. Chem. C 119(33), 19558–19564 (2015).
[Crossref]

Verschuuren, M. A.

C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15(8), 4846–4852 (2015).
[Crossref]

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref]

Vogler, A.

G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and H. Ott, “Controlling the dynamics of an open many-body quantum system with localized dissipation,” Phys. Rev. Lett. 110(3), 035302 (2013).
[Crossref]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. V. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Ward, J.

J. Ward, “Towards invisible glass,” Vacuum 22(9), 369–375 (1972).
[Crossref]

Wurtz, G. A.

A. V. Krasavin, P. Segovia, R. Dubrovka, N. Olivier, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Generalization of the optical theorem: experimental proof for radially polarized beams,” Light: Sci. Appl. 7(1), 36 (2018).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Xiang, H.

Xu, Y. L.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

Yao, P.

X. Chen, W. Yue, R. Tao, P. Yao, and W. Liu, “Scattering phenomenon of PT-symmetric dielectric-nanosphere structure,” Phys. Rev. A 94(5), 053829 (2016).
[Crossref]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Yue, W.

X. Chen, W. Yue, R. Tao, P. Yao, and W. Liu, “Scattering phenomenon of PT-symmetric dielectric-nanosphere structure,” Phys. Rev. A 94(5), 053829 (2016).
[Crossref]

Zayats, A. V.

A. V. Krasavin, P. Segovia, R. Dubrovka, N. Olivier, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Generalization of the optical theorem: experimental proof for radially polarized beams,” Light: Sci. Appl. 7(1), 36 (2018).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Zhang, B.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref]

ACS Photonics (1)

A. Manjavacas, “Anisotropic optical response of nanostructures with balanced gain and loss,” ACS Photonics 3(7), 1301–1307 (2016).
[Crossref]

Adv. Mater. (1)

P. Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Kin, G. V. Naik, N. K. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601907 (2013).
[Crossref]

IEEE Trans. Antennas Propag. (3)

A. Alù and S. Maslovski, “Power relations and a consistent analytical model for receiving wire antennas,” IEEE Trans. Antennas Propag. 58(5), 1436–1448 (2010).
[Crossref]

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 36(10), 1443–1454 (1988).
[Crossref]

J. Vehmas, Y. Ra’di, A. O. Karilainen, and S. A. Tretyakov, “Eliminating electromagnetic scattering from small particles,” IEEE Trans. Antennas Propag. 61(7), 3747–3756 (2013).
[Crossref]

J. Nanophotonics (1)

A. Alù and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophotonics 4(1), 041590 (2010).
[Crossref]

J. Opt. (1)

M. A. Miri, M. A. Eftekhar, M. Facao, A. F. Abouraddy, A. Bakry, M. A. N. Razvi, A. Alshahrie, A. Alù, and D. N. Christodoulides, “Scattering properties of PT-symmetric objects,” J. Opt. 18(7), 075104 (2016).
[Crossref]

J. Phys. Chem. C (1)

B. G. Cámara, J. F. Algorri, A. Cuadrado, V. Urruchi, J. M. Sánchez-Pena, R. Serna, and R. Vergaz, “All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles,” J. Phys. Chem. C 119(33), 19558–19564 (2015).
[Crossref]

Light: Sci. Appl. (1)

A. V. Krasavin, P. Segovia, R. Dubrovka, N. Olivier, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Generalization of the optical theorem: experimental proof for radially polarized beams,” Light: Sci. Appl. 7(1), 36 (2018).
[Crossref]

Mater. Today (1)

P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12(3), 22–29 (2009).
[Crossref]

Nano Lett. (1)

C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15(8), 4846–4852 (2015).
[Crossref]

Nanophotonics (1)

S. Sanders and A. Manjavacas, “Nanoantennas with balanced gain and loss,” Nanophotonics 9(2), 473–480 (2020).
[Crossref]

Nanoscale (1)

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

Nat. Commun. (2)

R. Fleury, D. L. Sounas, and A. Alù, “An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6(1), 5905 (2015).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Nat. Electron. (1)

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1(4), 297–304 (2018).
[Crossref]

Nat. Mater. (2)

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12(2), 108–113 (2013).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Nat. Photonics (2)

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[Crossref]

New J. Phys. (1)

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (3)

H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Diameter-bandwidth product limitation of isolated-object cloaking,” Phys. Rev. A 86(1), 013804 (2012).
[Crossref]

S. Longhi, “PT-symmetry laser absorber,” Phys. Rev. A 82(3), 031801 (2010).
[Crossref]

X. Chen, W. Yue, R. Tao, P. Yao, and W. Liu, “Scattering phenomenon of PT-symmetric dielectric-nanosphere structure,” Phys. Rev. A 94(5), 053829 (2016).
[Crossref]

Phys. Rev. Appl. (2)

D. L. Sounas, R. Fleury, and A. Alù, “Unidirectional cloaking based on metasurfaces with balanced loss and gain,” Phys. Rev. Appl. 4(1), 014005 (2015).
[Crossref]

A. Kord, D. L. Sounas, and A. Alù, “Active microwave cloaking using parity-time-symmetric satellites,” Phys. Rev. Appl. 10(5), 054040 (2018).
[Crossref]

Phys. Rev. B (2)

M. Safari, M. Albooyeh, C. R. Simovski, and S. A. Tretyakov, “Shadow-free multimers as extreme-performance meta-atoms,” Phys. Rev. B 97(8), 085412 (2018).
[Crossref]

A. A. Kuntman, E. Kuntman, J. S-Parramon, and O. Arteaga, “Light scattering by coupled oriented dipoles: Decomposition of the scattering matrix,” Phys. Rev. B 98(4), 045410 (2018).
[Crossref]

Phys. Rev. E (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
[Crossref]

Phys. Rev. Lett. (7)

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref]

A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett. 105(26), 263906 (2010).
[Crossref]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref]

G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and H. Ott, “Controlling the dynamics of an open many-body quantum system with localized dissipation,” Phys. Rev. Lett. 110(3), 035302 (2013).
[Crossref]

C. M. Bender and S. Böttcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80(24), 5243–5246 (1998).
[Crossref]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-Symmetry Periodic Structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref]

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100(10), 103904 (2008).
[Crossref]

Phys. Rev. X (2)

M. Selvanayagam and G. V. Eleftheriades, “Experimental demonstration of active electromagnetic cloaking,” Phys. Rev. X 3, 041011 (2013).
[Crossref]

F. Monticone and A. Alù, “Do Cloaked Objects Really Scatter Less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

Plasmonics (1)

S. Tretyakov, “Maximizing Absorption and Scattering by Dipole Particles,” Plasmonics 9(4), 935–944 (2014).
[Crossref]

Sci. Rep. (1)

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

Science (2)

H. Hodaei, M. -Ali Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346(6212), 975–978 (2014).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. V. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Vacuum (1)

J. Ward, “Towards invisible glass,” Vacuum 22(9), 369–375 (1972).
[Crossref]

Other (1)

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. $n - $ dipole array configuration.
Fig. 2.
Fig. 2. Nanosphere dimer configuration.
Fig. 3.
Fig. 3. Relative permittivity dispersion of lossy particles (conductive oxides). $f/{f_p}$ is the operating frequency normalized with respect to the plasma frequency.
Fig. 4.
Fig. 4. Calculated relative permittivity ${\epsilon _2}$ of the second sphere to achieve zero forward scattering, as a function of normalized frequency and incident angle. (a) Real part. (b) Imaginary part.
Fig. 5.
Fig. 5. Scattering patterns with incident angles (a) $0$ (b) $\pi /4$ and (c) $\pi /2$ and dimers optimized to support zero forward scattering. Blue solid and dashed lines pertain to the analytical and numerical scattering patterns, respectively, in the horizontal plane. Red solid and dashed lines pertain to the vertical plane. The scattered field value is scaled to $|{{r_{far}}{{\textbf E}_{sca}}} |$.
Fig. 6.
Fig. 6. Coordinate system to analyze the radiation pattern of a dimer.
Fig. 7.
Fig. 7. Relative permittivity ${\epsilon _2}$ of the second particle to implement zero scattering in the desired direction. (a) real part; (b) imaginary part.
Fig. 8.
Fig. 8. Scattering patterns of the dimer for different directions of zero scattering (the incident direction is at $\eta = 0$ and $\gamma = \pi /2$).
Fig. 9.
Fig. 9. Four-nanosphere system.
Fig. 10.
Fig. 10. Normalized scattering patterns of the four-sphere array (dashed and solid lines are analytical and simulated results, respectively. Blue, red and green line represent $x - y$, $x - z$ and $y - z$ planes, respectively). (a) Case I. (b) Case II.
Fig. 11.
Fig. 11. Pole distributions of the transfer function $H({{N_1}} )$ for three cases in Fig. 5 ($\mathrm{\gamma} = 0.05$). (a) ${N_2} = 0.9609.$ (b) ${N_2} = 0.9676$. (c) ${N_2} = 0.9739.$
Fig. 12.
Fig. 12. Pole distributions for two cases in Fig. 10.
Fig. 13.
Fig. 13. Simulated scattering patterns of the dipole antenna dimer system: (a) Blue line: horizontal plane; red line: vertical plane. (b) 3D radiation pattern.
Fig. 14.
Fig. 14. Scattering patterns of the dipole antenna dimer system with the incident wave $\varphi = \pi /3,\theta = \pi /2$. (a) Blue line: horizontal plane; red line: vertical plane. (b) 3D radiation pattern.
Fig. 15.
Fig. 15. Ratio c in Eq. (21) with different distances between two particles ($d = 200\;nm$, $\lambda = 500\;nm$, the two nanospheres have radii ${r_1} = {r_2} = 50\;nm$).

Tables (2)

Tables Icon

Table 1. Calculated relative permittivity of the second sphere for different directions of zero scattering in Fig. 8.

Tables Icon

Table 2. Calculated relative permittivity of nanospheres.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

σ e x t = 4 π k I m { f ( θ = 0 ) } ,
σ e x t = σ a b s σ g + σ s c a ,
p i = α i E t i ,
E t i = E i + 1 j n j i k 2 ε G ¯ ¯ ( r i r j ) p j ,
G ¯ ¯ ( r i r j ) = ( I ¯ ¯ + 1 k 2 ) g ( | r i r j | ) ,
( 1 α 1 A cos 2 φ 1 0 α 1 ( A + B ) cos φ 1 sin φ 1 0 α 1 A cos φ 1 sin φ 1 1 α 1 ( A + B ) sin 2 φ 1 α 2 A cos 2 φ 2 1 α 2 ( A + B ) cos φ 2 sin φ 2 0 α 2 A cos φ 2 sin φ 2 0 α 2 ( A + B ) sin 2 φ 2 1 ) ( p 1 z p 2 z p 1 x p 2 x ) = ( α 1 cos 2 φ 1 E 1 z + α 1 cos φ 1 sin φ 1 E 1 x α 1 cos φ 1 sin φ 1 E 1 z + α 1 sin 2 φ 1 E 1 x α 2 cos 2 φ 2 E 2 z + α 2 cos φ 2 sin φ 2 E 2 x α 2 cos φ 2 sin φ 2 E 2 z + α 2 sin 2 φ 2 E 2 x )
p i z = α i E i z + α j A E j z 1 α i α j A 2 ,
E f a r = k 2 ε i G ¯ ¯ ( r f a r r i ) p i ,
α 2 = α 1 e i k d cos η α 1 A ( e i 2 k d cos η + 1 ) + e i k d cos η .
ϵ r ( ω ) = ϵ ω p 2 ω 2 + i ω γ p ,
α 2 η = e i 2 k d cos η 1 = 0.
η = arccos q π 2 k d , q = ± 1 , ± 2 .
α 2 = α 1 e i k d cos φ sin θ α 1 A [ e i k d ( cos φ sin θ + cos η sin γ ) + 1 ] + e i k d cos η sin γ .
i = 1 3 j = 1 3 E s c a i ( θ i , φ i ) δ i j = 0.
ε G ( ω ) = ε L ( ω ) + K γ 0 ω ω 0 + i γ 0 ,
E f a r = k 2 ε i = 1 n G ¯ ¯ ( r f a r r i ) p i { α 1 , α 2 , , α n ; r 1 , r 2 , , r n ; E i } .
H ( ω ) = | E f a r | | E i | .
{ ε L ( ω ) = ε 1 N 1 2 + i 0.05 N 1 ε G ( ω ) = ε L ( ω ) + 0.55 γ N 1 ω p / ω 0 + i γ 1 .
α = ( 3 ω X i n l 2 X i n + i Z L 4 X i n + i Z L i k 0 3 6 π ε 0 ) 1 ,
E ( d 1 ) | γ = γ 0 η = η 0 = k 2 ε e i k ( r d 1 / 2 ) 4 π r ( p 1 e i k d 1 cos η sin γ + p 2 )  = k 2 ε e i k r 4 π r e i k d 1 cos η sin γ ( α 1 + α 2 ) + α 1 α 2 A d 1 ( e i k d 1 cos η sin γ + 1 ) 1 α 1 α 2 A d 1 2 ,
c = lim η η 0 γ γ 0 | log E ( d 1 ) E ( d ) | .