Abstract

We propose a concept of a rotating tower reflector (TR) in a beam-down optical system to alternate concentrated solar irradiation of an array of solar receiver–reactors, realizing multi-step solar thermochemical redox cycles. Optical and radiative characteristics of the proposed system are explored analytically and numerically by Monte-Carlo ray-tracing simulations. We study the effects of the system geometrical and optical parameters on the optical and radiative performance. TR axis is required to be tilted for accommodating the receiver–reactor array, resulting in reduced optical efficiency. We demonstrate that the annual optical efficiency of a baseline system with the receiver–reactor located south of the tower decreases from 46% to 37% for the axis tilt angle of TR increasing from 2° to 20°. The optical analysis conducted in this study provides a general formulation to enable predictions of required gain of thermal-to-chemical efficiency of the receiver–reactor array for obtaining improved overall solar-to-chemical efficiency of the solar thermochemical plant.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sturzenegger and P. Nüesch, “Efficiency analysis for a manganese-oxide-based thermochemical cycle,” Energy 24(11), 959–970 (1999).
    [Crossref]
  2. M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy Environ. Sci. 5(11), 9234–9245 (2012).
    [Crossref]
  3. R. Bader and W. Lipiński, “Solar thermal processing,” in Advances in Concentrating Solar Thermal Research and Technology (Elsevier, 2017), 403–459.
  4. G. Levêque, R. Bader, W. Lipiński, and S. Haussener, “High-flux optical systems for solar thermochemistry,” J. Sol. Energy Eng. 156, 133–148 (2017).
    [Crossref]
  5. A. J. Carrillo, J. González-Aguilar, M. Romero, and J. M. Coronado, “Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials,” Chem. Rev. 119(7), 4777–4816 (2019).
    [Crossref]
  6. W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
    [Crossref]
  7. J. Lapp, J. H. Davidson, and W. Lipiński, “Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery,” Energy 37(1), 591–600 (2012).
    [Crossref]
  8. J. Lapp, J. H. Davidson, and W. Lipiński, “Heat transfer analysis of a solid-solid heat recuperation system for solar-driven nonstoichiometric redox cycles,” J. Sol. Energy Eng. 135(3), 031004 (2013).
    [Crossref]
  9. J. Lapp and W. Lipiński, “Transient three-dimensional heat transfer model of a solar thermochemical reactor for H2O and CO2 splitting via nonstoichiometric ceria redox cycling,” J. Sol. Energy Eng.136 (2014).
    [Crossref]
  10. D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
    [Crossref]
  11. B. Wang, L. Li, R. Bader, J. Pottas, V. Wheeler, P. Kreider, and W. Lipiński, “Thermal model of a solar thermochemical reactor for metal oxide reduction,” J. Sol. Energy Eng. 142(5), 051002 (2020).
    [Crossref]
  12. A. Steinfeld, P. Furler, A. Haselbacher, and L. Geissbühler, “A thermochemical reactor system for a temperature swing cyclic process with integrated heat recovery and a method for operating the same,” U.S. Patent Application No. 16/342 (2019).
  13. M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
    [Crossref]
  14. E. Koepf, S. Zoller, S. Luque, M. Thelen, S. Brendelberger, J. González-Aguilar, M. Romero, and A. Steinfeld, “Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project,” in AIP Conference Proceedings, (AIP Publishing LLC, 2019), 180012.
  15. C. Sattler, M. Roeb, C. Agrafiotis, and D. Thomey, “Solar hydrogen production via sulphur based thermochemical water-splitting,” Sol. Energy 156, 30–47 (2017).
    [Crossref]
  16. F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
    [Crossref]
  17. C. Yuan, C. Jarrett, W. Chueh, Y. Kawajiri, and A. Henry, “A new solar fuels reactor concept based on a liquid metal heat transfer fluid: Reactor design and efficiency estimation,” Sol. Energy 122, 547–561 (2015).
    [Crossref]
  18. R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).
  19. H. Hasuike, Y. Yoshizawa, A. Suzuki, and Y. Tamaura, “Study on design of molten salt solar receivers for beam-down solar concentrator,” Sol. Energy 80(10), 1255–1262 (2006).
    [Crossref]
  20. M. Epstein, G. Olalde, S. Santén, A. Steinfeld, and C. Wieckert, “Towards the industrial solar carbothermal production of zinc,” J. Sol. Energy Eng. 130(1), 014505 (2008).
    [Crossref]
  21. E. Koepf, S. G. Advani, A. Steinfeld, and A. K. Prasad, “A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: Design, modeling, and experimentation,” Int. J. Hydrogen Energy 37(22), 16871–16887 (2012).
    [Crossref]
  22. A. Lenert and E. N. Wang, “Optimization of nanofluid volumetric receivers for solar thermal energy conversion,” Sol. Energy 86(1), 253–265 (2012).
    [Crossref]
  23. M. Mokhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam-down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
    [Crossref]
  24. G. Xiao, K. Guo, Z. Luo, M. Ni, Y. Zhang, and C. Wang, “Simulation and experimental study on a spiral solid particle solar receiver,” Appl. Energy 113, 178–188 (2014).
    [Crossref]
  25. X. Li, Y. Dai, and R. Wang, “Performance investigation on solar thermal conversion of a conical cavity receiver employing a beam-down solar tower concentrator,” Sol. Energy 114, 134–151 (2015).
    [Crossref]
  26. M. Martins, U. Villalobos, T. Delclos, P. Armstrong, P. G. Bergan, and N. Calvet, “New concentrating solar power facility for testing high temperature concrete thermal energy storage,” Energy Procedia 75, 2144–2149 (2015).
    [Crossref]
  27. T. Kodama, N. Gokon, H. S. Cho, K. Matsubara, T. Etori, A. Takeuchi, S.-N. Yokota, and S. Ito, “Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator,” in AIP Conference Proceedings, (AIP Publishing, 2016), 120004.
  28. S. Bellan, K. Matsubara, C. H. Cheok, N. Gokon, and T. Kodama, “CFD-DEM investigation of particles circulation pattern of two-tower fluidized bed reactor for beam-down solar concentrating system,” Powder Technol. 319, 228–237 (2017).
    [Crossref]
  29. G. Manikandan, S. Iniyan, and R. Goic, “Enhancing the optical and thermal efficiency of a parabolic trough collector – A review,” Appl. Energy 235, 1524–1540 (2019).
    [Crossref]
  30. A. Segal and M. Epstein, “Comparative performances of ‘tower-top’ and ‘tower-reflector’ central solar receivers,” Sol. Energy 65(4), 207–226 (1999).
    [Crossref]
  31. L. Li, B. Wang, J. Pottas, and W. Lipiński, “Design of a compound parabolic concentrator for a multi-source high-flux solar simulator,” Sol. Energy 183, 805–811 (2019).
    [Crossref]
  32. C. E. Mauk, H. W. Prengle Jr, and E. C.-H. Sun, “Optical and thermal analysis of a Cassegrainian solar concentrator,” Sol. Energy 23(2), 157–167 (1979).
    [Crossref]
  33. A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar “tower reflector” systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
    [Crossref]
  34. A. Segal and M. Epstein, “The optics of the solar tower reflector,” Sol. Energy 69, 229–241 (2001).
    [Crossref]
  35. A. Segal and M. Epstein, “Practical considerations in designing large scale “beam down” optical systems,” J. Sol. Energy Eng. 130(1), 011009 (2008).
    [Crossref]
  36. X. Wei, Z. Lu, W. Yu, and W. Xu, “Ray tracing and simulation for the beam-down solar concentrator,” Renewable Energy 50, 161–167 (2013).
    [Crossref]
  37. L. Vant-Hull, “Issues with beam-down concepts,” Energy Procedia 49, 257–264 (2014).
    [Crossref]
  38. E. Leonardi, “Detailed analysis of the solar power collected in a beam-down central receiver system,” Sol. Energy 86(2), 734–745 (2012).
    [Crossref]
  39. L. Li, J. Coventry, R. Bader, J. Pye, and W. Lipiński, “Optics of solar central receiver systems: a review,” Opt. Express 24(14), A985–A1007 (2016).
    [Crossref]
  40. B. Grange, V. Kumar, A. Gil, P. R. Armstrong, D. S. Codd, A. Slocum, and N. Calvet, “Preliminary optical, thermal and structural design of a 100 kWth CSPonD beam-down on-sun demonstration plant,” Energy Procedia 75, 2163–2168 (2015).
    [Crossref]
  41. Magaldi, retrieved 26 October, 2019, https://www.magaldi.com/en/products-solutions/csp-concentrating-solar-power .
  42. HELIOSCSP, retrieved 26 October, 2019, http://helioscsp.com/three-solar-modules-of-worlds-first-commercial-beam-down-tower-concentrated-solar-power-project-to-be-connected-to-grid/ .
  43. I. N. Bronshtein and K. A. Semendyayev, Handbook of Mathematics (Springer Science & Business Media, 2013).
  44. M. F. Modest, Radiative Heat Transfer (Academic, 2013).
  45. L. Li, B. Wang, J. Pye, and W. Lipiński, “Temperature-based optical design, optimization and economics of solar polar-field central receiver systems with an optional compound parabolic concentrator,” Sol. Energy, doi:10.1016/j.solener.2020.05.088 (2020).
  46. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (John Wiley & Sons, 2013).
  47. A. B. Sproul, “Derivation of the solar geometric relationships using vector analysis,” Renewable Energy 32(7), 1187–1205 (2007).
    [Crossref]
  48. D. Buie, A. Monger, and C. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
    [Crossref]
  49. F. J. Collado and J. Guallar, “Campo: Generation of regular heliostat fields,” Renewable Energy 46, 49–59 (2012).
    [Crossref]
  50. R. Bader, S. Haussener, and W. Lipiński, “Optical design of multisource high-flux solar simulators,” J. Sol. Energy Eng. 137(2), 021012 (2015).
    [Crossref]
  51. P. Leary and J. Hankins, “User's guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants,” (Sandia National Laboratories, Livermore, CA (USA), 1979).
  52. V. Grigoriev, C. Corsi, and M. Blanco, “Fourier sampling of sun path for applications in solar energy,” in AIP Conference Proceedings, (AIP Publishing, 2016), 020008.
  53. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, 1996), Vol. 2.
  54. W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008).
  55. Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
    [Crossref]
  56. L. Li, B. Wang, R. Bader, J. Zapata, and W. Lipiński, “Reflective optics for redirecting convergent radiative beams in concentrating solar applications,” Sol. Energy 191, 707–718 (2019).
    [Crossref]

2020 (2)

B. Wang, L. Li, R. Bader, J. Pottas, V. Wheeler, P. Kreider, and W. Lipiński, “Thermal model of a solar thermochemical reactor for metal oxide reduction,” J. Sol. Energy Eng. 142(5), 051002 (2020).
[Crossref]

Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
[Crossref]

2019 (4)

L. Li, B. Wang, R. Bader, J. Zapata, and W. Lipiński, “Reflective optics for redirecting convergent radiative beams in concentrating solar applications,” Sol. Energy 191, 707–718 (2019).
[Crossref]

A. J. Carrillo, J. González-Aguilar, M. Romero, and J. M. Coronado, “Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials,” Chem. Rev. 119(7), 4777–4816 (2019).
[Crossref]

G. Manikandan, S. Iniyan, and R. Goic, “Enhancing the optical and thermal efficiency of a parabolic trough collector – A review,” Appl. Energy 235, 1524–1540 (2019).
[Crossref]

L. Li, B. Wang, J. Pottas, and W. Lipiński, “Design of a compound parabolic concentrator for a multi-source high-flux solar simulator,” Sol. Energy 183, 805–811 (2019).
[Crossref]

2018 (1)

F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
[Crossref]

2017 (4)

C. Sattler, M. Roeb, C. Agrafiotis, and D. Thomey, “Solar hydrogen production via sulphur based thermochemical water-splitting,” Sol. Energy 156, 30–47 (2017).
[Crossref]

G. Levêque, R. Bader, W. Lipiński, and S. Haussener, “High-flux optical systems for solar thermochemistry,” J. Sol. Energy Eng. 156, 133–148 (2017).
[Crossref]

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
[Crossref]

S. Bellan, K. Matsubara, C. H. Cheok, N. Gokon, and T. Kodama, “CFD-DEM investigation of particles circulation pattern of two-tower fluidized bed reactor for beam-down solar concentrating system,” Powder Technol. 319, 228–237 (2017).
[Crossref]

2016 (1)

2015 (5)

B. Grange, V. Kumar, A. Gil, P. R. Armstrong, D. S. Codd, A. Slocum, and N. Calvet, “Preliminary optical, thermal and structural design of a 100 kWth CSPonD beam-down on-sun demonstration plant,” Energy Procedia 75, 2163–2168 (2015).
[Crossref]

X. Li, Y. Dai, and R. Wang, “Performance investigation on solar thermal conversion of a conical cavity receiver employing a beam-down solar tower concentrator,” Sol. Energy 114, 134–151 (2015).
[Crossref]

M. Martins, U. Villalobos, T. Delclos, P. Armstrong, P. G. Bergan, and N. Calvet, “New concentrating solar power facility for testing high temperature concrete thermal energy storage,” Energy Procedia 75, 2144–2149 (2015).
[Crossref]

C. Yuan, C. Jarrett, W. Chueh, Y. Kawajiri, and A. Henry, “A new solar fuels reactor concept based on a liquid metal heat transfer fluid: Reactor design and efficiency estimation,” Sol. Energy 122, 547–561 (2015).
[Crossref]

R. Bader, S. Haussener, and W. Lipiński, “Optical design of multisource high-flux solar simulators,” J. Sol. Energy Eng. 137(2), 021012 (2015).
[Crossref]

2014 (3)

L. Vant-Hull, “Issues with beam-down concepts,” Energy Procedia 49, 257–264 (2014).
[Crossref]

M. Mokhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam-down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
[Crossref]

G. Xiao, K. Guo, Z. Luo, M. Ni, Y. Zhang, and C. Wang, “Simulation and experimental study on a spiral solid particle solar receiver,” Appl. Energy 113, 178–188 (2014).
[Crossref]

2013 (2)

J. Lapp, J. H. Davidson, and W. Lipiński, “Heat transfer analysis of a solid-solid heat recuperation system for solar-driven nonstoichiometric redox cycles,” J. Sol. Energy Eng. 135(3), 031004 (2013).
[Crossref]

X. Wei, Z. Lu, W. Yu, and W. Xu, “Ray tracing and simulation for the beam-down solar concentrator,” Renewable Energy 50, 161–167 (2013).
[Crossref]

2012 (6)

F. J. Collado and J. Guallar, “Campo: Generation of regular heliostat fields,” Renewable Energy 46, 49–59 (2012).
[Crossref]

E. Leonardi, “Detailed analysis of the solar power collected in a beam-down central receiver system,” Sol. Energy 86(2), 734–745 (2012).
[Crossref]

J. Lapp, J. H. Davidson, and W. Lipiński, “Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery,” Energy 37(1), 591–600 (2012).
[Crossref]

M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy Environ. Sci. 5(11), 9234–9245 (2012).
[Crossref]

E. Koepf, S. G. Advani, A. Steinfeld, and A. K. Prasad, “A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: Design, modeling, and experimentation,” Int. J. Hydrogen Energy 37(22), 16871–16887 (2012).
[Crossref]

A. Lenert and E. N. Wang, “Optimization of nanofluid volumetric receivers for solar thermal energy conversion,” Sol. Energy 86(1), 253–265 (2012).
[Crossref]

2011 (1)

M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
[Crossref]

2010 (1)

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref]

2008 (2)

M. Epstein, G. Olalde, S. Santén, A. Steinfeld, and C. Wieckert, “Towards the industrial solar carbothermal production of zinc,” J. Sol. Energy Eng. 130(1), 014505 (2008).
[Crossref]

A. Segal and M. Epstein, “Practical considerations in designing large scale “beam down” optical systems,” J. Sol. Energy Eng. 130(1), 011009 (2008).
[Crossref]

2007 (1)

A. B. Sproul, “Derivation of the solar geometric relationships using vector analysis,” Renewable Energy 32(7), 1187–1205 (2007).
[Crossref]

2006 (1)

H. Hasuike, Y. Yoshizawa, A. Suzuki, and Y. Tamaura, “Study on design of molten salt solar receivers for beam-down solar concentrator,” Sol. Energy 80(10), 1255–1262 (2006).
[Crossref]

2003 (1)

D. Buie, A. Monger, and C. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

2001 (1)

A. Segal and M. Epstein, “The optics of the solar tower reflector,” Sol. Energy 69, 229–241 (2001).
[Crossref]

1999 (2)

A. Segal and M. Epstein, “Comparative performances of ‘tower-top’ and ‘tower-reflector’ central solar receivers,” Sol. Energy 65(4), 207–226 (1999).
[Crossref]

M. Sturzenegger and P. Nüesch, “Efficiency analysis for a manganese-oxide-based thermochemical cycle,” Energy 24(11), 959–970 (1999).
[Crossref]

1998 (1)

A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar “tower reflector” systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
[Crossref]

1979 (1)

C. E. Mauk, H. W. Prengle Jr, and E. C.-H. Sun, “Optical and thermal analysis of a Cassegrainian solar concentrator,” Sol. Energy 23(2), 157–167 (1979).
[Crossref]

Abbott, M.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref]

Advani, S. G.

E. Koepf, S. G. Advani, A. Steinfeld, and A. K. Prasad, “A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: Design, modeling, and experimentation,” Int. J. Hydrogen Energy 37(22), 16871–16887 (2012).
[Crossref]

Agrafiotis, C.

C. Sattler, M. Roeb, C. Agrafiotis, and D. Thomey, “Solar hydrogen production via sulphur based thermochemical water-splitting,” Sol. Energy 156, 30–47 (2017).
[Crossref]

Armstrong, P.

M. Martins, U. Villalobos, T. Delclos, P. Armstrong, P. G. Bergan, and N. Calvet, “New concentrating solar power facility for testing high temperature concrete thermal energy storage,” Energy Procedia 75, 2144–2149 (2015).
[Crossref]

Armstrong, P. R.

B. Grange, V. Kumar, A. Gil, P. R. Armstrong, D. S. Codd, A. Slocum, and N. Calvet, “Preliminary optical, thermal and structural design of a 100 kWth CSPonD beam-down on-sun demonstration plant,” Energy Procedia 75, 2163–2168 (2015).
[Crossref]

M. Mokhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam-down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
[Crossref]

Asselineau, C.-A.

Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
[Crossref]

Bader, R.

B. Wang, L. Li, R. Bader, J. Pottas, V. Wheeler, P. Kreider, and W. Lipiński, “Thermal model of a solar thermochemical reactor for metal oxide reduction,” J. Sol. Energy Eng. 142(5), 051002 (2020).
[Crossref]

L. Li, B. Wang, R. Bader, J. Zapata, and W. Lipiński, “Reflective optics for redirecting convergent radiative beams in concentrating solar applications,” Sol. Energy 191, 707–718 (2019).
[Crossref]

G. Levêque, R. Bader, W. Lipiński, and S. Haussener, “High-flux optical systems for solar thermochemistry,” J. Sol. Energy Eng. 156, 133–148 (2017).
[Crossref]

L. Li, J. Coventry, R. Bader, J. Pye, and W. Lipiński, “Optics of solar central receiver systems: a review,” Opt. Express 24(14), A985–A1007 (2016).
[Crossref]

R. Bader, S. Haussener, and W. Lipiński, “Optical design of multisource high-flux solar simulators,” J. Sol. Energy Eng. 137(2), 021012 (2015).
[Crossref]

R. Bader and W. Lipiński, “Solar thermal processing,” in Advances in Concentrating Solar Thermal Research and Technology (Elsevier, 2017), 403–459.

Beckman, W. A.

J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (John Wiley & Sons, 2013).

Bellan, S.

S. Bellan, K. Matsubara, C. H. Cheok, N. Gokon, and T. Kodama, “CFD-DEM investigation of particles circulation pattern of two-tower fluidized bed reactor for beam-down solar concentrating system,” Powder Technol. 319, 228–237 (2017).
[Crossref]

Benitez, P. G.

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

Bergan, P. G.

M. Martins, U. Villalobos, T. Delclos, P. Armstrong, P. G. Bergan, and N. Calvet, “New concentrating solar power facility for testing high temperature concrete thermal energy storage,” Energy Procedia 75, 2144–2149 (2015).
[Crossref]

Blanco, M.

Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
[Crossref]

V. Grigoriev, C. Corsi, and M. Blanco, “Fourier sampling of sun path for applications in solar energy,” in AIP Conference Proceedings, (AIP Publishing, 2016), 020008.

Brendelberger, S.

E. Koepf, S. Zoller, S. Luque, M. Thelen, S. Brendelberger, J. González-Aguilar, M. Romero, and A. Steinfeld, “Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project,” in AIP Conference Proceedings, (AIP Publishing LLC, 2019), 180012.

Bronshtein, I. N.

I. N. Bronshtein and K. A. Semendyayev, Handbook of Mathematics (Springer Science & Business Media, 2013).

Buie, D.

D. Buie, A. Monger, and C. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

Caliot, C.

Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
[Crossref]

Calvet, N.

B. Grange, V. Kumar, A. Gil, P. R. Armstrong, D. S. Codd, A. Slocum, and N. Calvet, “Preliminary optical, thermal and structural design of a 100 kWth CSPonD beam-down on-sun demonstration plant,” Energy Procedia 75, 2163–2168 (2015).
[Crossref]

M. Martins, U. Villalobos, T. Delclos, P. Armstrong, P. G. Bergan, and N. Calvet, “New concentrating solar power facility for testing high temperature concrete thermal energy storage,” Energy Procedia 75, 2144–2149 (2015).
[Crossref]

Carrillo, A. J.

A. J. Carrillo, J. González-Aguilar, M. Romero, and J. M. Coronado, “Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials,” Chem. Rev. 119(7), 4777–4816 (2019).
[Crossref]

Cheok, C. H.

S. Bellan, K. Matsubara, C. H. Cheok, N. Gokon, and T. Kodama, “CFD-DEM investigation of particles circulation pattern of two-tower fluidized bed reactor for beam-down solar concentrating system,” Powder Technol. 319, 228–237 (2017).
[Crossref]

Chiesa, M.

M. Mokhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam-down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
[Crossref]

Cho, H. S.

T. Kodama, N. Gokon, H. S. Cho, K. Matsubara, T. Etori, A. Takeuchi, S.-N. Yokota, and S. Ito, “Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator,” in AIP Conference Proceedings, (AIP Publishing, 2016), 120004.

Chueh, W.

C. Yuan, C. Jarrett, W. Chueh, Y. Kawajiri, and A. Henry, “A new solar fuels reactor concept based on a liquid metal heat transfer fluid: Reactor design and efficiency estimation,” Sol. Energy 122, 547–561 (2015).
[Crossref]

Chueh, W. C.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref]

Codd, D. S.

B. Grange, V. Kumar, A. Gil, P. R. Armstrong, D. S. Codd, A. Slocum, and N. Calvet, “Preliminary optical, thermal and structural design of a 100 kWth CSPonD beam-down on-sun demonstration plant,” Energy Procedia 75, 2163–2168 (2015).
[Crossref]

Collado, F. J.

F. J. Collado and J. Guallar, “Campo: Generation of regular heliostat fields,” Renewable Energy 46, 49–59 (2012).
[Crossref]

Cooper, T.

F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
[Crossref]

Coronado, J. M.

A. J. Carrillo, J. González-Aguilar, M. Romero, and J. M. Coronado, “Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials,” Chem. Rev. 119(7), 4777–4816 (2019).
[Crossref]

Corsi, C.

Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
[Crossref]

V. Grigoriev, C. Corsi, and M. Blanco, “Fourier sampling of sun path for applications in solar energy,” in AIP Conference Proceedings, (AIP Publishing, 2016), 020008.

Coventry, J.

Dähler, F.

F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
[Crossref]

Dai, Y.

X. Li, Y. Dai, and R. Wang, “Performance investigation on solar thermal conversion of a conical cavity receiver employing a beam-down solar tower concentrator,” Sol. Energy 114, 134–151 (2015).
[Crossref]

Davidson, J. H.

J. Lapp, J. H. Davidson, and W. Lipiński, “Heat transfer analysis of a solid-solid heat recuperation system for solar-driven nonstoichiometric redox cycles,” J. Sol. Energy Eng. 135(3), 031004 (2013).
[Crossref]

J. Lapp, J. H. Davidson, and W. Lipiński, “Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery,” Energy 37(1), 591–600 (2012).
[Crossref]

de Oliveira, L.

M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
[Crossref]

Delclos, T.

M. Martins, U. Villalobos, T. Delclos, P. Armstrong, P. G. Bergan, and N. Calvet, “New concentrating solar power facility for testing high temperature concrete thermal energy storage,” Energy Procedia 75, 2144–2149 (2015).
[Crossref]

Dey, C.

D. Buie, A. Monger, and C. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

Duffie, J. A.

J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (John Wiley & Sons, 2013).

Ebert, M.

M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
[Crossref]

Epstein, M.

M. Epstein, G. Olalde, S. Santén, A. Steinfeld, and C. Wieckert, “Towards the industrial solar carbothermal production of zinc,” J. Sol. Energy Eng. 130(1), 014505 (2008).
[Crossref]

A. Segal and M. Epstein, “Practical considerations in designing large scale “beam down” optical systems,” J. Sol. Energy Eng. 130(1), 011009 (2008).
[Crossref]

A. Segal and M. Epstein, “The optics of the solar tower reflector,” Sol. Energy 69, 229–241 (2001).
[Crossref]

A. Segal and M. Epstein, “Comparative performances of ‘tower-top’ and ‘tower-reflector’ central solar receivers,” Sol. Energy 65(4), 207–226 (1999).
[Crossref]

A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar “tower reflector” systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
[Crossref]

Etori, T.

T. Kodama, N. Gokon, H. S. Cho, K. Matsubara, T. Etori, A. Takeuchi, S.-N. Yokota, and S. Ito, “Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator,” in AIP Conference Proceedings, (AIP Publishing, 2016), 120004.

Falter, C.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, 1996), Vol. 2.

Furler, P.

F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
[Crossref]

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
[Crossref]

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref]

A. Steinfeld, P. Furler, A. Haselbacher, and L. Geissbühler, “A thermochemical reactor system for a temperature swing cyclic process with integrated heat recovery and a method for operating the same,” U.S. Patent Application No. 16/342 (2019).

Geissbühler, L.

A. Steinfeld, P. Furler, A. Haselbacher, and L. Geissbühler, “A thermochemical reactor system for a temperature swing cyclic process with integrated heat recovery and a method for operating the same,” U.S. Patent Application No. 16/342 (2019).

Gil, A.

B. Grange, V. Kumar, A. Gil, P. R. Armstrong, D. S. Codd, A. Slocum, and N. Calvet, “Preliminary optical, thermal and structural design of a 100 kWth CSPonD beam-down on-sun demonstration plant,” Energy Procedia 75, 2163–2168 (2015).
[Crossref]

Goic, R.

G. Manikandan, S. Iniyan, and R. Goic, “Enhancing the optical and thermal efficiency of a parabolic trough collector – A review,” Appl. Energy 235, 1524–1540 (2019).
[Crossref]

Gokon, N.

S. Bellan, K. Matsubara, C. H. Cheok, N. Gokon, and T. Kodama, “CFD-DEM investigation of particles circulation pattern of two-tower fluidized bed reactor for beam-down solar concentrating system,” Powder Technol. 319, 228–237 (2017).
[Crossref]

T. Kodama, N. Gokon, H. S. Cho, K. Matsubara, T. Etori, A. Takeuchi, S.-N. Yokota, and S. Ito, “Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator,” in AIP Conference Proceedings, (AIP Publishing, 2016), 120004.

González-Aguilar, J.

A. J. Carrillo, J. González-Aguilar, M. Romero, and J. M. Coronado, “Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials,” Chem. Rev. 119(7), 4777–4816 (2019).
[Crossref]

E. Koepf, S. Zoller, S. Luque, M. Thelen, S. Brendelberger, J. González-Aguilar, M. Romero, and A. Steinfeld, “Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project,” in AIP Conference Proceedings, (AIP Publishing LLC, 2019), 180012.

Good, P.

F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
[Crossref]

Graf, D.

M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
[Crossref]

Grange, B.

B. Grange, V. Kumar, A. Gil, P. R. Armstrong, D. S. Codd, A. Slocum, and N. Calvet, “Preliminary optical, thermal and structural design of a 100 kWth CSPonD beam-down on-sun demonstration plant,” Energy Procedia 75, 2163–2168 (2015).
[Crossref]

Grigoriev, V.

V. Grigoriev, C. Corsi, and M. Blanco, “Fourier sampling of sun path for applications in solar energy,” in AIP Conference Proceedings, (AIP Publishing, 2016), 020008.

Guallar, J.

F. J. Collado and J. Guallar, “Campo: Generation of regular heliostat fields,” Renewable Energy 46, 49–59 (2012).
[Crossref]

Guo, K.

G. Xiao, K. Guo, Z. Luo, M. Ni, Y. Zhang, and C. Wang, “Simulation and experimental study on a spiral solid particle solar receiver,” Appl. Energy 113, 178–188 (2014).
[Crossref]

Haile, S. M.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref]

Hankins, J.

P. Leary and J. Hankins, “User's guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants,” (Sandia National Laboratories, Livermore, CA (USA), 1979).

Haselbacher, A.

A. Steinfeld, P. Furler, A. Haselbacher, and L. Geissbühler, “A thermochemical reactor system for a temperature swing cyclic process with integrated heat recovery and a method for operating the same,” U.S. Patent Application No. 16/342 (2019).

Hasuike, H.

H. Hasuike, Y. Yoshizawa, A. Suzuki, and Y. Tamaura, “Study on design of molten salt solar receivers for beam-down solar concentrator,” Sol. Energy 80(10), 1255–1262 (2006).
[Crossref]

Haueter, P.

F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
[Crossref]

Haussener, S.

G. Levêque, R. Bader, W. Lipiński, and S. Haussener, “High-flux optical systems for solar thermochemistry,” J. Sol. Energy Eng. 156, 133–148 (2017).
[Crossref]

R. Bader, S. Haussener, and W. Lipiński, “Optical design of multisource high-flux solar simulators,” J. Sol. Energy Eng. 137(2), 021012 (2015).
[Crossref]

Henry, A.

C. Yuan, C. Jarrett, W. Chueh, Y. Kawajiri, and A. Henry, “A new solar fuels reactor concept based on a liquid metal heat transfer fluid: Reactor design and efficiency estimation,” Sol. Energy 122, 547–561 (2015).
[Crossref]

Iniyan, S.

G. Manikandan, S. Iniyan, and R. Goic, “Enhancing the optical and thermal efficiency of a parabolic trough collector – A review,” Appl. Energy 235, 1524–1540 (2019).
[Crossref]

Ito, S.

T. Kodama, N. Gokon, H. S. Cho, K. Matsubara, T. Etori, A. Takeuchi, S.-N. Yokota, and S. Ito, “Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator,” in AIP Conference Proceedings, (AIP Publishing, 2016), 120004.

Jarrett, C.

C. Yuan, C. Jarrett, W. Chueh, Y. Kawajiri, and A. Henry, “A new solar fuels reactor concept based on a liquid metal heat transfer fluid: Reactor design and efficiency estimation,” Sol. Energy 122, 547–561 (2015).
[Crossref]

Kawajiri, Y.

C. Yuan, C. Jarrett, W. Chueh, Y. Kawajiri, and A. Henry, “A new solar fuels reactor concept based on a liquid metal heat transfer fluid: Reactor design and efficiency estimation,” Sol. Energy 122, 547–561 (2015).
[Crossref]

Kim, J.-S.

Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
[Crossref]

Kodama, T.

S. Bellan, K. Matsubara, C. H. Cheok, N. Gokon, and T. Kodama, “CFD-DEM investigation of particles circulation pattern of two-tower fluidized bed reactor for beam-down solar concentrating system,” Powder Technol. 319, 228–237 (2017).
[Crossref]

T. Kodama, N. Gokon, H. S. Cho, K. Matsubara, T. Etori, A. Takeuchi, S.-N. Yokota, and S. Ito, “Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator,” in AIP Conference Proceedings, (AIP Publishing, 2016), 120004.

Koepf, E.

E. Koepf, S. G. Advani, A. Steinfeld, and A. K. Prasad, “A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: Design, modeling, and experimentation,” Int. J. Hydrogen Energy 37(22), 16871–16887 (2012).
[Crossref]

E. Koepf, S. Zoller, S. Luque, M. Thelen, S. Brendelberger, J. González-Aguilar, M. Romero, and A. Steinfeld, “Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project,” in AIP Conference Proceedings, (AIP Publishing LLC, 2019), 180012.

Kogan, A.

A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar “tower reflector” systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
[Crossref]

Kreider, P.

B. Wang, L. Li, R. Bader, J. Pottas, V. Wheeler, P. Kreider, and W. Lipiński, “Thermal model of a solar thermochemical reactor for metal oxide reduction,” J. Sol. Energy Eng. 142(5), 051002 (2020).
[Crossref]

Kribus, A.

A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar “tower reflector” systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
[Crossref]

Kumar, V.

B. Grange, V. Kumar, A. Gil, P. R. Armstrong, D. S. Codd, A. Slocum, and N. Calvet, “Preliminary optical, thermal and structural design of a 100 kWth CSPonD beam-down on-sun demonstration plant,” Energy Procedia 75, 2163–2168 (2015).
[Crossref]

Lapp, J.

J. Lapp, J. H. Davidson, and W. Lipiński, “Heat transfer analysis of a solid-solid heat recuperation system for solar-driven nonstoichiometric redox cycles,” J. Sol. Energy Eng. 135(3), 031004 (2013).
[Crossref]

J. Lapp, J. H. Davidson, and W. Lipiński, “Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery,” Energy 37(1), 591–600 (2012).
[Crossref]

J. Lapp and W. Lipiński, “Transient three-dimensional heat transfer model of a solar thermochemical reactor for H2O and CO2 splitting via nonstoichiometric ceria redox cycling,” J. Sol. Energy Eng.136 (2014).
[Crossref]

Larrea, C.

F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
[Crossref]

Leary, P.

P. Leary and J. Hankins, “User's guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants,” (Sandia National Laboratories, Livermore, CA (USA), 1979).

Lenert, A.

A. Lenert and E. N. Wang, “Optimization of nanofluid volumetric receivers for solar thermal energy conversion,” Sol. Energy 86(1), 253–265 (2012).
[Crossref]

Leonardi, E.

E. Leonardi, “Detailed analysis of the solar power collected in a beam-down central receiver system,” Sol. Energy 86(2), 734–745 (2012).
[Crossref]

Levêque, G.

G. Levêque, R. Bader, W. Lipiński, and S. Haussener, “High-flux optical systems for solar thermochemistry,” J. Sol. Energy Eng. 156, 133–148 (2017).
[Crossref]

Li, L.

B. Wang, L. Li, R. Bader, J. Pottas, V. Wheeler, P. Kreider, and W. Lipiński, “Thermal model of a solar thermochemical reactor for metal oxide reduction,” J. Sol. Energy Eng. 142(5), 051002 (2020).
[Crossref]

L. Li, B. Wang, J. Pottas, and W. Lipiński, “Design of a compound parabolic concentrator for a multi-source high-flux solar simulator,” Sol. Energy 183, 805–811 (2019).
[Crossref]

L. Li, B. Wang, R. Bader, J. Zapata, and W. Lipiński, “Reflective optics for redirecting convergent radiative beams in concentrating solar applications,” Sol. Energy 191, 707–718 (2019).
[Crossref]

L. Li, J. Coventry, R. Bader, J. Pye, and W. Lipiński, “Optics of solar central receiver systems: a review,” Opt. Express 24(14), A985–A1007 (2016).
[Crossref]

L. Li, B. Wang, J. Pye, and W. Lipiński, “Temperature-based optical design, optimization and economics of solar polar-field central receiver systems with an optional compound parabolic concentrator,” Sol. Energy, doi:10.1016/j.solener.2020.05.088 (2020).

Li, X.

X. Li, Y. Dai, and R. Wang, “Performance investigation on solar thermal conversion of a conical cavity receiver employing a beam-down solar tower concentrator,” Sol. Energy 114, 134–151 (2015).
[Crossref]

Lipinski, W.

B. Wang, L. Li, R. Bader, J. Pottas, V. Wheeler, P. Kreider, and W. Lipiński, “Thermal model of a solar thermochemical reactor for metal oxide reduction,” J. Sol. Energy Eng. 142(5), 051002 (2020).
[Crossref]

L. Li, B. Wang, J. Pottas, and W. Lipiński, “Design of a compound parabolic concentrator for a multi-source high-flux solar simulator,” Sol. Energy 183, 805–811 (2019).
[Crossref]

L. Li, B. Wang, R. Bader, J. Zapata, and W. Lipiński, “Reflective optics for redirecting convergent radiative beams in concentrating solar applications,” Sol. Energy 191, 707–718 (2019).
[Crossref]

G. Levêque, R. Bader, W. Lipiński, and S. Haussener, “High-flux optical systems for solar thermochemistry,” J. Sol. Energy Eng. 156, 133–148 (2017).
[Crossref]

L. Li, J. Coventry, R. Bader, J. Pye, and W. Lipiński, “Optics of solar central receiver systems: a review,” Opt. Express 24(14), A985–A1007 (2016).
[Crossref]

R. Bader, S. Haussener, and W. Lipiński, “Optical design of multisource high-flux solar simulators,” J. Sol. Energy Eng. 137(2), 021012 (2015).
[Crossref]

J. Lapp, J. H. Davidson, and W. Lipiński, “Heat transfer analysis of a solid-solid heat recuperation system for solar-driven nonstoichiometric redox cycles,” J. Sol. Energy Eng. 135(3), 031004 (2013).
[Crossref]

J. Lapp, J. H. Davidson, and W. Lipiński, “Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery,” Energy 37(1), 591–600 (2012).
[Crossref]

J. Lapp and W. Lipiński, “Transient three-dimensional heat transfer model of a solar thermochemical reactor for H2O and CO2 splitting via nonstoichiometric ceria redox cycling,” J. Sol. Energy Eng.136 (2014).
[Crossref]

R. Bader and W. Lipiński, “Solar thermal processing,” in Advances in Concentrating Solar Thermal Research and Technology (Elsevier, 2017), 403–459.

L. Li, B. Wang, J. Pye, and W. Lipiński, “Temperature-based optical design, optimization and economics of solar polar-field central receiver systems with an optional compound parabolic concentrator,” Sol. Energy, doi:10.1016/j.solener.2020.05.088 (2020).

Lu, Z.

X. Wei, Z. Lu, W. Yu, and W. Xu, “Ray tracing and simulation for the beam-down solar concentrator,” Renewable Energy 50, 161–167 (2013).
[Crossref]

Luo, Z.

G. Xiao, K. Guo, Z. Luo, M. Ni, Y. Zhang, and C. Wang, “Simulation and experimental study on a spiral solid particle solar receiver,” Appl. Energy 113, 178–188 (2014).
[Crossref]

Luque, S.

E. Koepf, S. Zoller, S. Luque, M. Thelen, S. Brendelberger, J. González-Aguilar, M. Romero, and A. Steinfeld, “Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project,” in AIP Conference Proceedings, (AIP Publishing LLC, 2019), 180012.

Manikandan, G.

G. Manikandan, S. Iniyan, and R. Goic, “Enhancing the optical and thermal efficiency of a parabolic trough collector – A review,” Appl. Energy 235, 1524–1540 (2019).
[Crossref]

Martins, M.

M. Martins, U. Villalobos, T. Delclos, P. Armstrong, P. G. Bergan, and N. Calvet, “New concentrating solar power facility for testing high temperature concrete thermal energy storage,” Energy Procedia 75, 2144–2149 (2015).
[Crossref]

Marxer, D.

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
[Crossref]

Matsubara, K.

S. Bellan, K. Matsubara, C. H. Cheok, N. Gokon, and T. Kodama, “CFD-DEM investigation of particles circulation pattern of two-tower fluidized bed reactor for beam-down solar concentrating system,” Powder Technol. 319, 228–237 (2017).
[Crossref]

T. Kodama, N. Gokon, H. S. Cho, K. Matsubara, T. Etori, A. Takeuchi, S.-N. Yokota, and S. Ito, “Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator,” in AIP Conference Proceedings, (AIP Publishing, 2016), 120004.

Mauk, C. E.

C. E. Mauk, H. W. Prengle Jr, and E. C.-H. Sun, “Optical and thermal analysis of a Cassegrainian solar concentrator,” Sol. Energy 23(2), 157–167 (1979).
[Crossref]

Meyers, S. A.

M. Mokhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam-down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
[Crossref]

Miñano, J. C.

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

Modest, M. F.

M. F. Modest, Radiative Heat Transfer (Academic, 2013).

Mokhtar, M.

M. Mokhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam-down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
[Crossref]

Monger, A.

D. Buie, A. Monger, and C. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

Neises, M.

M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
[Crossref]

Ni, M.

G. Xiao, K. Guo, Z. Luo, M. Ni, Y. Zhang, and C. Wang, “Simulation and experimental study on a spiral solid particle solar receiver,” Appl. Energy 113, 178–188 (2014).
[Crossref]

Nüesch, P.

M. Sturzenegger and P. Nüesch, “Efficiency analysis for a manganese-oxide-based thermochemical cycle,” Energy 24(11), 959–970 (1999).
[Crossref]

Olalde, G.

M. Epstein, G. Olalde, S. Santén, A. Steinfeld, and C. Wieckert, “Towards the industrial solar carbothermal production of zinc,” J. Sol. Energy Eng. 130(1), 014505 (2008).
[Crossref]

Piaud, B.

Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
[Crossref]

Pottas, J.

B. Wang, L. Li, R. Bader, J. Pottas, V. Wheeler, P. Kreider, and W. Lipiński, “Thermal model of a solar thermochemical reactor for metal oxide reduction,” J. Sol. Energy Eng. 142(5), 051002 (2020).
[Crossref]

L. Li, B. Wang, J. Pottas, and W. Lipiński, “Design of a compound parabolic concentrator for a multi-source high-flux solar simulator,” Sol. Energy 183, 805–811 (2019).
[Crossref]

Potter, D.

Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
[Crossref]

Prahl, C.

M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
[Crossref]

Prasad, A. K.

E. Koepf, S. G. Advani, A. Steinfeld, and A. K. Prasad, “A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: Design, modeling, and experimentation,” Int. J. Hydrogen Energy 37(22), 16871–16887 (2012).
[Crossref]

Prengle Jr, H. W.

C. E. Mauk, H. W. Prengle Jr, and E. C.-H. Sun, “Optical and thermal analysis of a Cassegrainian solar concentrator,” Sol. Energy 23(2), 157–167 (1979).
[Crossref]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, 1996), Vol. 2.

Pye, J.

Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
[Crossref]

L. Li, J. Coventry, R. Bader, J. Pye, and W. Lipiński, “Optics of solar central receiver systems: a review,” Opt. Express 24(14), A985–A1007 (2016).
[Crossref]

L. Li, B. Wang, J. Pye, and W. Lipiński, “Temperature-based optical design, optimization and economics of solar polar-field central receiver systems with an optional compound parabolic concentrator,” Sol. Energy, doi:10.1016/j.solener.2020.05.088 (2020).

Reinalter, W.

M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
[Crossref]

Rietbrock, P.

M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
[Crossref]

Roeb, M.

C. Sattler, M. Roeb, C. Agrafiotis, and D. Thomey, “Solar hydrogen production via sulphur based thermochemical water-splitting,” Sol. Energy 156, 30–47 (2017).
[Crossref]

M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
[Crossref]

Romero, M.

A. J. Carrillo, J. González-Aguilar, M. Romero, and J. M. Coronado, “Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials,” Chem. Rev. 119(7), 4777–4816 (2019).
[Crossref]

M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy Environ. Sci. 5(11), 9234–9245 (2012).
[Crossref]

E. Koepf, S. Zoller, S. Luque, M. Thelen, S. Brendelberger, J. González-Aguilar, M. Romero, and A. Steinfeld, “Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project,” in AIP Conference Proceedings, (AIP Publishing LLC, 2019), 180012.

Säck, J.-P.

M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
[Crossref]

Santén, S.

M. Epstein, G. Olalde, S. Santén, A. Steinfeld, and C. Wieckert, “Towards the industrial solar carbothermal production of zinc,” J. Sol. Energy Eng. 130(1), 014505 (2008).
[Crossref]

Sattler, C.

C. Sattler, M. Roeb, C. Agrafiotis, and D. Thomey, “Solar hydrogen production via sulphur based thermochemical water-splitting,” Sol. Energy 156, 30–47 (2017).
[Crossref]

Schäppi, R.

F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
[Crossref]

Schmitz, M.

F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
[Crossref]

Schreiber, H.

M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
[Crossref]

Scipio, D.

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref]

Segal, A.

A. Segal and M. Epstein, “Practical considerations in designing large scale “beam down” optical systems,” J. Sol. Energy Eng. 130(1), 011009 (2008).
[Crossref]

A. Segal and M. Epstein, “The optics of the solar tower reflector,” Sol. Energy 69, 229–241 (2001).
[Crossref]

A. Segal and M. Epstein, “Comparative performances of ‘tower-top’ and ‘tower-reflector’ central solar receivers,” Sol. Energy 65(4), 207–226 (1999).
[Crossref]

Semendyayev, K. A.

I. N. Bronshtein and K. A. Semendyayev, Handbook of Mathematics (Springer Science & Business Media, 2013).

Slocum, A.

B. Grange, V. Kumar, A. Gil, P. R. Armstrong, D. S. Codd, A. Slocum, and N. Calvet, “Preliminary optical, thermal and structural design of a 100 kWth CSPonD beam-down on-sun demonstration plant,” Energy Procedia 75, 2163–2168 (2015).
[Crossref]

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008).

Sproul, A. B.

A. B. Sproul, “Derivation of the solar geometric relationships using vector analysis,” Renewable Energy 32(7), 1187–1205 (2007).
[Crossref]

Steinfeld, A.

F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
[Crossref]

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
[Crossref]

M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy Environ. Sci. 5(11), 9234–9245 (2012).
[Crossref]

E. Koepf, S. G. Advani, A. Steinfeld, and A. K. Prasad, “A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: Design, modeling, and experimentation,” Int. J. Hydrogen Energy 37(22), 16871–16887 (2012).
[Crossref]

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref]

M. Epstein, G. Olalde, S. Santén, A. Steinfeld, and C. Wieckert, “Towards the industrial solar carbothermal production of zinc,” J. Sol. Energy Eng. 130(1), 014505 (2008).
[Crossref]

A. Steinfeld, P. Furler, A. Haselbacher, and L. Geissbühler, “A thermochemical reactor system for a temperature swing cyclic process with integrated heat recovery and a method for operating the same,” U.S. Patent Application No. 16/342 (2019).

E. Koepf, S. Zoller, S. Luque, M. Thelen, S. Brendelberger, J. González-Aguilar, M. Romero, and A. Steinfeld, “Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project,” in AIP Conference Proceedings, (AIP Publishing LLC, 2019), 180012.

Sturzenegger, M.

M. Sturzenegger and P. Nüesch, “Efficiency analysis for a manganese-oxide-based thermochemical cycle,” Energy 24(11), 959–970 (1999).
[Crossref]

Sun, E. C.-H.

C. E. Mauk, H. W. Prengle Jr, and E. C.-H. Sun, “Optical and thermal analysis of a Cassegrainian solar concentrator,” Sol. Energy 23(2), 157–167 (1979).
[Crossref]

Suzuki, A.

H. Hasuike, Y. Yoshizawa, A. Suzuki, and Y. Tamaura, “Study on design of molten salt solar receivers for beam-down solar concentrator,” Sol. Energy 80(10), 1255–1262 (2006).
[Crossref]

Takacs, M.

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
[Crossref]

Takeuchi, A.

T. Kodama, N. Gokon, H. S. Cho, K. Matsubara, T. Etori, A. Takeuchi, S.-N. Yokota, and S. Ito, “Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator,” in AIP Conference Proceedings, (AIP Publishing, 2016), 120004.

Tamaura, Y.

H. Hasuike, Y. Yoshizawa, A. Suzuki, and Y. Tamaura, “Study on design of molten salt solar receivers for beam-down solar concentrator,” Sol. Energy 80(10), 1255–1262 (2006).
[Crossref]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, 1996), Vol. 2.

Thelen, M.

E. Koepf, S. Zoller, S. Luque, M. Thelen, S. Brendelberger, J. González-Aguilar, M. Romero, and A. Steinfeld, “Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project,” in AIP Conference Proceedings, (AIP Publishing LLC, 2019), 180012.

Thomey, D.

C. Sattler, M. Roeb, C. Agrafiotis, and D. Thomey, “Solar hydrogen production via sulphur based thermochemical water-splitting,” Sol. Energy 156, 30–47 (2017).
[Crossref]

Vant-Hull, L.

L. Vant-Hull, “Issues with beam-down concepts,” Energy Procedia 49, 257–264 (2014).
[Crossref]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, 1996), Vol. 2.

Villalobos, U.

M. Martins, U. Villalobos, T. Delclos, P. Armstrong, P. G. Bergan, and N. Calvet, “New concentrating solar power facility for testing high temperature concrete thermal energy storage,” Energy Procedia 75, 2144–2149 (2015).
[Crossref]

Wagner, M.

Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
[Crossref]

Wang, B.

B. Wang, L. Li, R. Bader, J. Pottas, V. Wheeler, P. Kreider, and W. Lipiński, “Thermal model of a solar thermochemical reactor for metal oxide reduction,” J. Sol. Energy Eng. 142(5), 051002 (2020).
[Crossref]

L. Li, B. Wang, J. Pottas, and W. Lipiński, “Design of a compound parabolic concentrator for a multi-source high-flux solar simulator,” Sol. Energy 183, 805–811 (2019).
[Crossref]

L. Li, B. Wang, R. Bader, J. Zapata, and W. Lipiński, “Reflective optics for redirecting convergent radiative beams in concentrating solar applications,” Sol. Energy 191, 707–718 (2019).
[Crossref]

L. Li, B. Wang, J. Pye, and W. Lipiński, “Temperature-based optical design, optimization and economics of solar polar-field central receiver systems with an optional compound parabolic concentrator,” Sol. Energy, doi:10.1016/j.solener.2020.05.088 (2020).

Wang, C.

G. Xiao, K. Guo, Z. Luo, M. Ni, Y. Zhang, and C. Wang, “Simulation and experimental study on a spiral solid particle solar receiver,” Appl. Energy 113, 178–188 (2014).
[Crossref]

Wang, E. N.

A. Lenert and E. N. Wang, “Optimization of nanofluid volumetric receivers for solar thermal energy conversion,” Sol. Energy 86(1), 253–265 (2012).
[Crossref]

Wang, R.

X. Li, Y. Dai, and R. Wang, “Performance investigation on solar thermal conversion of a conical cavity receiver employing a beam-down solar tower concentrator,” Sol. Energy 114, 134–151 (2015).
[Crossref]

Wang, Y.

Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
[Crossref]

Wei, X.

X. Wei, Z. Lu, W. Yu, and W. Xu, “Ray tracing and simulation for the beam-down solar concentrator,” Renewable Energy 50, 161–167 (2013).
[Crossref]

Wheeler, V.

B. Wang, L. Li, R. Bader, J. Pottas, V. Wheeler, P. Kreider, and W. Lipiński, “Thermal model of a solar thermochemical reactor for metal oxide reduction,” J. Sol. Energy Eng. 142(5), 051002 (2020).
[Crossref]

Wieckert, C.

M. Epstein, G. Olalde, S. Santén, A. Steinfeld, and C. Wieckert, “Towards the industrial solar carbothermal production of zinc,” J. Sol. Energy Eng. 130(1), 014505 (2008).
[Crossref]

Wild, M.

F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
[Crossref]

Winston, R.

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

Xiao, G.

G. Xiao, K. Guo, Z. Luo, M. Ni, Y. Zhang, and C. Wang, “Simulation and experimental study on a spiral solid particle solar receiver,” Appl. Energy 113, 178–188 (2014).
[Crossref]

Xu, W.

X. Wei, Z. Lu, W. Yu, and W. Xu, “Ray tracing and simulation for the beam-down solar concentrator,” Renewable Energy 50, 161–167 (2013).
[Crossref]

Yogev, A.

A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar “tower reflector” systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
[Crossref]

Yokota, S.-N.

T. Kodama, N. Gokon, H. S. Cho, K. Matsubara, T. Etori, A. Takeuchi, S.-N. Yokota, and S. Ito, “Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator,” in AIP Conference Proceedings, (AIP Publishing, 2016), 120004.

Yoshizawa, Y.

H. Hasuike, Y. Yoshizawa, A. Suzuki, and Y. Tamaura, “Study on design of molten salt solar receivers for beam-down solar concentrator,” Sol. Energy 80(10), 1255–1262 (2006).
[Crossref]

Yu, W.

X. Wei, Z. Lu, W. Yu, and W. Xu, “Ray tracing and simulation for the beam-down solar concentrator,” Renewable Energy 50, 161–167 (2013).
[Crossref]

Yuan, C.

C. Yuan, C. Jarrett, W. Chueh, Y. Kawajiri, and A. Henry, “A new solar fuels reactor concept based on a liquid metal heat transfer fluid: Reactor design and efficiency estimation,” Sol. Energy 122, 547–561 (2015).
[Crossref]

Zapata, J.

L. Li, B. Wang, R. Bader, J. Zapata, and W. Lipiński, “Reflective optics for redirecting convergent radiative beams in concentrating solar applications,” Sol. Energy 191, 707–718 (2019).
[Crossref]

Zhang, Y.

G. Xiao, K. Guo, Z. Luo, M. Ni, Y. Zhang, and C. Wang, “Simulation and experimental study on a spiral solid particle solar receiver,” Appl. Energy 113, 178–188 (2014).
[Crossref]

Zoller, S.

E. Koepf, S. Zoller, S. Luque, M. Thelen, S. Brendelberger, J. González-Aguilar, M. Romero, and A. Steinfeld, “Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project,” in AIP Conference Proceedings, (AIP Publishing LLC, 2019), 180012.

Appl. Energy (2)

G. Xiao, K. Guo, Z. Luo, M. Ni, Y. Zhang, and C. Wang, “Simulation and experimental study on a spiral solid particle solar receiver,” Appl. Energy 113, 178–188 (2014).
[Crossref]

G. Manikandan, S. Iniyan, and R. Goic, “Enhancing the optical and thermal efficiency of a parabolic trough collector – A review,” Appl. Energy 235, 1524–1540 (2019).
[Crossref]

Chem. Rev. (1)

A. J. Carrillo, J. González-Aguilar, M. Romero, and J. M. Coronado, “Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials,” Chem. Rev. 119(7), 4777–4816 (2019).
[Crossref]

Energy (2)

M. Sturzenegger and P. Nüesch, “Efficiency analysis for a manganese-oxide-based thermochemical cycle,” Energy 24(11), 959–970 (1999).
[Crossref]

J. Lapp, J. H. Davidson, and W. Lipiński, “Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery,” Energy 37(1), 591–600 (2012).
[Crossref]

Energy Environ. Sci. (2)

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency,” Energy Environ. Sci. 10(5), 1142–1149 (2017).
[Crossref]

M. Romero and A. Steinfeld, “Concentrating solar thermal power and thermochemical fuels,” Energy Environ. Sci. 5(11), 9234–9245 (2012).
[Crossref]

Energy Procedia (3)

M. Martins, U. Villalobos, T. Delclos, P. Armstrong, P. G. Bergan, and N. Calvet, “New concentrating solar power facility for testing high temperature concrete thermal energy storage,” Energy Procedia 75, 2144–2149 (2015).
[Crossref]

B. Grange, V. Kumar, A. Gil, P. R. Armstrong, D. S. Codd, A. Slocum, and N. Calvet, “Preliminary optical, thermal and structural design of a 100 kWth CSPonD beam-down on-sun demonstration plant,” Energy Procedia 75, 2163–2168 (2015).
[Crossref]

L. Vant-Hull, “Issues with beam-down concepts,” Energy Procedia 49, 257–264 (2014).
[Crossref]

Int. J. Hydrogen Energy (2)

E. Koepf, S. G. Advani, A. Steinfeld, and A. K. Prasad, “A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: Design, modeling, and experimentation,” Int. J. Hydrogen Energy 37(22), 16871–16887 (2012).
[Crossref]

A. Yogev, A. Kribus, M. Epstein, and A. Kogan, “Solar “tower reflector” systems: a new approach for high-temperature solar plants,” Int. J. Hydrogen Energy 23(4), 239–245 (1998).
[Crossref]

J. Sol. Energy Eng. (7)

A. Segal and M. Epstein, “Practical considerations in designing large scale “beam down” optical systems,” J. Sol. Energy Eng. 130(1), 011009 (2008).
[Crossref]

M. Epstein, G. Olalde, S. Santén, A. Steinfeld, and C. Wieckert, “Towards the industrial solar carbothermal production of zinc,” J. Sol. Energy Eng. 130(1), 014505 (2008).
[Crossref]

M. Mokhtar, S. A. Meyers, P. R. Armstrong, and M. Chiesa, “Performance of a 100 kWth concentrated solar beam-down optical experiment,” J. Sol. Energy Eng. 136(4), 041007 (2014).
[Crossref]

B. Wang, L. Li, R. Bader, J. Pottas, V. Wheeler, P. Kreider, and W. Lipiński, “Thermal model of a solar thermochemical reactor for metal oxide reduction,” J. Sol. Energy Eng. 142(5), 051002 (2020).
[Crossref]

J. Lapp, J. H. Davidson, and W. Lipiński, “Heat transfer analysis of a solid-solid heat recuperation system for solar-driven nonstoichiometric redox cycles,” J. Sol. Energy Eng. 135(3), 031004 (2013).
[Crossref]

G. Levêque, R. Bader, W. Lipiński, and S. Haussener, “High-flux optical systems for solar thermochemistry,” J. Sol. Energy Eng. 156, 133–148 (2017).
[Crossref]

R. Bader, S. Haussener, and W. Lipiński, “Optical design of multisource high-flux solar simulators,” J. Sol. Energy Eng. 137(2), 021012 (2015).
[Crossref]

Opt. Express (1)

Powder Technol. (1)

S. Bellan, K. Matsubara, C. H. Cheok, N. Gokon, and T. Kodama, “CFD-DEM investigation of particles circulation pattern of two-tower fluidized bed reactor for beam-down solar concentrating system,” Powder Technol. 319, 228–237 (2017).
[Crossref]

Renewable Energy (3)

F. J. Collado and J. Guallar, “Campo: Generation of regular heliostat fields,” Renewable Energy 46, 49–59 (2012).
[Crossref]

A. B. Sproul, “Derivation of the solar geometric relationships using vector analysis,” Renewable Energy 32(7), 1187–1205 (2007).
[Crossref]

X. Wei, Z. Lu, W. Yu, and W. Xu, “Ray tracing and simulation for the beam-down solar concentrator,” Renewable Energy 50, 161–167 (2013).
[Crossref]

Science (1)

W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” Science 330(6012), 1797–1801 (2010).
[Crossref]

Sol. Energy (15)

H. Hasuike, Y. Yoshizawa, A. Suzuki, and Y. Tamaura, “Study on design of molten salt solar receivers for beam-down solar concentrator,” Sol. Energy 80(10), 1255–1262 (2006).
[Crossref]

M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, and W. Reinalter, “Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower,” Sol. Energy 85(4), 634–644 (2011).
[Crossref]

C. Sattler, M. Roeb, C. Agrafiotis, and D. Thomey, “Solar hydrogen production via sulphur based thermochemical water-splitting,” Sol. Energy 156, 30–47 (2017).
[Crossref]

F. Dähler, M. Wild, R. Schäppi, P. Haueter, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, and A. Steinfeld, “Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles,” Sol. Energy 170, 568–575 (2018).
[Crossref]

C. Yuan, C. Jarrett, W. Chueh, Y. Kawajiri, and A. Henry, “A new solar fuels reactor concept based on a liquid metal heat transfer fluid: Reactor design and efficiency estimation,” Sol. Energy 122, 547–561 (2015).
[Crossref]

A. Segal and M. Epstein, “The optics of the solar tower reflector,” Sol. Energy 69, 229–241 (2001).
[Crossref]

A. Segal and M. Epstein, “Comparative performances of ‘tower-top’ and ‘tower-reflector’ central solar receivers,” Sol. Energy 65(4), 207–226 (1999).
[Crossref]

L. Li, B. Wang, J. Pottas, and W. Lipiński, “Design of a compound parabolic concentrator for a multi-source high-flux solar simulator,” Sol. Energy 183, 805–811 (2019).
[Crossref]

C. E. Mauk, H. W. Prengle Jr, and E. C.-H. Sun, “Optical and thermal analysis of a Cassegrainian solar concentrator,” Sol. Energy 23(2), 157–167 (1979).
[Crossref]

A. Lenert and E. N. Wang, “Optimization of nanofluid volumetric receivers for solar thermal energy conversion,” Sol. Energy 86(1), 253–265 (2012).
[Crossref]

X. Li, Y. Dai, and R. Wang, “Performance investigation on solar thermal conversion of a conical cavity receiver employing a beam-down solar tower concentrator,” Sol. Energy 114, 134–151 (2015).
[Crossref]

D. Buie, A. Monger, and C. Dey, “Sunshape distributions for terrestrial solar simulations,” Sol. Energy 74(2), 113–122 (2003).
[Crossref]

E. Leonardi, “Detailed analysis of the solar power collected in a beam-down central receiver system,” Sol. Energy 86(2), 734–745 (2012).
[Crossref]

Y. Wang, D. Potter, C.-A. Asselineau, C. Corsi, M. Wagner, C. Caliot, B. Piaud, M. Blanco, J.-S. Kim, and J. Pye, “Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems,” Sol. Energy 195, 461–474 (2020).
[Crossref]

L. Li, B. Wang, R. Bader, J. Zapata, and W. Lipiński, “Reflective optics for redirecting convergent radiative beams in concentrating solar applications,” Sol. Energy 191, 707–718 (2019).
[Crossref]

Other (16)

P. Leary and J. Hankins, “User's guide for MIRVAL: a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants,” (Sandia National Laboratories, Livermore, CA (USA), 1979).

V. Grigoriev, C. Corsi, and M. Blanco, “Fourier sampling of sun path for applications in solar energy,” in AIP Conference Proceedings, (AIP Publishing, 2016), 020008.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 90 (Cambridge University, 1996), Vol. 2.

W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008).

Magaldi, retrieved 26 October, 2019, https://www.magaldi.com/en/products-solutions/csp-concentrating-solar-power .

HELIOSCSP, retrieved 26 October, 2019, http://helioscsp.com/three-solar-modules-of-worlds-first-commercial-beam-down-tower-concentrated-solar-power-project-to-be-connected-to-grid/ .

I. N. Bronshtein and K. A. Semendyayev, Handbook of Mathematics (Springer Science & Business Media, 2013).

M. F. Modest, Radiative Heat Transfer (Academic, 2013).

L. Li, B. Wang, J. Pye, and W. Lipiński, “Temperature-based optical design, optimization and economics of solar polar-field central receiver systems with an optional compound parabolic concentrator,” Sol. Energy, doi:10.1016/j.solener.2020.05.088 (2020).

J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (John Wiley & Sons, 2013).

T. Kodama, N. Gokon, H. S. Cho, K. Matsubara, T. Etori, A. Takeuchi, S.-N. Yokota, and S. Ito, “Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator,” in AIP Conference Proceedings, (AIP Publishing, 2016), 120004.

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

E. Koepf, S. Zoller, S. Luque, M. Thelen, S. Brendelberger, J. González-Aguilar, M. Romero, and A. Steinfeld, “Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project,” in AIP Conference Proceedings, (AIP Publishing LLC, 2019), 180012.

R. Bader and W. Lipiński, “Solar thermal processing,” in Advances in Concentrating Solar Thermal Research and Technology (Elsevier, 2017), 403–459.

J. Lapp and W. Lipiński, “Transient three-dimensional heat transfer model of a solar thermochemical reactor for H2O and CO2 splitting via nonstoichiometric ceria redox cycling,” J. Sol. Energy Eng.136 (2014).
[Crossref]

A. Steinfeld, P. Furler, A. Haselbacher, and L. Geissbühler, “A thermochemical reactor system for a temperature swing cyclic process with integrated heat recovery and a method for operating the same,” U.S. Patent Application No. 16/342 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematics of a 3D solar beam-down optical system. System components featuring a heliostat field, a tower, a hyperboloidal tower reflector, and an example array of 4 CPCs are depicted in (a). Coordinate systems and geometrical parameters are shown in (b). Receiver–reactors are not shown.
Fig. 2.
Fig. 2. Schematic of an example array of 8 receiver–reactors.
Fig. 3.
Fig. 3. Power flow in a beam-down optical system.
Fig. 4.
Fig. 4. Model of the simplified 2D beam-down optical system. Parameters in black and blue are the investigated geometrical parameters and predicted geometrical and optical characteristics, respectively. Red lines represent the edges of the incident beam at the CPC entry aperture.
Fig. 5.
Fig. 5. Optical characteristics including required tower reflector (TR) size lr,min and radius rm of sun image on CPC entry aperture, as a function of (a) hyperboloidal TR eccentricity er, (b) TR axis tilt angle αr, (c) primary focus height h1, (d) focal point height ratio γ, and (e) distance d1 from the furthermost heliostat to tower.
Fig. 6.
Fig. 6. Effects of slope errors of the heliostat and tower reflector (TR) surfaces, σh and σr, respectively, on required TR size lr,min and radius rm of sun image on CPC entry aperture.
Fig. 7.
Fig. 7. Optical characteristics of the incident beam on the CPC entry aperture including (a) rim angle Φm and (b) axis tilt angle αm, as a function of hyperboloidal tower reflector eccentricity er, TR axis tilt angle αr, primary focus height h1, focal point height ratio γ, and distance d1 from the furthermost heliostat to tower.
Fig. 8.
Fig. 8. The heliostat field for the baseline MCRT simulation. The color scale indicates the overall instantaneous (at autumn equinox noon) optical efficiency of each heliostat, ηh,opt. The tower is at the origin point. The heliostats near the origin point have low overall optical efficiency due to the shading by the tower reflector.
Fig. 9.
Fig. 9. Sankey diagram of instantaneous (at autumn equinox noon) optical losses for the baseline system with the parameter set of Table 1.
Fig. 10.
Fig. 10. Instantaneous optical efficiencies, radiative power and concentration ratio at receiver–reactor aperture, as a function of (a) hyperboloidal tower reflector (TR) eccentricity er, (b) TR axis tilt angle αr, (c) primary focus height h1, (d) focal point height ratio γ, and (e) TR size lr.
Fig. 11.
Fig. 11. Effects of (a) acceptance angle θCPC, (b) entry aperture radius rin, and (c) axis tilt angle αCPC of a CPC on (1) the instantaneous (at autumn equinox noon) system optical efficiency ηsys,opt and (2) concentration ratio CRrec,a at the receiver–reactor aperture, for systems with the receiver–reactor placed at selected positions (characterized by tower reflector axis tilt angle αr and azimuthal angle ϕt).
Fig. 12.
Fig. 12. Annual system optical efficiency ${\bar{\eta }_{\textrm{sys,opt}}}$ of a beam-down optical system with one receiver–reactor placed at different relative positions to the tower. Receiver–reactor positions are expressed by (a) global coordinates x and y; and (b,c) tilt angle αr of tower reflector axis and azimuthal angle ϕt of secondary focus.

Tables (2)

Tables Icon

Table 1. Baseline simulation parameters

Tables Icon

Table 2. Instantaneous optical performance of the baseline case

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

x 1 2 a r 2 + y 1 2 a r 2 z 1 2 b r 2 = 1
c r = h 1 ( 1 γ ) 2 cos α r , a r = c r e r , b r = a r 2 c r 2
η f,opt Q ˙ f Q ˙ f, max = η cos η shade η block η abs,h η aa,up η int,r
η i n t , r = 1 Q ˙ s p i l l . r Q ˙ f + Q ˙ s p i l l . r
Q ˙ f,max = A total,h q ˙ sol
η int  , C P C = 1 Q ˙ spill  , C P C Q ˙ C P C , a + Q spill,CPC 
η CPC = Q ˙ rec,a Q ˙ CPC,a = 1 Q ˙ abs,CPC + Q ˙ rej,CPC Q ˙ CPC,a
η sys,opt = Q ˙ rec,a Q ˙ f,max
η ¯ sys,opt = Q rec,a Q f,max = day = 1 365 sunrise sunset Q ˙ rec,a d t day = 1 365 sunrise sunset Q ˙ f,max d t