Abstract

Accurately capturing the spatiotemporal information of surface plasmon polaritons (SPPs) is the basis for expanding SPP applications. Here, we report spatio-temporal evolution imaging of femtosecond SPPs launched from a rectangular trench in silver film with a 400-nm light pulse assisted femtosecond laser interferometric time-resolved (ITR) photoemission electron microscopy. It is found that introducing the 400nm light pulse in the spatially separated near-infrared (NIR) laser pump-probe ITR scheme enables distinct spatiotemporal imaging of the femtosecond SPPs with a weak probe pulse in the ITR scheme, which is free from the risk of sample damage due to the required high monochromatic field for a clear photoelectron image as well as the entangled interference fringe (between the SPPs and probe pulse) in the usual spatially overlapped pump-probe ITR scheme. The demonstrated great improvement of the visibility of the SPPs spatiotemporal image with an additional 400nm light pulse scheme facilitates further analysis of the femtosecond SPPs, and carrier wavelength (785nm), group velocity (0.94C) and phase velocity (0.98C) of SPPs are extracted from the distinct spatio-temporal evolution images of SPPs. Furthermore, the modulation of photoemission induced by the quantum pathway interference effect in the 400nm-assisted scheme is proposed to play a major role in the distinct visualization for SPPs. The probabilities of electrons in different quantum pathways are obtained quantitatively through fitting the experimental results with the quantum pathway interference model. The probability that electrons emit through the quantum pathway allows us to quantitatively analyze the contribution to electron emission from the different quantum pathways. These findings pave a way for the spatiotemporal imaging of the near-infrared light-induced SPPs, such as the communication wave band using PEEM.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics Beyond the Diffraction Limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  3. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref]
  4. C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping Surface Plasmon Polariton Propagation via Counter-Propagating Light Pulses,” Opt. Express 20(12), 12877–12884 (2012).
    [Crossref]
  5. A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7(2), 470–475 (2007).
    [Crossref]
  6. M. Dąbrowski, Y. Dai, and H. Petek, “Ultrafast microscopy: Imaging Light with Photoelectrons on the Nano-Femto Scale,” J. Phys. Chem. Lett. 8(18), 4446–4455 (2017).
    [Crossref]
  7. Y. Qin, X. Song, B. Ji, Y. Xu, and J. Lin, “Demonstrating a two-dimensional-tunable surface plasmon polariton dispersion element using photoemission electron microscopy,” Opt. Lett. 44(11), 2935–2938 (2019).
    [Crossref]
  8. Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
    [Crossref]
  9. M. Dabrowski, Y. Dai, A. Argondizzo, Q. Zou, X. Cui, and H. Petek, “Multiphoton Photoemission Microscopy of High-order Plasmonic Resonances at the Ag/vacuum and Ag/Si interfaces of Epitaxial Ag Nanowires,” ACS Photonics 3(9), 1704–1713 (2016).
    [Crossref]
  10. A. G. Joly, Y. Gong, P. Z. El-Khoury, and W. P. Hess, “Spatiotemporal Imaging of Surface Plasmons Using Two-Color Photoemission Electron Microscopy,” J. Phys. Chem. C 122(36), 20981–20988 (2018).
    [Crossref]
  11. L. Douillard and F. Charra, “High-resolution Mapping of Plasmonic Modes: Photoemission and Scanning Tunnelling Luminescence Microscopies,” J. Phys. D: Appl. Phys. 44(46), 464002 (2011).
    [Crossref]
  12. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive Subwavelength Control of Nano-Optical Fields,” Nature 446(7133), 301–304 (2007).
    [Crossref]
  13. C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
    [Crossref]
  14. J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook (CRC Press, 2001).
  15. M. Cinchetti, A. Gloskovskii, and S. A. Nepjiko, “Photoemission Electron Microscopy as a Tool for the Investigation of Optical Near Fields,” Phys. Rev. Lett. 95(4), 047601 (2005).
    [Crossref]
  16. B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Two-color Multiphoton Emission for Comprehensive Reveal of Ultrafast Plasmonic Field Distribution,” New J. Phys. 18(9), 093046 (2016).
    [Crossref]
  17. M. Shibuta, T. Eguchi, and A. Nakajima, “Imaging and Characterizing Long-Range Surface Plasmon Polaritons Propagatin in a Submillimeter Scale by Two-Color Two-Photon Photoelectron Emission Microscopy,” Plasmonics 8(3), 1411–1415 (2013).
    [Crossref]
  18. E. Devaux, J. Dintinger, T. W. Ebbesen, U. Woggon, and V. V. Temnov, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32(10), 1235–1237 (2007).
    [Crossref]
  19. D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, and F. J. Meyer zu Heringdorf, "Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields," Nano Lett. 17(11), 6569–6574 (2017).
    [Crossref]
  20. P. Lang, B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Ultrafast Switching of Photoemission Electron through Quantum Pathways Interference in Metallic Nanostructure,” Opt. Lett. 43(23), 5721–5724 (2018).
    [Crossref]
  21. M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett. 117(21), 217601 (2016).
    [Crossref]
  22. W. C.-W. Huang, M. Becker, J. Beck, and H. Batelaan, “Two-color Multiphoton Emission from Nanotips,” New J. Phys. 19(2), 023011 (2017).
    [Crossref]

2019 (1)

2018 (2)

A. G. Joly, Y. Gong, P. Z. El-Khoury, and W. P. Hess, “Spatiotemporal Imaging of Surface Plasmons Using Two-Color Photoemission Electron Microscopy,” J. Phys. Chem. C 122(36), 20981–20988 (2018).
[Crossref]

P. Lang, B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Ultrafast Switching of Photoemission Electron through Quantum Pathways Interference in Metallic Nanostructure,” Opt. Lett. 43(23), 5721–5724 (2018).
[Crossref]

2017 (3)

W. C.-W. Huang, M. Becker, J. Beck, and H. Batelaan, “Two-color Multiphoton Emission from Nanotips,” New J. Phys. 19(2), 023011 (2017).
[Crossref]

D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, and F. J. Meyer zu Heringdorf, "Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields," Nano Lett. 17(11), 6569–6574 (2017).
[Crossref]

M. Dąbrowski, Y. Dai, and H. Petek, “Ultrafast microscopy: Imaging Light with Photoelectrons on the Nano-Femto Scale,” J. Phys. Chem. Lett. 8(18), 4446–4455 (2017).
[Crossref]

2016 (3)

M. Dabrowski, Y. Dai, A. Argondizzo, Q. Zou, X. Cui, and H. Petek, “Multiphoton Photoemission Microscopy of High-order Plasmonic Resonances at the Ag/vacuum and Ag/Si interfaces of Epitaxial Ag Nanowires,” ACS Photonics 3(9), 1704–1713 (2016).
[Crossref]

B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Two-color Multiphoton Emission for Comprehensive Reveal of Ultrafast Plasmonic Field Distribution,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett. 117(21), 217601 (2016).
[Crossref]

2015 (1)

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref]

2013 (2)

M. Shibuta, T. Eguchi, and A. Nakajima, “Imaging and Characterizing Long-Range Surface Plasmon Polaritons Propagatin in a Submillimeter Scale by Two-Color Two-Photon Photoelectron Emission Microscopy,” Plasmonics 8(3), 1411–1415 (2013).
[Crossref]

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

2012 (1)

2011 (1)

L. Douillard and F. Charra, “High-resolution Mapping of Plasmonic Modes: Photoemission and Scanning Tunnelling Luminescence Microscopies,” J. Phys. D: Appl. Phys. 44(46), 464002 (2011).
[Crossref]

2010 (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics Beyond the Diffraction Limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

2007 (3)

A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7(2), 470–475 (2007).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive Subwavelength Control of Nano-Optical Fields,” Nature 446(7133), 301–304 (2007).
[Crossref]

E. Devaux, J. Dintinger, T. W. Ebbesen, U. Woggon, and V. V. Temnov, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32(10), 1235–1237 (2007).
[Crossref]

2006 (1)

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

2005 (1)

M. Cinchetti, A. Gloskovskii, and S. A. Nepjiko, “Photoemission Electron Microscopy as a Tool for the Investigation of Optical Near Fields,” Phys. Rev. Lett. 95(4), 047601 (2005).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Abajo, F. J. G. d.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive Subwavelength Control of Nano-Optical Fields,” Nature 446(7133), 301–304 (2007).
[Crossref]

Aeschlimann, M.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive Subwavelength Control of Nano-Optical Fields,” Nature 446(7133), 301–304 (2007).
[Crossref]

Alexander, W.

J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook (CRC Press, 2001).

Argondizzo, A.

M. Dabrowski, Y. Dai, A. Argondizzo, Q. Zou, X. Cui, and H. Petek, “Multiphoton Photoemission Microscopy of High-order Plasmonic Resonances at the Ag/vacuum and Ag/Si interfaces of Epitaxial Ag Nanowires,” ACS Photonics 3(9), 1704–1713 (2016).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Batelaan, H.

W. C.-W. Huang, M. Becker, J. Beck, and H. Batelaan, “Two-color Multiphoton Emission from Nanotips,” New J. Phys. 19(2), 023011 (2017).
[Crossref]

Bauer, M.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping Surface Plasmon Polariton Propagation via Counter-Propagating Light Pulses,” Opt. Express 20(12), 12877–12884 (2012).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive Subwavelength Control of Nano-Optical Fields,” Nature 446(7133), 301–304 (2007).
[Crossref]

Bayer, D.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive Subwavelength Control of Nano-Optical Fields,” Nature 446(7133), 301–304 (2007).
[Crossref]

Beck, J.

W. C.-W. Huang, M. Becker, J. Beck, and H. Batelaan, “Two-color Multiphoton Emission from Nanotips,” New J. Phys. 19(2), 023011 (2017).
[Crossref]

Becker, M.

W. C.-W. Huang, M. Becker, J. Beck, and H. Batelaan, “Two-color Multiphoton Emission from Nanotips,” New J. Phys. 19(2), 023011 (2017).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics Beyond the Diffraction Limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Brixner, T.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive Subwavelength Control of Nano-Optical Fields,” Nature 446(7133), 301–304 (2007).
[Crossref]

Burgdörfer, J.

M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett. 117(21), 217601 (2016).
[Crossref]

Charra, F.

L. Douillard and F. Charra, “High-resolution Mapping of Plasmonic Modes: Photoemission and Scanning Tunnelling Luminescence Microscopies,” J. Phys. D: Appl. Phys. 44(46), 464002 (2011).
[Crossref]

Chichkov, B. N.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

Cinchetti, M.

M. Cinchetti, A. Gloskovskii, and S. A. Nepjiko, “Photoemission Electron Microscopy as a Tool for the Investigation of Optical Near Fields,” Phys. Rev. Lett. 95(4), 047601 (2005).
[Crossref]

Cui, X.

M. Dabrowski, Y. Dai, A. Argondizzo, Q. Zou, X. Cui, and H. Petek, “Multiphoton Photoemission Microscopy of High-order Plasmonic Resonances at the Ag/vacuum and Ag/Si interfaces of Epitaxial Ag Nanowires,” ACS Photonics 3(9), 1704–1713 (2016).
[Crossref]

Dabrowski, M.

M. Dąbrowski, Y. Dai, and H. Petek, “Ultrafast microscopy: Imaging Light with Photoelectrons on the Nano-Femto Scale,” J. Phys. Chem. Lett. 8(18), 4446–4455 (2017).
[Crossref]

M. Dabrowski, Y. Dai, A. Argondizzo, Q. Zou, X. Cui, and H. Petek, “Multiphoton Photoemission Microscopy of High-order Plasmonic Resonances at the Ag/vacuum and Ag/Si interfaces of Epitaxial Ag Nanowires,” ACS Photonics 3(9), 1704–1713 (2016).
[Crossref]

Dai, Y.

M. Dąbrowski, Y. Dai, and H. Petek, “Ultrafast microscopy: Imaging Light with Photoelectrons on the Nano-Femto Scale,” J. Phys. Chem. Lett. 8(18), 4446–4455 (2017).
[Crossref]

M. Dabrowski, Y. Dai, A. Argondizzo, Q. Zou, X. Cui, and H. Petek, “Multiphoton Photoemission Microscopy of High-order Plasmonic Resonances at the Ag/vacuum and Ag/Si interfaces of Epitaxial Ag Nanowires,” ACS Photonics 3(9), 1704–1713 (2016).
[Crossref]

Davis, T. J.

D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, and F. J. Meyer zu Heringdorf, "Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields," Nano Lett. 17(11), 6569–6574 (2017).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Devaux, E.

Dintinger, J.

Dou, Y.

P. Lang, B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Ultrafast Switching of Photoemission Electron through Quantum Pathways Interference in Metallic Nanostructure,” Opt. Lett. 43(23), 5721–5724 (2018).
[Crossref]

B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Two-color Multiphoton Emission for Comprehensive Reveal of Ultrafast Plasmonic Field Distribution,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

Douillard, L.

L. Douillard and F. Charra, “High-resolution Mapping of Plasmonic Modes: Photoemission and Scanning Tunnelling Luminescence Microscopies,” J. Phys. D: Appl. Phys. 44(46), 464002 (2011).
[Crossref]

Ebbesen, T. W.

Eguchi, T.

M. Shibuta, T. Eguchi, and A. Nakajima, “Imaging and Characterizing Long-Range Surface Plasmon Polaritons Propagatin in a Submillimeter Scale by Two-Color Two-Photon Photoelectron Emission Microscopy,” Plasmonics 8(3), 1411–1415 (2013).
[Crossref]

El-Khoury, P. Z.

A. G. Joly, Y. Gong, P. Z. El-Khoury, and W. P. Hess, “Spatiotemporal Imaging of Surface Plasmons Using Two-Color Photoemission Electron Microscopy,” J. Phys. Chem. C 122(36), 20981–20988 (2018).
[Crossref]

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref]

Evlyukhin, A. B.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

Fischer, A.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

Fiutowski, J.

Förster, M.

M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett. 117(21), 217601 (2016).
[Crossref]

Frank, B.

D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, and F. J. Meyer zu Heringdorf, "Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields," Nano Lett. 17(11), 6569–6574 (2017).
[Crossref]

Gao, X.

P. Lang, B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Ultrafast Switching of Photoemission Electron through Quantum Pathways Interference in Metallic Nanostructure,” Opt. Lett. 43(23), 5721–5724 (2018).
[Crossref]

B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Two-color Multiphoton Emission for Comprehensive Reveal of Ultrafast Plasmonic Field Distribution,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

Giessen, H.

D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, and F. J. Meyer zu Heringdorf, "Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields," Nano Lett. 17(11), 6569–6574 (2017).
[Crossref]

Gloskovskii, A.

M. Cinchetti, A. Gloskovskii, and S. A. Nepjiko, “Photoemission Electron Microscopy as a Tool for the Investigation of Optical Near Fields,” Phys. Rev. Lett. 95(4), 047601 (2005).
[Crossref]

Gong, Y.

A. G. Joly, Y. Gong, P. Z. El-Khoury, and W. P. Hess, “Spatiotemporal Imaging of Surface Plasmons Using Two-Color Photoemission Electron Microscopy,” J. Phys. Chem. C 122(36), 20981–20988 (2018).
[Crossref]

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics Beyond the Diffraction Limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Hao, Z.

P. Lang, B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Ultrafast Switching of Photoemission Electron through Quantum Pathways Interference in Metallic Nanostructure,” Opt. Lett. 43(23), 5721–5724 (2018).
[Crossref]

B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Two-color Multiphoton Emission for Comprehensive Reveal of Ultrafast Plasmonic Field Distribution,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

Hess, W. P.

A. G. Joly, Y. Gong, P. Z. El-Khoury, and W. P. Hess, “Spatiotemporal Imaging of Surface Plasmons Using Two-Color Photoemission Electron Microscopy,” J. Phys. Chem. C 122(36), 20981–20988 (2018).
[Crossref]

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref]

Hommelhoff, P.

M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett. 117(21), 217601 (2016).
[Crossref]

Horn-von Hoegen, M.

D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, and F. J. Meyer zu Heringdorf, "Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields," Nano Lett. 17(11), 6569–6574 (2017).
[Crossref]

Hu, D.

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref]

Huang, W. C.-W.

W. C.-W. Huang, M. Becker, J. Beck, and H. Batelaan, “Two-color Multiphoton Emission from Nanotips,” New J. Phys. 19(2), 023011 (2017).
[Crossref]

Jauernik, S.

Ji, B.

Joly, A. G.

A. G. Joly, Y. Gong, P. Z. El-Khoury, and W. P. Hess, “Spatiotemporal Imaging of Surface Plasmons Using Two-Color Photoemission Electron Microscopy,” J. Phys. Chem. C 122(36), 20981–20988 (2018).
[Crossref]

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref]

Kahl, P.

D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, and F. J. Meyer zu Heringdorf, "Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields," Nano Lett. 17(11), 6569–6574 (2017).
[Crossref]

Kjelstrup-Hansen, J.

Klick, A.

Krüger, M.

M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett. 117(21), 217601 (2016).
[Crossref]

Kubo, A.

A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7(2), 470–475 (2007).
[Crossref]

Lang, P.

Leißner, T.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping Surface Plasmon Polariton Propagation via Counter-Propagating Light Pulses,” Opt. Express 20(12), 12877–12884 (2012).
[Crossref]

Lemell, C.

M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett. 117(21), 217601 (2016).
[Crossref]

Lemke, C.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping Surface Plasmon Polariton Propagation via Counter-Propagating Light Pulses,” Opt. Express 20(12), 12877–12884 (2012).
[Crossref]

Libisch, F.

M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett. 117(21), 217601 (2016).
[Crossref]

Lin, J.

Madlener, T.

M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett. 117(21), 217601 (2016).
[Crossref]

Makris, A.

D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, and F. J. Meyer zu Heringdorf, "Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields," Nano Lett. 17(11), 6569–6574 (2017).
[Crossref]

Melchior, P.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

Meyer zu Heringdorf, F. J.

D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, and F. J. Meyer zu Heringdorf, "Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields," Nano Lett. 17(11), 6569–6574 (2017).
[Crossref]

Nakajima, A.

M. Shibuta, T. Eguchi, and A. Nakajima, “Imaging and Characterizing Long-Range Surface Plasmon Polaritons Propagatin in a Submillimeter Scale by Two-Color Two-Photon Photoelectron Emission Microscopy,” Plasmonics 8(3), 1411–1415 (2013).
[Crossref]

Nepjiko, S. A.

M. Cinchetti, A. Gloskovskii, and S. A. Nepjiko, “Photoemission Electron Microscopy as a Tool for the Investigation of Optical Near Fields,” Phys. Rev. Lett. 95(4), 047601 (2005).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Paschen, T.

M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett. 117(21), 217601 (2016).
[Crossref]

Petek, H.

M. Dąbrowski, Y. Dai, and H. Petek, “Ultrafast microscopy: Imaging Light with Photoelectrons on the Nano-Femto Scale,” J. Phys. Chem. Lett. 8(18), 4446–4455 (2017).
[Crossref]

M. Dabrowski, Y. Dai, A. Argondizzo, Q. Zou, X. Cui, and H. Petek, “Multiphoton Photoemission Microscopy of High-order Plasmonic Resonances at the Ag/vacuum and Ag/Si interfaces of Epitaxial Ag Nanowires,” ACS Photonics 3(9), 1704–1713 (2016).
[Crossref]

A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7(2), 470–475 (2007).
[Crossref]

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive Subwavelength Control of Nano-Optical Fields,” Nature 446(7133), 301–304 (2007).
[Crossref]

Podbiel, D.

D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, and F. J. Meyer zu Heringdorf, "Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields," Nano Lett. 17(11), 6569–6574 (2017).
[Crossref]

Pontius, N.

A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7(2), 470–475 (2007).
[Crossref]

Qin, Y.

Radke, J. W.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

Reinhardt, C.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive Subwavelength Control of Nano-Optical Fields,” Nature 446(7133), 301–304 (2007).
[Crossref]

Rubahn, H.-G.

Schneider, C.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

Shackelford, J. F.

J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook (CRC Press, 2001).

Shibuta, M.

M. Shibuta, T. Eguchi, and A. Nakajima, “Imaging and Characterizing Long-Range Surface Plasmon Polaritons Propagatin in a Submillimeter Scale by Two-Color Two-Photon Photoelectron Emission Microscopy,” Plasmonics 8(3), 1411–1415 (2013).
[Crossref]

Sindermann, S.

D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, and F. J. Meyer zu Heringdorf, "Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields," Nano Lett. 17(11), 6569–6574 (2017).
[Crossref]

Song, X.

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive Subwavelength Control of Nano-Optical Fields,” Nature 446(7133), 301–304 (2007).
[Crossref]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive Subwavelength Control of Nano-Optical Fields,” Nature 446(7133), 301–304 (2007).
[Crossref]

Tao, H.

P. Lang, B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Ultrafast Switching of Photoemission Electron through Quantum Pathways Interference in Metallic Nanostructure,” Opt. Lett. 43(23), 5721–5724 (2018).
[Crossref]

B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Two-color Multiphoton Emission for Comprehensive Reveal of Ultrafast Plasmonic Field Distribution,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

Temnov, V. V.

Wachter, G.

M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett. 117(21), 217601 (2016).
[Crossref]

Woggon, U.

Xu, Y.

Zou, Q.

M. Dabrowski, Y. Dai, A. Argondizzo, Q. Zou, X. Cui, and H. Petek, “Multiphoton Photoemission Microscopy of High-order Plasmonic Resonances at the Ag/vacuum and Ag/Si interfaces of Epitaxial Ag Nanowires,” ACS Photonics 3(9), 1704–1713 (2016).
[Crossref]

ACS Photonics (1)

M. Dabrowski, Y. Dai, A. Argondizzo, Q. Zou, X. Cui, and H. Petek, “Multiphoton Photoemission Microscopy of High-order Plasmonic Resonances at the Ag/vacuum and Ag/Si interfaces of Epitaxial Ag Nanowires,” ACS Photonics 3(9), 1704–1713 (2016).
[Crossref]

J. Phys. Chem. C (1)

A. G. Joly, Y. Gong, P. Z. El-Khoury, and W. P. Hess, “Spatiotemporal Imaging of Surface Plasmons Using Two-Color Photoemission Electron Microscopy,” J. Phys. Chem. C 122(36), 20981–20988 (2018).
[Crossref]

J. Phys. Chem. Lett. (1)

M. Dąbrowski, Y. Dai, and H. Petek, “Ultrafast microscopy: Imaging Light with Photoelectrons on the Nano-Femto Scale,” J. Phys. Chem. Lett. 8(18), 4446–4455 (2017).
[Crossref]

J. Phys. D: Appl. Phys. (1)

L. Douillard and F. Charra, “High-resolution Mapping of Plasmonic Modes: Photoemission and Scanning Tunnelling Luminescence Microscopies,” J. Phys. D: Appl. Phys. 44(46), 464002 (2011).
[Crossref]

Nano Lett. (4)

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices,” Nano Lett. 13(3), 1053–1058 (2013).
[Crossref]

A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7(2), 470–475 (2007).
[Crossref]

Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, “Ultrafast imaging of surface plasmons propagating on a gold surface,” Nano Lett. 15(5), 3472–3478 (2015).
[Crossref]

D. Podbiel, P. Kahl, A. Makris, B. Frank, S. Sindermann, T. J. Davis, M. Horn-von Hoegen, H. Giessen, and F. J. Meyer zu Heringdorf, "Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields," Nano Lett. 17(11), 6569–6574 (2017).
[Crossref]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics Beyond the Diffraction Limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive Subwavelength Control of Nano-Optical Fields,” Nature 446(7133), 301–304 (2007).
[Crossref]

New J. Phys. (2)

B. Ji, X. Song, Y. Dou, H. Tao, X. Gao, Z. Hao, and J. Lin, “Two-color Multiphoton Emission for Comprehensive Reveal of Ultrafast Plasmonic Field Distribution,” New J. Phys. 18(9), 093046 (2016).
[Crossref]

W. C.-W. Huang, M. Becker, J. Beck, and H. Batelaan, “Two-color Multiphoton Emission from Nanotips,” New J. Phys. 19(2), 023011 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

M. Cinchetti, A. Gloskovskii, and S. A. Nepjiko, “Photoemission Electron Microscopy as a Tool for the Investigation of Optical Near Fields,” Phys. Rev. Lett. 95(4), 047601 (2005).
[Crossref]

M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, and P. Hommelhoff, “Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett. 117(21), 217601 (2016).
[Crossref]

Plasmonics (1)

M. Shibuta, T. Eguchi, and A. Nakajima, “Imaging and Characterizing Long-Range Surface Plasmon Polaritons Propagatin in a Submillimeter Scale by Two-Color Two-Photon Photoelectron Emission Microscopy,” Plasmonics 8(3), 1411–1415 (2013).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[Crossref]

Other (1)

J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook (CRC Press, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental set up of the two-color three beams scheme. The laser pulse is compensated for dispersion by a group of chirped mirrors and then split by BS1 after passing through silver reflective mirrors M0-M4. Part of the light generated by the beam splitting enters the Mach-Zehnder interferometer. BS2 is a beam splitter, BS3 is a combiner, and M5-M8 are silver mirrors. The partial beam passing through the BS1 is converted into SHG by a β-BaBO3 (BBO) crystal. L1 and L2 are convex lenses with a focal length of 200 mm and 125 mm, respectively. After that, the two silver mirrors M9-M10 are used to combine with the 800 nm pulse through the combiner BS4. Finally, it enters PEEM via the off-axis parabolic mirror L3.
Fig. 2.
Fig. 2. (a) Sketch map of our experiments: the pump pulse and probe pulse are spatially separated. The SPPs generated by the pump pulse is detected by the probe pulse at more than one hundred microns away from the plasmonic trench structure. The second harmonic pulse irradiates the entire field of view. (b)Photoemission interference patterns acquired by a NIR pump-probe scheme at different relative delays of pump and probe pulse. The right side yellow dash line ellipses mark the probe zone. (c) Photoemission interference pattern in a UV-assisted NIR pump-probe scheme obtained by maintaining the same experimental conditions as the NIR pump-probe scheme except for introducing a second harmonic pulse at 400nm. The yellow dotted ellipse on the left and right sides in (b) and (c) represent the zones irradiated by the pump pulse (left side) and the probe pulse (right side). The out- ring blue dotted ellipse in (c) represents the regions where the second harmonic pulse irradiates. The small white dash squares represent the trench position. The green dotted arrow in (c) marks the SPP propagation at different delays. Pump and probe pulses are polarized with the electric vector parallel to the out-of-plane axis (p-polarization). Laser pulses propagate from the left to the right in b−c.
Fig. 3.
Fig. 3. (a) Power dependence of the total photoelectron yield of 800 nm laser pulse in the NIR pump-probe scheme. (b)Power dependence of the total photoelectron yield of the 800 nm laser pulse after applying the second harmonic pulse. The yellow dotted line circles in the inset PEEM images mark the measurement position of the power dependence. The other two insets in figure a and b show the corresponding dominant electron emission mechanism. (c-d) The power dependence of the probe pulse and the pump pulse in the UV-assisted NIR pump-probe scheme. In all power-dependence measurements involving the second harmonic pulse, the power of it is 1 mW. For the three beams power-dependent measurements, the background signal induced by the non-varied laser is subtracted.
Fig. 4.
Fig. 4. (a) PEEM image with 800 nm pulses delay of 8.01fs in the UV-assisted NIR pump-probe scheme. The blue and white dash squares in the figure were used to mark the sources of photoemission at the bright and dark stripes, respectively. The extraction location of the SPPs line was performed in the yellow rectangular dashed box in the image. (b) The profile lines in red, blue and black represent the cases of the NIR pump-probe scheme, 400 nm(1 mW) pulse alone, and the UV-assisted NIR pump-probe scheme, respectively. The average photoemission intensity from the dark fringe is labeled by a green dot line. The photoemission at the position of the dynamic fringe of the SPPs is mainly provided by the interaction of pump pulse(R), probe pulse(R) and blue pulse (B).
Fig. 5.
Fig. 5. (a) The illustration of the multiphoton photoemission process from six quantum pathways ${\textrm{A}_0}$ to ${\textrm{A}_5}$ . Since the quantum channel of 400 nm two photons contributes very little to the overall electron yield in the experiment, the contribution of this quantum channel electron yield is neglected. The black arrow, red arrow and blue arrow represent the photon absorbed from the pump, probe and second harmonics pulses by electron, respectively. FL and VL represent Fermi level and vacuum level; E, energy. Numerical fitting of experiment results in the same relative time delay by quantum pathway interference model for the NIR pump-probe scheme (b) and UV-assisted NIR pump-probe scheme(c).(d) The probability of photoemission from different quantum pathways. It is noted that the abscissa represents the relative position in (b) and (c).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{ A 0 = a 4 m , n , k + f | H int ( t 1 τ ) | m d t 1 t 1 m | H int ( t 2 τ ) | n d t 2 t 2 n | H int ( t 3 τ ) | k d t 3 A 1 = a 4 m , n , k + f | H int ( t 1 τ ) | m d t 1 t 1 m | H int ( t 2 τ ) | n d t 2 t 2 n | H int ( t 3 ) | k d t 3 A 2 = a 4 m , n , k + f | H int ( t 1 τ ) | m d t 1 t 1 m | H int ( t 2 ) | n d t 2 t 2 n | H int ( t 3 ) | k d t 3 A 3 = a 4 m , n , k + f | H int ( t 1 ) | m d t 1 t 1 m | H int ( t 2 ) | n d t 2 t 2 n | H int ( t 3 ) | k d t 3 A 4 = a 2 m , n , k + f | H int ( t 1 τ ) | m d t 1 t 1 m | H int , S H G ( t 2 ) | n d t 2 A 5 = a 2 m , n , k + f | H int ( t 1 ) | m d t 1 t 1 m | H int , S H G ( t 2 ) | n d t 2 A 6 = a 2 m , n , k + f | H int , S H G ( t 1 ) | m d t 1 t 1 m | H int , S H G ( t 2 ) | n d t 2
{ A 4 = a 4 m , n , k + f | H int ( t 1 τ ) | m d t 1 t 1 a 2 a 4 m | H int , S H G ( t 2 ) | n d t 2 A 5 = a 4 m , n , k + f | H int ( t 1 ) | m d t 1 t 1 a 2 a 4 m | H int , S H G ( t 2 ) | n d t 2 A 6 = a 4 m , n , k + f | H int , S H G ( t 1 ) | m d t 1 t 1 a 2 a 4 m | H int , S H G ( t 2 ) | n d t 2
Y ( τ ) = n = 1 5 | A n | 2 + n m n , m = 0 5 A n A m = n = 1 5 | A n | 2 + n m n , m = 0 5 ( A n A m ) c o s [ ( n m ) ( ω t + ( k 1 k 2 ) x ) ]
Y ( τ ) = n = 0 3 a n α n I p u m p n β 3 n I p r o b e 3 n + a 4 α I p u m p θ I 400 + a 5 β I p r o b e θ I 400 + n m n , m = 0 3 a n a m α n + m I p u m p n + m β 6 ( n + m ) I p r o b e 6 ( n + m ) × c o s [ ( n m ) ( ω t + ( k 1 k 2 ) x ) ] + n = 0 3 a n α n I p u m p n β 3 n I p r o b e 3 n a 4 α I p u m p θ I 400 × c o s [ ( n 1 ) ( ω t + ( k 1 k 2 ) x ) ] + n = 0 3 a n α n I p u m p n β 3 n I p r o b e 3 n a 5 β I p r o b e θ I 400 × c o s [ ( n 1 ) ( ω t + ( k 1 k 2 ) x ) ] + a 4 α I p u m p θ I 400 a 5 β I p r o b e θ I 400 × c o s [ ( ω t + ( k 1 k 2 ) x ) ]

Metrics